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Abstract: There has been ever-increasing interest over the past decade in improving understanding of the mechanisms responsible for the
progressive collapse of structures. Existing design recommendations and analyses are largely limited to instantaneous (time-independent)
collapse. However, recent experiments revealed that reinforced concrete (RC) structures may be susceptible to delayed collapse, prompting
the consideration of time-dependent material behavior as part of progressive collapse analysis and design. A reduced-order computational
model for delayed collapse behavior of RC structures is introduced here in which the potential damage zones that evolve within a structure are
treated as cohesive elements. The constitutive model of the cohesive element accounts for viscoelastic deformation and time-dependent
damage accumulation of the concrete and hardening plasticity of the steel reinforcement. The remaining part of the structure is treated
as a viscoelastic continuum. The model is first applied to simulate a pushdown experiment on a RC frame subassemblage under
displacement-controlled loading. The deformation and failure mechanisms are in good agreement with experimental observations. The model
is then used to investigate the behavior of the subassemblage in a “static fatigue scenario” in which the load is monotonically increased to a
prescribed level and is then held constant until ultimate structural failure resulting from the assumed time-dependent response of the concrete
material. The corresponding timescale of the delayed failure is on the order of hours, a result that has important implications not only for the
analysis and design of RC structures against progressive collapse but also for the safety of first responders who enter structures that may
collapse within that period of time. DOI: 10.1061/(ASCE)EM.1943-7889.0001843. © 2020 American Society of Civil Engineers.

Introduction

Progressive collapse is a catastrophic large-scale structural failure
caused by gravity-driven propagation of local structural damage.
Research on progressive collapse dates back to the 1968 collapse
of the Ronan Point apartment building. Since then, various pre-
scriptive measures have been introduced into the code standards
and design recommendations to mitigate the risk of such failures
[GSA 2003; ASCE/SEI 7-10 (ASCE 2010); BSI 2006; DoD 2009;
ICC 2009]. The likelihood of local structural damage caused by
abnormal events such as explosion, blast, and object impact has
seen a continuously increasing trend, as evidenced by tragic events
such as the collapse of the Alfred P. Murrah Federal Building and
the World Trade Center towers. As a consequence, there has been
a continuously increasing interest in improving understanding
of the underlying mechanisms involved in progressive collapse
of structures and the development of performance-based design
methodologies.

Progressive collapse may involve, among other things, material
damage, crack propagation, large deformation, debris impact, and
dynamic effects. Such complexity limits the capability of analytical
modeling techniques (Bažant and Verdue 2007; Bažant et al. 2008;

Pesce et al. 2012). In fact most existing analytical models are lim-
ited to simple cases where the motion of the collapse front can be
considered as one-dimensional (1D). Direct experimental investi-
gation of progressive collapse of structures offers important in-
sights into the details of the failure mechanisms, but it is costly.
Data is available only for a handful of full-scale collapse experi-
ments on two- and three-dimensional (2D and 3D) structural frames
subjected to local column removal (Lew et al. 2011; Sadek et al.
2011; Xiao et al. 2015). The limitations of analytical and experi-
mental investigation have inspired major advances in numerical
simulation of progressive collapse of buildings (Kunnath et al.
2018). Both continuum finite-element (FE) and discrete-element
models have been used to simulate the progressive collapse behav-
ior of reinforced concrete (RC) and steel buildings. The common
drawback of these models is that the computational cost becomes
prohibitive for large-scale buildings (Masoero et al. 2010; Alashker
et al. 2011). To achieve a balance between model accuracy and com-
putational efficiency, various reduced-order computational models,
such as the damage-dependent beam element (Kaewkulchai and
Williamson 2004; Grierson et al. 2005), macro-element-based mod-
eling (Khandelwal and El-Tawil 2008; Bao et al. 2008), the applied
element method (Helmy et al. 2012), and cohesive element model-
ing (Le and Xue 2014; Xue and Le 2016a, b), have been developed
for RC buildings.

While the aforementioned modeling and experimental efforts
have led to significant insights into the progressive collapse of
RC structures and in turn to prescriptive code recommendations,
they have focused on instantaneous collapse. In other words, cur-
rently available analysis tools assume that collapse occurs during
the transient load redistribution caused by local structural damage.
For instance, in some simplified analyses the structural resistance is
checked against the dynamic load factor–enhanced gravity load
(Sasani and Sagiroglu 2008). However, a recent experiment on a
three-story, three-bay-by-three-bay RC frame (Xiao et al. 2015)
showed delayed collapse for certain cases of column removal.
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This observation drove home the point that the delayed collapse of
RC structures is a new and potentially critical aspect of the assess-
ment of structural vulnerability.

It has been speculated that time-dependent collapse of RC struc-
tures can be attributed to time-dependent material behaviors (Xiao
et al. 2015). In fact, it is well known that concrete materials exhibit
viscoelastic deformation under service loads, a phenomenon that
has been extensively studied and for which numerous semiempirical
models have been proposed [e.g., ACI 209.2R-08 (ACI 2008);
Bažant and Murphy 1995; Gardner and Lockman 2001; Bažant
and Jirásek 2018]. A large portion of these studies were motivated
by rheological models, such as those of Kelvin and Maxwell. Some
of these models have been implemented in FE analysis to simulate
the long-term behavior of large-scale concrete bridges, including the
Koror-Babeldaob Bridge in Palau (Bažant et al. 2012) and the I-35W
St. Anthony Falls bridge in Minneapolis (Hedegaard et al. 2017).

Concrete materials exhibit viscoelastic deformation at relatively
low levels of loading and time-dependent damage evolution at
sufficiently higher levels. This damage phenomenon undoubtedly
involves cracking and is therefore referred to as subcritical crack
propagation or static fatigue. Early work by Rüsch showed that,
under sustained loading, the strength of concrete significantly de-
creases with time (Rüsch 1960). Experiments also showed that
static fatigue is strongly influenced by humidity (Krokosky 1973).
Static fatigue of concrete can be modeled conveniently using frac-
ture kinetics, as it has been for rocks and ceramics (Evans 1972;
Thouless et al. 1983; Atkinson 1984; Evans and Fu 1984; Bažant
and Le 2017). Note that the kinetics model has been used to inves-
tigate the effects of temperature and humidity on the fracture en-
ergy of concrete (Bažant and Prat 1988).

Though both time-dependent viscoelastic behavior and subcriti-
cal crack propagation have been studied for concrete materials,

few studies have combined them into a single framework for the
analysis of the time-dependent failure of RC structures. This study
proposes a time-dependent computational model that incorporates
both viscoelastic and subcritical damage accumulation mecha-
nisms. The model is used for the numerical investigation of the de-
layed collapse behavior of RC structures.

Time-Dependent Reduced-Order Model of RC
Structures

This study is anchored by a recently developed reduced-order com-
putational model for time-independent progressive collapse of RC
structures (Le and Xue 2014; Xue and Le 2016a, b), which adopts
the concept of cohesive zone model that originated in the fracture
mechanics community (Barenblatt 1959; Dugdale 1960; Bažant
and Planas 1998). The inelastic behavior of a structure is charac-
terized by a set of cohesive elements, which represent parts of
the structure that could potentially be damaged. These parts, re-
ferred to as the potential damage zone (PDZ), are identified a priori
based on the expected structural behavior (Le and Xue 2014; Xue
and Le 2016a, b). For instance, in a column, the PDZs can be
located at the midheight and two ends to simulate the Shanley col-
umn model (Bažant and Cedolin 1991). For beams, the PDZs can
be placed at the ends and at the quarter span to capture catenary
action and flexural failure. For more complex failure modes, such
as diagonal shear failure in beams, more PDZs will be needed. The
more PDZs are added, the model will converge to a nonlinear FE
model. Note that the predefinition of PDZs in the present model is
analogous to the predefinition of the crack path in the cohesive
crack model. The parts of the structure that are not damaged are
discretized using continuum elastic elements. Figs. 1(a and b) show

Fig. 1. Cohesive element based modeling of RC frame: (a) RC frame with PDZs; (b) numerical modeling of frame; (c) cross section of PDZ; and
(d) cohesive element representation of PDZ.
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the representation of a RC frame using a cohesive element model. In
this study, this reduced-order model is extended to take into account
the time-dependent behavior of concrete materials, including visco-
elastic deformation and the aforementioned subcritical damage
accumulation mechanism.

Following Le and Xue (2014) and Xue and Le (2016a, b), each
PDZ consists of two components [Fig. 1(c)]: (1) effective concrete
section, which is composed of concrete and shear reinforcement
(if any), and (2) longitudinal reinforcement. The PDZ is repre-
sented by three cohesive elements; the top and bottom cohesive
elements represent only the effective concrete section, and the
middle element contains both the effective concrete section and
longitudinal reinforcement [Fig. 1(d)]. The height c of the top
and bottom cohesive elements corresponds to the thickness of
the concrete cover, and the height of the middle element is chosen
such that the distance from the midheight of the top element to the
bottom surface of the middle element is equal to 0.85D [Fig. 1
(d)], where D = effective depth of the section, which is equal
to the distance between the centroid of the tensile reinforcement
and the extreme material fiber in compression (Lowes and
Altoontash 2003).

The total traction vector of a cohesive element can generally be
written

σðwn;wm;wlÞ ¼ σcðwn;wm;wlÞ þ ρsσsðwn;wm;wlÞ ð1Þ
where σ ¼ ðσn; τm; τ lÞT = traction vector (σn; τm; τ l = tractions in
normal and two orthogonal shear directions); σc ¼ ðσc

n; τ cm; τ ckÞT =
traction vector of effective concrete section; σs ¼ ðσs

n; τ sm; τ skÞT =
traction vector of longitudinal reinforcement; wn = normal separa-
tion; wl;wm = shear separations; and ρs = longitudinal reinforce-
ment ratio of cohesive element. In the following sections, the
traction-separation relationship of each component is discussed.

Effective Concrete Section

To capture both the viscoelastic deformation and the subcritical
damage accumulation mechanism of concrete, the effective con-
crete section is modeled by combining a fracturing unit and a chain
of viscoelastic Kelvin units, as depicted in Fig. 2. The total tractions
and displacements of the effective concrete section can be related to
the tractions and displacements of the fracturing and viscoelastic
chain elements as

σc ¼ σcf ¼ σcve ð2Þ

w ¼ wf þ wve ð3Þ

where σc, σcf , and σcve = traction vectors of effective concrete sec-
tion, fracturing unit, and viscoelastic chain, respectively; and w, wf,

and wve = displacement vectors of cohesive element, fracturing
unit, and viscoelastic chain, respectively.

Fracturing Unit
As shown in Fig. 2, the damage and failure of the effective concrete
section is governed by the fracturing unit. The constitutive model of
the fracturing unit is introduced by defining the effective displace-

ment as w̄f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2
fn þ αiðw2

fm þ w2
flÞ

q
, where wfn, wfm, and wfl

are the normal and two orthogonal shear displacements of the
fracturing unit, respectively, and αiði ¼ t; cÞ are constants corre-
sponding to tension-shear loading and compression-shear
loading, respectively. The mode mixity angle is defined as

θ¼ tan−1
�
wfn=αi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2
fmþw2

fl

q �
. The work-conjugate effective

traction σ̄c satisfies σ̄cδw̄f ¼ σc
fnδwfn þ τ cfmδwfm þ τ cflδwfl,

which implies σc
fn ¼ σ̄c sin θ, τ cfm ¼ αiσ̄c cos θ sinψ, and τ cfl ¼

αiσ̄c cos θ cosψ, where ψ ¼ tan−1ðwfm=wflÞ. Therefore, the con-
stitutive response of the fracturing unit can be fully described
by the relationship between σ̄c and w̄f .

Here a damage-mechanics based constitutive law is proposed
for the σ̄c − w̄f relationship, i.e.

σ̄c ¼ ð1 − dÞEw̄f ð4Þ

where d = damage parameter ranging from 0 (virgin state) to 1
(fully damaged state); and E = elastic stiffness. By assuming that
the cohesive element exhibits a linear elastic behavior up to the
peak strength, the elastic stiffness can be expressed as E ¼ σp=wy,
where σp is the peak strength of the fracturing unit and wy the
corresponding displacement at σp. For mixed-mode loading,
it is expected that σp and wy vary with the mode mixity.
Following Le and Xue (2014) and Xue and Le (2016a, b), it is
assumed that

σp ¼ jσipjðsin jθjÞβi þ α−1
i jστpjðcos jθjÞβi ð5Þ

wy ¼ ½ðjwiyj sin jθjÞγi þ ðjwτyj cos jθjÞγi �1=γi ð6Þ

where σipði ¼ t; cÞ = maximum tensile and compressive strengths
of the effective concrete section, respectively; στp = shear strength
of the effective concrete section; wiyði ¼ t; cÞ = separations at
which cohesive traction reaches σip under pure tensile and com-
pressive loading, respectively; wτy = separations at which cohe-
sive traction reaches στp under pure shear loading; and βi,
γiði ¼ t; cÞ = calibrated constants that describe tension-shear in-
teraction and compression-shear interaction, respectively.

The rate-dependent fracture behavior that evolves the damage
is treated using a growth kinetics model. A widely used fracture
kinetics model for quasi-brittle materials under sustained load is the
Evans law (Evans 1972; Thouless et al. 1983; Evans and Fu 1984;
Bažant et al. 2009; Bažant and Le 2017), in which the crack growth
rate is expressed as a power-law function of the stress intensity
factor. Another commonly used model for subcritical damage
growth is based on continuum damage mechanics (Kachanov 1986,
1994; Lemaitre and Desmorat 2005; Rabotnov 1969), in which the
damage growth rate is related to the effective traction:

dd
dt

¼ Bλk

ð1 − dÞr ð7Þ

where B; k; r = constants; and λ ¼ σ̄c=σp = relative load level. For
any given loading history, the combination of Eqs. (7) and (4) dic-
tates the loading path in the traction-separation space. To recover
the behavior under quasi-static monotonic loading conditions,Fig. 2. Constitutive model of effective concrete section.
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the loading path is bounded by a bilinear traction-separation
envelope, which is expressed by

σ̄cðw̄fÞ ¼

8><
>:

σpw̄f=wy ðw̄f ≤ wyÞ
σpðwu − w̄fÞ=ðwu − wyÞ ðwy < w̄f ≤ wuÞ
0 ðwu < w̄fÞ

ð8Þ

where wu ¼ ½ðjwiuj sin jθjÞγi þ ðjwτuj cos jθjÞγi �1=γi ; wiuði ¼ t; cÞ =
separations at which the normal traction vanishes under pure tensile
and compressive loading, respectively; and wτu = separation at
which shear traction vanishes under pure shear loading. It can be
shown that, under a sufficiently fast, quasi-static, and monotonically
increasing displacement-controlled load, the traction-separation
response calculated by Eqs. (4) and (7) would follow Eq. (8).

Viscoelastic Unit
For delayed progressive collapse, the time scale of interest is on the
order of hours to a few days. Therefore, the long-term creep behav-
ior need not be considered. The viscoelastic strain can be expressed
by Bažant and Prasannan (1989):

wveðtÞ ¼ ϵveðtÞLp ¼
�Z

t

0

Φðt − t0ÞGσ̇cðτÞdτ
�
Lp ð9Þ

where Lp = length of PDZ [Fig. 1(a)]; ϵveðtÞ = strain in viscoelastic
unit at time t; Φðt − t0Þ = nonaging compliance function of con-
crete; t − t0 = loading time (t0 = time of start of loading); and
matrix G accounts for the normal-shear coupling behavior of the
effective concrete section (Alnaggar et al. 2017):

G ¼

2
64
1 0 0

0 1=α2
i 0

0 0 1=α2
i

3
75 ð10Þ

The viscoelastic response of concrete is modeled using a non-
aging Kelvin chain (Fig. 2), and therefore the compliance function
Φðt − t0Þ can be approximated by the Dirichlet series (also called
as Prony Series) (Bažant and Jirásek 2018)

Φðt − t0Þ≈ A0 þ
XN
j¼1

Aj

�
1 − exp

�
− t − t0

τ j

	

ð11Þ

where A0 = elastic compliance that accounts for instantaneous
deformation; and Aj and τ j = corresponding compliance and relax-
ation time of jth Kelvin unit (j ¼ 1; : : : ;N), respectively. Previous
studies suggested choosing τ j in base-10 geometric progression
[i.e., Δðlog τμÞ ¼ 1] to obtain a sufficiently smooth compliance
curve (Bažant and Xi 1995; Bažant and Jirásek 2018). The elastic
compliance Aj can then be determined based on the continuous
retardation spectrum (Bažant and Xi 1995).

Longitudinal Reinforcement

The constitutive behavior of the longitudinal reinforcement is for-
mulated based on the uniaxial stress-strain relation of steel material
modified by the bond-slip effect, i.e.

ϵsðσsÞ ¼ ϵs0ðσsÞ þΔsðσsÞ
Lp

ð12Þ

where σs = actual bar stress; ϵs0ðσsÞ = bar strain without considering
bond-slip effect; and Δs = total slip at bar stress σs

n. The total slip

Δsðσs
nÞ can be determined based on an assumed stress distribution

along the concrete–reinforcement interface (Sezen and Moehle
2003; Lew et al. 2011). The ultimate bar strength is governed
by the minimum of the steel rupture strength and the bar pullout
strength. The bar pullout strength can be calculated from the con-
crete and steel properties based on the ACI recommendation [ACI
408R-03 (ACI 2003)]. Eq. (12) can be rewritten as σs ¼ fðϵsÞ.

Note that the contribution of the longitudinal reinforcement to
the load resistance of the cohesive element depends on the loading
scenario. Under tension, the load-carrying capacity of longitudinal
reinforcement can be fully achieved even after the concrete material
is damaged. While under compression the reinforcement would
buckle and lose load-carrying capacity as soon as the concrete
is fully damaged.

The traction-separation relation of the longitudinal reinforce-
ment can be easily obtained by projecting the aforementioned
uniaxial stress-strain relation onto the normal and shear directions.
The total bar elongation within the PDZ is approximated as

w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLp þ wnÞ2 þ w2

m þ w2
l

q
− Lp, and the angle between the

direction of the bar stress and the normal direction by ϕ ¼
tan−1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2
m þ w2

l

p �ðLp þ wnÞ


. Consequently, the normal and

shear tractions in the bar are given by σs
n ¼ fðw=LpÞ cosϕ,

τ sm ¼ fðw=LpÞ sinϕ sinψ, and τ sl ¼ fðw=LpÞ sinϕ cosψ. The an-
gle ϕ is usually small, and therefore the longitudinal reinforcement
has a minimal effect on the shear behavior of the PDZ. The unload-
ing and reloading paths for the longitudinal reinforcement are de-
scribed by the classical linear isotropic kinematic hardening model
(Xue and Le 2016b). Note that during the progressive collapse, the
strain rate is relatively low, and therefore a rate-independent con-
stitutive model for steel reinforcement is sufficient for the present
analysis.

It is worth noting that the bond slip, a type of interfacial fracture,
could also exhibit a time-dependent behavior. The time dependence
may be described by some fracture kinetics model, such as the
Evans law. However, there is a lack of experimental data on the
bond-slip behavior under static fatigue. The potential time depend-
ence of bond slip is worth further investigation as it could have a
considerable influence on the delayed collapse behavior of the
overall structure.

Elements Outside Potential Damage Zones

The structure outside the PDZs is modeled by standard continuum
elements. Based on the present model, these elements do not con-
tribute to the overall structural failure. Nevertheless, they share the
same viscoelastic behavior as the PDZs, so that no discontinuity will
arise during the time-dependent elastic response. This assumption
ensures a smooth elastic stress distribution throughout the structure.

Numerical Implementation

The time-dependent cohesive model is implemented as a user-
defined material subroutine in the commercially available software
ABAQUS for explicit FE analysis. During the ith time increment
Δti ¼ tðiþ 1Þ − tðiÞ, the increment of cohesive separation ΔwðiÞ
is prescribed. The corresponding traction increment Δσs;i of the
longitudinal reinforcement can directly be calculated based on
the modified stress-strain relation [Eq. (12)].

For the effective concrete section, Eqs. (2) and (3) require
Δwi ¼ Δwc;i

f þΔwc;i
ve and Δσc;i ¼ Δσc;if ¼ Δσc;ive . For the visco-

elastic unit, the stress calculated from the previous time step is used
to determine the strain increment of each Kelvin unit. This leads to

© ASCE 04020113-4 J. Eng. Mech.
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Δϵc;ive;j ¼ ½GAjσc;i − ϵc;ive;j�½1 − expð−Δti=τ jÞ� ð13Þ

where σc;i; ϵc;ive;j = traction vector and strain vector of each Kelvin
unit calculated from the previous time step, respectively. The total
increment in the separation of the viscoelastic unit is simply given
by Δwc;i

ve ¼ Lp
P

N
j¼0 Δϵc;ive;j.

By subtracting Δwc;i
ve from Δwi, the separation increment

Δwi
f of the fracturing unit is obtained. Noting that the present

constitutive model of the fracturing unit can be rewritten as σc;if ¼
ð1 − dÞCðwfÞwf , where C = a second-order stiffness tensor, which
depends on the mode mixity. This constitutive equation can be ex-
pressed in incremental form, i.e.

Δσc;if ¼ −CiwfΔdi þ ð1 − diÞ
�
Ci þ wi

f
dC
dwf

����
wi
f

	
Δwi

f ð14Þ

where Δdi = increment of damage variable during present time in-
crement; and all other quantities with subscript i carry the values
calculated from the previous time step. The damage variable incre-
ment is calculated from the damage accumulation model [Eq. (7)],
i.e., Δdi ¼ Bð1 − diÞ−rðσ̄i

c=σi
pÞkΔti. Once the traction increment

is calculated, it is checked whether the total traction falls outside the
bilinear traction-separation envelope described by Eq. (8). If it
does, the traction is corrected by bring it back onto the envelope
(Fig. 3).

As mentioned earlier, elements inside and outside the PDZs
must exhibit the same viscoelastic behavior. For the sake of con-
venience, the continuum elements outside the PDZs are modeled
using a built-in viscoelastic material model in ABAQUS. The
time-dependent properties are input through a normalized bulk
compliance function. This function is numerically calibrated so that
it yields the same compliance as predicted by the Dirichlet series
approximation for the viscoelastic unit of the PDZ [Eq. (11)].

Simulation of RC Structural Subassemblage

Description of Numerical Study

The model is applied to the analysis of the collapse behavior of a
RC frame subassemblage. A commonly used experiment for inves-
tigating structural collapse behavior is the pushdown test, in which
a downward displacement control loading is applied all the way to
failure. Owing to the large deformation involved in the response,

the failure process consists of various mechanisms, such as con-
crete fracture and damage, reinforcement yielding and rupture, cat-
enary and membrane actions, all of which are relevant.

Consider the full-scale pushdown test performed by NIST
(Lew et al. 2011), as shown in Fig. 4(a). In the experiment, the
middle column head was pushed downward in a quasi-static man-
ner until the structure failed. Fig. 4(b) shows the measured load-
displacement curve, which consists of an initial softening branch
followed by a significant hardening regime. The initial softening
behavior can be attributed to concrete compressive damage that oc-
curs at the interior joints of the beams. Under the continuing dis-
placement, catenary action develops in the beams and is active up to
the rupture of the longitudinal reinforcement.

Not only is the NIST experiment modeled here, but also is the
delayed collapse produced by a representative different loading
protocol: the applied displacement is increased monotonically until
the load reaches a level P that is lower than the first peak load Pc
measured in the pushdown experiment, and then the load is held
constant all the way until failure. The failure mechanism is largely
governed by the time-dependent damage accumulation and load
redistribution. The key output of the simulation is the time to failure
tf (structural lifetime). The aforementioned loading scenario
represents the case in which the structure survives after experienc-
ing local structural damage (such as column removal) and sub-
sequently sustains increased gravity loads. Since the interest of
this study is delayed collapse behavior, in which the timescale
is on the order of a few days at maximum, the simulation involves
only high load levels, i.e., P=Pc ¼ 0.98; 0.97; 0.96; 0.95; 0.94,
and 0.93. These simulations provide the load-lifetime curve of
the frame.

Determination of Model Parameters

In the present reduced-order model, the model parameters of the
cohesive element represent the behavior of a PDZ. The cohesive
model has three main components: (1) fracturing unit of the effec-
tive concrete section, (2) viscoelastic unit of the effective concrete
section, and (3) longitudinal reinforcement. As discussed in the sec-
tion “Longitudinal Reinforcement,” the cohesive parameters of the
longitudinal reinforcement can be obtained directly based on the
stress-strain curve of steel material and an analytical model of bond
slip. The calibration of the model parameters of the effective con-
crete section is more involved. Previous studies suggested that
these parameters could be determined by a set of fine-scale FE sim-
ulations (Le and Xue 2014; Xue and Le 2016a, b), which involves a
sophisticated constitutive model for concrete. In a recent study (Le
and Xue 2014), a time-independent cohesive model was used to
simulate the NIST pushdown test, where the behavior of the effec-
tive concrete section was described by a bilinear traction-separation
law with the same form as Eq. (8). Therefore, the result of this pre-
vious study is used to construct the traction-separation envelope of
the fracturing unit of the present model. What remains to be cali-
brated are the viscoelastic model and the damage accumulation
model.

The viscoelastic behavior of concrete has been extensively stud-
ied. It suffices to consider the following function for nonaging com-
pliance of concrete (Bažant and Xi 1995):

Φðt − t0Þ ¼ ξ1 ln½1þ ðt − t0Þn� ð15Þ

where n ¼ 0.1. This compliance function can be approximated by
a chain of 10 Kelvin units with retardation times ranging from 10−4
to 105 days (Alnaggar et al. 2017). By matching Eq. (11) with
Eq. (15), the elastic compliance A0 ¼ 0.642ξ1 is obtained, and

Fig. 3. Numerical correction scheme for solution point that is outside
traction-separation envelope.
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ξ1 can be related empirically to the concrete properties (Bažant and
Murphy 1995). Other compliances Aj can be calculated as Aj ¼
LjΔðlog τ jÞ ln 10 ≈ Lj ln 10, where the fact that the retardation
times are chosen in a base-10 geometric progression is used. Lj can
be estimated from the continuous retardation spectrum of order 3 of
function Φðt − t0Þ (Bažant and Xi 1995; Alnaggar et al. 2017), i.e.

Lj ¼
ξ1ð3τ jÞ3

2

�
nðn − 2Þð3τ jÞn−3½n − 1 − ð3τ jÞn� − n2ð3τ jÞ2n−3

½1þ ð3τ jÞn�2

− 2n2ð3τ jÞ2n−3½n − 1 − ð3τ jÞn�
½1þ ð3τ jÞn�3

�
ð16Þ

The damage accumulation model [Eq. (7)] is an essential
component of the model. However, determination of the damage

accumulation parameters for concrete materials is not a trivial task.
There are very limited experimental data available on the damage
behavior of concrete under sustained loading (Rüsch 1960; Bažant
and Prat 1988; Zhou 1992). Time-dependent damage accumulation
in concrete is affected by a number of factors, such as the material
composition and external environment (e.g., humidity). No infor-
mation is available on the damage accumulation behavior of
concrete that was used in the NIST test. Therefore, in this study,
the parameters B, k, r of Eq. (7) are chosen so that the effective
concrete section exhibits a reasonable load-lifetime curve under
sustained compressive loading. Compressive loading is chosen be-
cause in the present static fatigue simulation, the time-dependent
failure of the frame subassemblage is governed by the compressive
failure of concrete. The tension resistance of the beam is contrib-
uted by the longitudinal reinforcement.

Fig. 4. NIST pushdown experiment: (a) geometry and dimension of test specimen; and (b) comparison between measured and simulated load-
deflection curves.
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To simulate the load-lifetime curve of the cohesive element ef-
fective concrete section, first the load is monotonically increased at
a sufficiently fast rate to a prescribed level before the peak, and then
held constant until failure. Note that in the simulation the element
suffers no damage at the end of the monotonic loading stage
(i.e., no stiffness degradation) [Fig. 5(a)]. After several trials,
B ¼ 1.5 × 10−3=s, k ¼ 20, and r ¼ 5 are chosen, which yields
the load-lifetime curve as shown in Fig. 5(b). It is seen that the
load-lifetime relationship exhibits an inverse power-law depend-
ence, which is a consequence of the power-law form of the damage
accumulation model [Eq. (7)]. The power exponent of the load-
lifetime curve is approximately −1=20, a value that is similar to
the load-lifetime exponent measured in Rüsch’s experiments
(Rüsch 1960). Meanwhile, it is noted that the present damage ac-
cumulation model [Eq. (7)] is analogous to the Evans law for sub-
critical crack growth, and its stress dependence (i.e., dd=dt ∝ σ20)
is also consistent with da=dt ∝ σk (a = crack length, k ∼ 10 − 30)
in the Evans law (Bažant et al. 2009).

Results and Discussion

NIST Pushdown Test

The proposed model is first used to simulate the NIST pushdown
test. In the simulation, a linearly ramped displacement is applied at
the middle column head at a rate of 25 mm=min (Lew et al. 2011),
until ultimate failure. As shown in Fig. 4(b), the simulated load-
displacement curve matches the experimental measurement reason-
ably well. In the simulation, the frame first exhibits a linear elastic
response, and the opposite positions of the compression zone of the
beam at the middle and exterior columns cause an arch effect. Upon
continued loading, the top cohesive elements at the interior joints
of the beam start to experience compressive damage, which causes
a shifting of the neutral axis and a decrease in the load-carrying

capacity. A further increase in displacement eventually leads to
the development of catenary action, where the entire beam is in
tension. The ultimate failure of the frame is associated with rupture
of the longitudinal reinforcement. These simulated mechanisms
agree well with the experimental observation reported in Lew et al.
(2011).

Simulation of Delayed Failure

The model is now used to simulate delayed failure behavior.
Fig. 6(a) presents the simulated load-displacement curves. It is seen
that all loading cases associated with the delayed failure simula-
tions share the same ascending branch. Under different levels of
sustained loading, the frame assemblage fails at different displace-
ments. As expected, the ultimate displacement increases mildly
with a decreasing sustained load. On the other hand, the sustained
load has a significant effect on the time to failure. Fig. 6(b) shows
the time evolution of the displacement at the middle column head.
It is observed that the displacement increases slowly under sus-
tained loading, and at the ultimate failure point, the displacement
suddenly starts to grow at a very fast rate.

The aforementioned delayed failure behavior is attributed to the
time-dependent damage accumulation mechanism. Eq. (7) indi-
cates a continuous material damage growth under constant loads.
The damage growth deteriorates the overall load-carrying capacity
of the structure. As the load-carrying capacity drops below the sus-
tained load prescribed in the analysis, the damage propagates
dynamically in an unstable manner, signified by a sudden increase
in displacement. Based on the failure mechanism of the NIST ex-
periment, it is expected that the time-dependent failure observed in
the present delayed failure simulation will be dominated primarily
by the compressive damage of concrete at the interior joints of the
beam. Fig. 7 presents the time evolution of the compressive damage
at the interior joints. It is seen that the damage growth history con-
sists of three stages: (1) fast damage growth due to monotonically
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Fig. 6. Simulated delayed failure behavior of frame subassemblage:
(a) load-displacement history; and (b) time evolution of displacement
at center column head.
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increasing load, (2) slow subcritical damage growth under sus-
tained load, and (3) dynamic and unstable damage growth.

It is observed that the first stage of the damage growth is sig-
nificantly influenced by the applied load level. As the applied load
approaches the peak load capacity of the frame, compressive dam-
age occurs in the top cohesive element of the interior beam joint,
and this initial damage level is very sensitive to the applied load in

the prepeak regime. The effect of the applied load on the second
stage of the damage growth can be attributed to the initial damage
level caused by the first monotonic loading. Based on Eq. (7), a low
initial damage level will lead to very slow damage growth and,
therefore, a much longer lifetime. In such a case, the viscoelastic
behavior of concrete will have a considerable influence on the
load redistribution mechanism and overall collapse behavior. Note
also that Fig. 7 corresponds exactly to the time history of the dis-
placement [Fig. 6(b)], and this correspondence clearly indicates
the governing role of time-dependent accumulation of compressive
damage in the overall delayed collapse behavior.

Fig. 8 plots the simulated load-lifetime curve of the frame sub-
assemblage in logarithmic scales. The load-lifetime relation can be
well fitted by an inverse power law, i.e.

P=Pc ¼ ðtf=t0Þ−0.007 ð17Þ

where t0 = time to reach first peak load in the simulation
of P=Pc ¼ 1.

Note that the inverse power-law form of the load-lifetime curve
[Eq. (17)] is consistent with what has been reported in a number
of experimental and numerical studies on the creep-rupture behav-
ior of concrete specimens (Carpinteri et al. 1997; Luzio 2009;
Boumakisa et al. 2018). On the other hand, it is worthwhile to point
out that the magnitude of the power-law exponent of the load-
lifetime curve of the frame subassemblage is much smaller than
that of the cohesive element itself [Fig. 5(b)], even though the over-
all delayed collapse behavior is governed by the damage growth
of the cohesive element. In other words, the frame subassemblage
exhibits a much more pronounced load effect on the structural
lifetime.

To understand this difference, it is noted that, even though the
subassemblage is subjected to a constant load, the loading on
the individual cohesive elements varies with time. Fig. 9 shows
the time histories of individual forces in the cross section of the
interior joint of the beam for different load levels. From the top
row of Fig. 9 it is seen that the net force on the cross section turns
to compression as the displacement increases. This is because the
increasing displacement causes the beams to be pushed outward.
Meanwhile, the beam motion is restrained by the side columns,
thereby generating a net compressive force in the beam.
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The bottom row of Fig. 9 shows the individual compressive
forces in the concrete section and steel reinforcement. It is found
that the compressive force in the reinforcement continuously in-
creases with time, whereas the concrete section experiences a
decrease in compressive force over the major part of the loading
duration. This is because in the model, the concrete section and
the reinforcement share the same displacement. Owing to the time-
dependent damage accumulation and viscoelastic deformation of
concrete, the elongation of reinforcement is increasing over time,
indicating a larger compressive stress. However, the overall loading
on the structure is prescribed, and therefore the compressive stress
in the concrete section must decrease. This decrease directly results
in a significant reduction in the damage growth rate and, conse-
quently, a significantly longer structural lifetime. Fig. 9 shows that
the decrease in compressive force in the concrete section becomes
more significant for lower load levels owing to the larger deforma-
tion experienced by the top cohesive element.

The foregoing analysis indicates the potential influence of time-
dependent bond-slip behavior on the delayed collapse behavior.
The time dependence of bond slip will certainly affect the distri-
bution of compressive forces in the concrete section and reinforce-
ment. It is expected that the time-dependent increase in bond slip
under constant loads will make the reinforcement behave more
independently from the concrete section, which implies an increas-
ing compression in the concrete section. This increase will lead to a
much higher rate of damage growth in concrete and, therefore, ac-
celerate structural collapse.

When the applied load level is sufficiently high (P=Pc > 95%),
the reduction in compression in the concrete section is insignificant.
However, note that the cohesive element experiences a considerable
level of compressive damage at the end of the monotonic loading
stage (Fig. 7). This is very different from the simulation of the load-
lifetime curve of a single cohesive element [Fig. 5(a)], in which
the monotonic loading stage does not introduce any damage to
the element. Based on Eq. (7), the predamage level strongly affects
the damage growth rate, as well as the total damage increment be-
fore ultimate failure is reached. This mechanism contributes signifi-
cantly to the strong load effect on the structural lifetime of the
frame subassemblage subjected to a high level of sustained loading.

Implications for Analysis of Progressive Collapse

The present simulation results indicate that the time-dependent
behavior of concrete could lead to a delayed failure response of
RC structures. This finding has important implications for the
analysis of progressive collapse. The structural resistance against
progressive collapse is often assessed by the alternative load path
analysis (DoD 2009), which considers the sudden loss of some
critical load-bearing structural members (usually columns or
walls). It is expected that after the sudden removal of a column or
a wall, the transient loading could cause significant damage to ad-
jacent structural members. On the other hand, the damage may not
be severe enough to cause incipient collapse. Once the redistribu-
tion of the gravity load stabilizes, the gravity loading on these ad-
jacent structural members would be significantly higher than
previously. In the existing alternative load path analysis, as long
as the capacity of the structural members exceeds the transient
gravity loading, the structure is considered to be safe for the par-
ticular column/wall removal scenario.

The results of the present study raise another new and important
consideration. Though structural members may not fail immedi-
ately after the sudden removal of a column/wall, they could suffer
some level of damage, and the damage could continuously accu-
mulate under the increase in gravity loading produced by column

or wall removal. This eventually could reduce the load-carrying
capacity of structural members such that they may experience a
dynamic failure under gravity load and, in turn, trigger progressive
collapse of the whole structure. As indicated by the simulations, the
time delay of the collapse depends largely on the predamage level
during the column removal process and the level of sustained grav-
ity load after column removal. In practice, if a building suffers
severe structural damage, it is likely that the occupants will be
evacuated from the building. Therefore, it may not be of particular
interest to study a time delay that is beyond several days. Never-
theless, the present results show that, depending on the loading
level, the delayed collapse could occur on the timescale of hours
or a day (Fig. 8), which is within the operation time frame of first
responders. This indicates that the time-dependent collapse is an
important consideration for assessing structural vulnerability to
progressive collapse.

Conclusions

A time-dependent cohesive element–based computational model for
RC structures has been presented. The model captures two essential
time-dependent behaviors of concrete: subcritical damage growth
and viscoelastic deformation. The damage accumulation model is
formulated based on continuum damage mechanics, and viscoelastic
behavior is described using a nonaging compliance function. The
model captures various nonlinear behaviors of materials, such as
concrete material damage, reinforcement yield and rupture, and bond
slip. The simulation of the NIST pushdown test indicated that
the present model provides an efficient means of simulating the
nonlinear response of RC structures under large deformation.

The model is successfully applied to investigate the time-
dependent failure of a RC frame subassemblage under sustained
loading. The simulation shows that the time-dependent behavior
of concrete could lead to an intricate delayed failure of RC struc-
tures. The time delay in the failure response is largely governed by
the predamage level and the level of sustained loading. The simu-
lated load-lifetime curve can be well described by an inverse power
law. At a considerable high loading level, the frame could fail on a
timescale on the order of several hours.

Though the result of the present study may be perceived to be
qualitative, it elucidates some key mechanisms that would lead to a
delayed progressive collapse behavior of RC structures, which has
been experimentally observed in recent studies. It is also shown that
the time dependence of bond slip could have a considerable influ-
ence on delayed collapse behavior. The time-dependent failure
mechanism represents a new consideration for assessing the vulner-
ability of buildings and structures against progressive collapse as
part of the effort toward performance-based structural engineering.
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