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* An unbonded concrete overlay (UBCO) is a Portland cement
concrete (PCC) overlay that is separated from an existing PCC
pavement by an asphalt concrete (AC) interlayer.



Research methodology

* Fracture mechanics-based load-carrying capacity
equivalency design paradigm
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The codes up to the early 1990’s
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Does not agree with experimental data!

¢ (ft = 4¢\/7C') Over-predicts capacity!



Strength Theories vs. LEFM
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counter-pressure

—~Application and Configuration of Lok-Test (All Dimensions Are in millimeters)

FIG. 5— LOK-TEST

What material property is this test measuring?



Failure of headed anchors reflects a progressive crack propagation
process; (Ballarini et al., 1985) Two-dimensional configuration

Experimental and analytical investigation of LOK test and pullout
problem by changing the position of the support reactions



Stress Intensity Factors
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Zu(-g-;l + 1 g%r = 0 ( bonded upper portion)

o =410 ) =0
( - xy) (unbonded lower portion)

(stress free crack surface)
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;oc.m {{__: + K (x,E) - Ka(x,-E)} dE + {‘-(e) {R2(x,8) - Ki(x,-E)} d&
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All physical quantities can be obtained after solving numerically the equations
(3.4)~3.8). In particular, the stress intensity factor, defined by

can be directly related to the dislocation density y(7) by taking the asymptotic

form of (3.6). In terms of dimensionless quantities arising from the numerical
scheme, the result is

*
(K;—iKy) (¢/P) = 2imde 0/ (I/c)y (1), (3.11)

where

*
y6) P 2r

¢(7)=(l_ e’ O—T—l.
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ANCHOR PULL-OOTTEST

FIG. 6— CONFIGURATION OF 2-D
PULL—-OUT TEST
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The new code formulas are based on LEFM

A\ » T

Proc. Royal Society of London, 1986
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PLEFM

Ballarini et al. 1986,1987; Elfgren 1998; Elfgren and Ohlsoon 1992; Eligehausen
and Sawade 1989; Eligehausen and Balogh 1995; Eligehausen et al. 2006; Fuchs et
al. 1995; Karihaloo 1996; Krenchel and Shah 1985; Ozbolt et al. 1992,1999; Vogel

and Ballarini 1999; Piccinin et al. 2010,2012



log (szL\N/fl)

The pullout test is basically a fracture toughness test; it obeys
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Very shallow embedments and ]
with prestress Experiments




Crack Profiles: d/c=2

1
88}

-10

Crack profiles obtained from visual inspection;

LEFM captures inclination and shape;



Group anchors and anchors near free edges

EFFECTIVE
STRESS




The codes still maintain some of
the old approach: for a group, multiply
the LEFM formula by:

ANC
ANco

The ratio of the projected areas of the break
out cone associated with a group of N anchors
and an isolated anchor, respectively does not

correctly reflect the edge effects. It is overly

conservative.

The Commentary then continues with
modifications to the design formulas that
reduce the conservatism in the design, with
certain restrictions.



Toy problem showing this is incorrect
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s/d=5,3,1.5,1.2,1.0 the capacity ratios are 1.0, 1.0, 0.25, 0.16 and 0.11, respectively (for

s/d=35 and s/d=1 the Code considers the anchors as non-interacting). The 75-90% range

of the reduction prescribed by the Code is significantly larger than the ~20-30%

reduction predicted by the simulations.



Suggestion

With the advent of powerful and sophisticated computational
approaches to fracture simulation, derive capacity formulas
through simulation.



Background

Thin rim -
catastrophic rim fracture “benign” tooth fracture

® Thin-rim gears desired for reduced weight.

® Stress fields and failure characteristics significantly different for thin-
rim gears compared to conventional gears.

® Catastrophic failures have occurred in thin-rim gears.

® Safety and reliability can not be sacrificed.



Definition of Backup Ratio (m5g)




Rim thickness factor, Kp

25 — Bending stress index
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Figure 1.2.1.—Gear tooth bending stress index rim thickness correction factor
(AGMA, 1990).



Develop design guidelines to prevent
rim fracture failure modes in gear tooth
bending fatigue.



Crack Modeling Using Finite Element Method

ICrack tip

User-defined initial crack

Crack mouth

Final mesh of initial
crack
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g, = 2tan '

Crack Propagation Angle and Growth Rate

-

L= S R

Paris equation, n = 2.264, C = 1.149x10-15 in/cyc/(psivin.)" (Au and Ke, 1981)

Paris equation, n = 2.954, C = 6.027x10-19 in/cyc/(psiNin.)" (Au and Ke, 1981)

Paris equation, n = 2.555, C = 2.721x10-17 in./cycl(psh%f n (Au and Ke, 1981)

Paris equation, n = 2.420, C = 1.084x10-16 in/cyc/(psiNin)" (Au and Ke, 1981)

Collipriest equation, n = 1.63, C = 8.36x102 in./cyc/(ksiVin)", AKy, = 3.5 ksivin.,
Kic = 200 ksivin., R = 0 (Forman and Hu, 1984)
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Figure 3.7.3.—Comparison of fatigue crack growth rates using Paris equation
and Coilipriest equation for AISI 9310 steel.
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Analysis Procedure

FEM model of gear
Load analysis

Add initial crack

K,, K, vs. gear rotation =~
K,/K, vs. gear rotation

6, vs. gear rotation

Oy VS. gear rotation

l

Determine crack
propagation angle

|

Extend crack,
Re-mesh model




Typical Finite Element Gear. Model

Tooth load at HPSTC




Load Case Locations for FEM

Load case
1

o0 A WODN

Tooth 1 Tooth 2 Tooth 3

0.26-mm crack size, 68 N-m driver gear torque.



Test Gears

Notch inserted
in tooth fillet

Backu ratio = 0.3



Definition of Backup Ratio (m5g)




Definition of Initial Crack Location (&)

Applied
tooth load

a \

] \

Pitch
radius



Effect of Initial Crack Location on Crack Path

Gear Parameters:
» 28 teeth

8 pitch

« 1.75" pitch rad

« 20° press angle
e mg=1.0




Effect of Initial Crack Location on Crack Path

Initial crack
location:
g, =120°

Failure mode:
Tooth fracture




Effect of Initial Crack Location on Crack Path

Initial crack
location:
6, = 114"

Failure mode:
Tooth fracture




Effect of Initial Crack Location on Crack Path

Initial crack
location:
g, =109°

Failure mode:
Tooth fracture




Effect of Initial Crack Location on Crack Path

Initial crack
location:

g, = 104"
(max tensile)

Failure mode:
Tooth fracture




Effect of Initial Crack Location on Crack Path

Initial crack
location:
g, = 99°

Failure mode:
Tooth fracture




Effect of Initial Crack Location on Crack Path

Initial crack
location:
0, = 94°

Failure mode:
Tooth fracture




Effect of Initial Crack Location on Crack Path

Initial crack
location:

g, = 88°
(root centerline)

Failure mode:
Tooth fracture




Effect of Initial Crack Location on Crack Path

Initial crack
location:
g, = 83"

Failure mode:
Tooth fracture




Effect of Initial Crack Location on Crack Path

Initial crack
location:
6,=78"

Failure mode:
Rim fracture




Effect of Initial Crack Location on Crack Path

Initial crack
location:
0,=73"

Failure mode:
Rim fracture




Effect of Initial Crack Location on Crack Path

Initial crack
location:
g, = 68°

Failure mode:
Rim fracture




Effect of Initial Crack Location on Crack Path




Stress Intensity Factors

80 29 83°
Mode |
stress
intensity
factor,
K, (ksivVin)

Mode Il
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Effect of Backup Ratio on Crack Path

Backup ratio:
mg = 1.0

Tooth/rim fracture
transition:
g,=81°




Effect of Backup Ratio on Crack Path

Backup ratio:
mg = 1.1

Tooth/rim fracture

‘ transition:
N were




Effect of Backup Ratio on Crack Path

Backup ratio:
mg = 1.2

Tooth/rim fracture
transition:
60 = 71 °




Effect of Backup Ratio on Crack Path

Backup ratio:
mg = 1.3

Tooth/rim fracture
transition:
All tooth fractures




Effect of Backup Ratio on Crack Path

Backup ratio:
mg = 1.0

Tooth/rim fracture
transition:
g,=81°




Effect of Backup Ratio on Crack Path

Backup ratio:
mg = 0.9

Tooth/rim fracture
transition:
g, = 86°




Effect of Backup Ratio on Crack Path

Backup ratio:
mg = 0.8

Tooth/rim fracture
transition:
g,=91°




Effect of Backup Ratio on Crack Path

Backup ratio:
mg = 0.7

Tooth/rim fracture
transition:
g,=97°




Effect of Backup Ratio on Crack Path

Backup ratio:
mg = 0.6

Tooth/rim fracture
transition:
g, =102°




Effect of Backup Ratio on Crack Path

Backup ratio:
mg = 0.5

Tooth/rim fracture
transition:
g, =107°




Validation of Finite Element Modeling

Backup ratio = 3.3

E = Experiment
P = Predicted

Backup ratio = 0.5

e O«

Backup ratio = 1.0




Design Map

T = tooth fractures
R = rim fractures
C = compression
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Mode | Stress Intensity Factors

9 Gear Parameters:
g | 09
120 | © 28 j[eeth
rr « 8 pitch
Model 6L  1.75" pitch rad
st?eses « 20" press angle
intensity 95 [
factor, * 500 Ib tooth load
K, (ksiNin) 4 » 0.030" crack size
Initial
31 crack
0.5 78 location,
2r 65 (deg)
Tr | 1.0 68
Backup ratio, mg 1.3




Mode | Stress Intensity Factors

9 Gear Parameters:
o 09
120 | © 28 j[eeth
rr « 8 pitch
Model 6L  1.75" pitch rad
st?eses « 20" press angle
intensity 95 [
factor, * 500 Ib tooth load
K, (ksiNin) 4 » 0.030" crack size
Initial
T g S | - AISI 9310 stee
0.5 OCation, 1 . AK,, = 5 ksiVin
2 65 (deg) "
Tr | 1.0 68
Backup ratio, mg 1.3




g, = 2tan '

Crack Propagation Angle and Growth Rate

-

L= S R

Paris equation, n = 2.264, C = 1.149x10-15 in/cyc/(psivin.)" (Au and Ke, 1981)

Paris equation, n = 2.954, C = 6.027x10-19 in/cyc/(psiNin.)" (Au and Ke, 1981)

Paris equation, n = 2.555, C = 2.721x10-17 in./cycl(psh%f n (Au and Ke, 1981)

Paris equation, n = 2.420, C = 1.084x10-16 in/cyc/(psiNin)" (Au and Ke, 1981)

Collipriest equation, n = 1.63, C = 8.36x102 in./cyc/(ksiVin)", AKy, = 3.5 ksivin.,
Kic = 200 ksivin., R = 0 (Forman and Hu, 1984)
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Figure 3.7.3.—Comparison of fatigue crack growth rates using Paris equation
and Coilipriest equation for AISI 9310 steel.
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Design Map

T = tooth fractures
R = rim fractures
N = no fracture
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