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Introduction

Hydraulic fracturing is widely used worldwide to increase produc-
tion of hydrocarbons from unconventional reservoirs (Economides
and Nolte 2000; Belyadi et al. 2016). In this process, highly pres-
surized fluids are injected into the underground through a wellbore
to create cracks within the rock formation, which serve as conduc-
tive paths for hydrocarbons to flow into the wellbore and, in turn, to
the surface. Depending on the completion design, different types of
fracturing fluids can be used at different stages of the process,
e.g., low-viscosity slick water, more viscous linear or cross-linked
gels, multiphase emulsions, or polymer or foam solutions, just to
name a few (Barbati et al. 2016; Montgomery 2013). The additives
introduced into the base fluids lead to desired fluid properties and
often make the behavior of the mixtures non-Newtonian. The non-
linear shear stress of such fluids is often modeled using power-law
rheological models, but other types of models have also been used.

Modeling sequential injection of multiple fluids into a fracture is
a challenging problem because the presence of interfaces between
fluids may involve complex phenomena such as hydrodynamic
instabilities in both miscible and immiscible fluids (Truzzolillo
and Cipelletti 2017). In addition, when one fluid is displaced by
another fluid, the effects of gravity (if there is a contrast in specific
gravities) and viscous fingering (if there is a contrast in viscosities)
can be significant. It is known that Saffman-Taylor instabilities or
viscous fingering (Saffman and Taylor 1958) may occur when a
higher-viscosity fluid is displaced by a lower-viscosity fluid. The

instabilities are dictated, among other factors, by the constitutive
equations of the fluids and capillary forces.

A stable fluid displacement is considered favorable for certain
oil and gas applications. In practice, one of the most common sce-
narios involves the injection of a lower-viscosity fluid ahead of a
higher-viscosity fluid (Barbati et al. 2016) that includes granular
additives (proppant) of larger size. In this paper, it is assumed that
the fluids do no mix and are separated by a discernible interface
originating from the interfacial tension. This is a common assumption
that was used, for instance, by Lakhtychkin et al. (2011, 2012) to
account for multiple fluids within an elliptical fracture. This paper
uses the latter assumption to study the effect of multiple fluids on
the near-front behavior of a hydraulic fracture.

In hydraulic fracturing, fluid loss through porous rock surround-
ing the fracture is conventionally modeled using Carter’s leak-off
model (Economides and Nolte 2000; Adachi 2001), which ac-
counts for leak-off via an additional sink term in the mass-balance
equation. This circumvents the need to solve a multiphase diffusion
problem in the reservoir, which could significantly complicate the
overall problem formulation and increase its computational cost.
Carter’s leak-off model considers the presence of three filtration
mechanisms associated, respectively, with filter cake, invaded zone,
and reservoir diffusion. The fluid filtration is characterized by a
lumped leak-off coefficient CL encompassing the total fluid loss
via these three possibilities, and the model is characterized by
the inverse square-root time dependence of the leak-off flux.

Often, fracturing fluid consists of a mixture of Newtonian fluid
and polymers, which results in non-Newtonian rheology that is
readily modeled with a power-law model. During leak-off, poly-
mers tend to form a filter cake while the base Newtonian fluid leaks
into the reservoir, creating the invaded zone. Outside of the invaded
zone occupied by the base fracturing fluid, there is reservoir fluid,
whose pressure is also disturbed by leak-off; this comprises the last
mechanism for fluid leak-off resistance. The carrier fluid itself can
be non-Newtonian. In this case, the filter cake building mechanism
becomes more complex and the leak-off time dependence may de-
viate from the inverse square root behavior featured in Carter’s
model. Such situations, however, are not considered in this paper,
and the fluid loss mechanism is modeled using conventional Carter’s
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leak-off model, which has also been previously used in the context of
the semi-infinite fracture geometry for power-law fluids by Dontsov
and Kresse (2018).

Also, all fluids are assumed to have the same leak-off coefficient
for simplicity. Although it is technically possible to assign various
coefficients to different fluids, it would probably not provide a more
accurate description of the process. For instance, if one fluid is fol-
lowed by another, then the second fluid filtrates through the filter
cake formed by the first fluid. And then, there can be two types of
filter cakes one over another. It is unlikely that Carter’s model will
be very accurate in this case. Moreover, given the complexity of
physical mechanisms involved in the calculation of leak-off, it is
difficult to precisely estimate the value of the leak-off coefficient.
In practice, the effective Carter’s coefficient is estimated through
field testing, and doing so for each fluid may not be practical.
Due to the aforementioned reasons, the analysis is restricted to a
single value of the leak-off coefficient for all fluids.

The near-front region is modeled as a semi-infinite hydraulic
fracture propagating under plane-strain conditions. It is well-known
that the behavior near the front of fluid-driven cracks has a multi-
scale nature (Detournay 2016): multiple regions exist whose behav-
ior is dictated by different physical parameters and processes such
as rock toughness, fluid leak-off from the fracture into the adjacent
rock formation, and fluid viscosity. The asymptotics corresponding
to toughness, leak-off, and viscosity dominated solutions for
power-law fluids were obtained by Rice (1968), Lenoach (1995),
and Desroches et al. (1994). The multiscale asymptotic solution
that captures all the phenomena for Newtonian fluids was obtained
by Garagash et al. (2011), and its fast approximation that is par-
ticularly relevant for applications was constructed by Dontsov
and Peirce (2015b). The general solution for power-law fluids,
which is of special interest for this paper, was obtained by Gomez
(2016) and Dontsov and Kresse (2018).

Near-tip asymptotic solutions are used in hydraulic fracture (HF)
simulations in various ways. First, the near-tip logic provided by
asymptotic solutions can be effectively used to accurately track
the location of the fracture front. Second, multiscale asymptotic so-
lutions can be used to rapidly estimate fracture dimensions. The latter
idea was initially proposed for penny-shaped and plane-strain hy-
draulic fractures by Dontsov (2016, 2017) and then extended to an
elliptical hydraulic fracture in a transversely isotropic material by
Bessmertnykh and Dontsov (2018), Dontsov (2019), and Moukhtari
et al. (2020). It has also been used to construct the ultrafast hydraulic
fracturing simulator to rapidly simulate multiple fractures by Dontsov
et al. (2019). The application of the near-tip logic as a propagation
condition was implemented in the displacement discontinuity method
(Dontsov and Peirce 2017) and finite-element method (Gordeliy and
Peirce 2013; Peirce 2016) using the implicit level set algorithm ini-
tially proposed by Peirce and Detournay (2008). A comparison of
using the asymptotics as near-tip logic with other approaches has
been given by Lecampion et al. (2013).

This paper assumes the simultaneous presence of multiple fluids
within a semi-infinite fracture, which represents the near-tip model
for a finite fracture with multiple fluids. Application of the multifluid
near-tip asymptotics may be invoked depending on the mesh used in
the hydraulic fracturing simulator, as well as the injection schedule.
For high-fidelity models with fine meshes, the tip element often in-
cludes only one kind of fluid, and applying the lumped multifluid
asymptote in the tip element is not necessary. However, if the number
of elements per fracture is small, which is often desired in practice to
improve computational performance, the tip element can extend fur-
ther inside the fracture and cover the region with multiple fluids. In
the latter case, implementing the multifluid asymptotic solution sig-
nificantly improves the accuracy of the model.

For example, there is a class of existing ultrafast hydraulic
fracturing simulators that aim to rapidly estimate fracture geom-
etry for the purpose of sensitivity analysis (Dontsov et al. 2019;
Peshcherenko and Chuprakov 2021). Such models keep only the
dominant mechanisms to describe the behavior of the hydraulic
fracture and restrict the shape to a rectangular (Peshcherenko
and Chuprakov 2021) or an elliptical geometry with using virtu-
ally a single element per fracture length (Dontsov et al. 2019). The
primary focus of the present work is to improve the accuracy
of the aforementioned ultrafast hydraulic fracturing simulators
(e.g., Dontsov et al. 2019), by enabling them to account for
the presence of multiple fluids. However, this fundamental study
may also be beneficial for other applications.

The near-tip asymptotic solution developed in this study has
been implemented in the previously mentioned ultrafast HF simu-
lator (Dontsov et al. 2019). The full simulator tracks the interfaces
between fluids using the Lagrangian approach based on volume
balance and the specified fluid injection schedule. A similar idea
was implemented by Dontsov and Peirce (2015a) to keep track of
proppant placement in a hydraulic fracture and its time evolution.
Consequently, locations of the fluid interfaces are calculated in the
HF simulator for the full fracture at each time moment. These are
instantaneous locations that can evolve in time, e.g., due to a diverg-
ing flow or leak-off. In addition, because the Lagrangian approach is
used, these boundaries are not collocated with the fracture mesh,
which results in the possibility of having multiple fluids and multiple
interfaces within a single fracture element. Therefore, the boundaries
between fluids are treated as input parameters for the problem of a
semi-infinite fracture under consideration. In addition, their evolu-
tion in time is assumed to be relatively slow, so that the effect of
their dynamics is neglected within the semi-infinite fracture model.

This paper solves the problem of a semi-infinite fracture driven
by multiple sequential power-law fluids under the assumption of sta-
ble immiscible displacement. The formulation is a significant exten-
sion of a similar approach developed for a single power-law fluid
(Gomez 2016; Dontsov and Kresse 2018). Section “Problem State-
ment” formulates the problem of the idealized geometry of a hy-
draulic fracture containing multiple fluids. Section “Governing
Equations” presents the elasticity and lubrication equations that
govern the problem, and their scaled version is given in the section
“Scaled Form of the Governing Equations.” Limiting asymptotic so-
lutions are provided in the section “Asymptotic Solutions.” Section
“Numerical Results” presents and discusses illustrative numerical re-
sults, and the section “Summary” summarizes the findings.

Problem Statement

This study considers a semi-infinite crack that represents the near-
tip region of a HF within which N fluids are pumped sequentially,
as depicted in Fig. 1. The HF is propagating steadily with velocity
V in the direction of a moving coordinate system x, which repre-
sents the distance from the fracture tip; wðxÞ is the crack opening
displacement (width), whose solution is of interest. The fluids are
distinguished using different shades, and the parameters of the ith
fluid, ni, ki, refer to their power-law model

Fig. 1. Scheme of a semi-infinite hydraulic fracture with N power-law
fluids.
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τ ¼ kγ̇n; γ̇ ¼ ∂v
∂y ð1Þ

where τ = shear stress; v = fluid velocity; k = consistency index;
and n = behavioral index. The location of the interfaces between ith
and ðiþ 1Þth fluid, bi, is prescribed and assumed to be fixed in the
moving coordinate system. This assumption is valid if the displace-
ment of the immiscible fluids is stable and the transitional zone
between them is small. Strictly speaking, the assumption of zero
fluid loss (or leak-off) is also necessary to preserve the location
of fluid interfaces. However, the examples with leak-off are still
considered in this paper for completeness, keeping in mind that
the dynamics of fluid interfaces is neglected.

To justify the assumption of stable interfaces between fluids,
consider two distinct fluids flowing sequentially in a channel.
The shape and stability of the interface between the fluids are de-
termined by the competition between viscous forces and capillary
forces caused by surface tension. The channel flow of a viscous
fluid has a nonuniform velocity profile that leads to distortion
of the interface between fluids. In contrast, the forces of surface
tension act to minimize the surface area of the interface. The inter-
face is stable or retains its shape when the capillary forces are able
to compensate the distortion of the interface caused by viscous
forces (Al-Housseiny et al. 2012; Woods and Mingotti 2016). The
capillary pressure can be estimated as follows:

pc ¼
2ðσ1 − σ2Þ

R
ð2Þ

where σi = surface tension of the ith fluid; and R = radius of cur-
vature of the interface between fluids. The viscous forces for the
considered problem can be estimated using Eq. (1) where γ̇ ∼
V=w with V varying from ∼10−2 to 10−1 m=s and w ∼ 1 mm. Con-
sider two fluids with the following properties: surface tension σ1 ¼
80 mN=m and σ2 ¼ 60 mN=m, flow indices n1 ¼ 1 and n2 ¼ 1,
and consistency indices k1 ¼ 3mPa · s and k2 ¼ 40mPa · s. By
equating viscous [Eq. (1)] and capillary [Eq. (2)] forces, the critical
radius of curvature for the interface can be estimated as
R ∼ 1–10 cm. At the same time, the fracture opening near the frac-
ture tip w is typically on the order of several millimeters, which is
less than the estimated radius of curvature, i.e., as follows:

R ≫ OðwÞ; where R ≈ 2ðσ1 − σ2Þ
kγ̇n

ð3Þ

In this case, the interface is kept stable by the capillary forces.
Otherwise, if Eq. (3) is not satisfied, the fluid interface may become
unstable, which is not considered in this study. When the fluid dis-
placement is stable (R ∼ 1–10 cm), the capillary pressure jump over
the fluid interface [Eq. (2)] is less than ∼ 4 Pa. Generally, capillary
pressure (order of Pa) is negligibly small compared with the typical
net pressure values in hydraulic fracturing (order of MPa). Another
possible way to estimate this is to consider the change of the stress
intensity factor caused by the capillary pressure,ΔKI ∝ pc

ffiffiffi
b

p
(Rice

1968), where b is the distance from the tip to the interface. Given that
the upper bound for b can be up to 100 m, the additional stress in-
tensity factor is bounded by 50 Pa · m1=2, which is much less than
typical rock toughness of 1 MPa · m1=2 (Economides and Nolte
2000). Therefore, the contribution of capillary pressure to the stress
intensity factor can be neglected.

Governing Equations

The system of governing equations consists of the linear elasticity
equation for the rock formation, the lubrication equation describing

the fluids, and the fracture propagation criterion; the coupled sys-
tem is solved for the crack width wðxÞ. The equations are rewritten
by scaling the material properties as follows:

E 0 ¼ E
1 − ν2

; K 0 ¼ 4

�
2

π

�
1=2

KIc; C 0 ¼ 2CL;

M 0
i ¼

2niþ1ð2ni þ 1Þni
nnii

ki

ð4Þ

where ν = Poisson’s ratio; E = Young’s modulus; KIc = fracture
toughness of the rock; CL = leak-off coefficient; and ni and ki =
rheological parameters of the ith power-law fluid [Eq. (1)].

Elasticity Equation and Fracture Propagation Condition

The relation between the pressure pðxÞ and the crack opening
width wðxÞ for the semi-infinite fracture is written as the integral
equation

pðxÞ ¼ E 0

4π

Z ∞
0

dw
ds

ds
x − s

ð5Þ

To avoid the singularity of the fluid pressure at the fracture tip,
the inverted form of the elasticity equation is used (Spence et al.
1987; Roper and Lister 2007; Dontsov and Peirce 2015b)

wðxÞ ¼ K 0

E 0 x
1=2 − 4

πE 0

Z ∞
0

Fðx; sÞ dp
ds

ds ð6Þ

with the kernel

Fðx; sÞ ¼ ðs − xÞ ln
���� x1=2 þ s1=2

x1=2 − s1=2

���� − 2x1=2s1=2 ð7Þ

The fracture propagation criterion KI ¼ KIc results in the
following asymptotic behavior for the crack opening near the
fracture tip:

w ¼ K 0

E 0 x
1=2; x → 0 ð8Þ

Lubrication Equation

To formulate the lubrication equation, the following assumptions
are made:
• Fluid displacement is immiscible, and any instabilities at the

interfaces between fluids are neglected.
• The width of the transition zone between the fluids is negli-

gibly small.
• Dispersion effects associated with the presence of multiple

fluids are neglected.
• Gravity is neglected.
• All fluids have equal Carter’s leak-off coefficient.

Define ϕi as the volume fraction of the ith fluid. The volume
balance equation for each fluid can be written

∂ϕiw
∂t þ ∂ϕiq

∂x̂ þ ϕiqL ¼ 0 ð9Þ

where x̂ = absolute spatial coordinate whose direction is opposite to
x shown in Fig. 1; and q = total flux inside the fracture. The flux of
fluid leaking off to the rock formation obeys Carter’s model (Carter
1957)

© ASCE 04021064-3 J. Eng. Mech.

 J. Eng. Mech., 2021, 147(10): 04021064 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
ni

ve
rs

ity
 o

f 
H

ou
st

on
 o

n 
12

/0
9/

21
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



qL ¼ C 0ffiffiffiffiffiffiffiffiffi
τðx̂Þp ð10Þ

where τ = time elapsed since the fluid reached point x̂ for the
first time.

In a coordinate system moving with a velocity V illustrated in
Fig. 1, x ¼ Vt − x̂ and Eq. (9) with Eq. (10) is rewritten in the fol-
lowing form:

V
dwϕi

dx
− dϕiq

dx
þ ϕiC 0

ffiffiffiffi
V
x

r
¼ 0 ð11Þ

which, after integration, gives the following expression for the total
fluid flux:

q ¼ Vwþ 2C 0 ffiffiffiffiffiffi
Vx

p
ð12Þ

Alternatively, the total flux can be obtained by summing the
contributions from all fluids with weights given by their volume
fractions

q ¼
XN
i¼1

ϕiqi ð13Þ

Neglecting the transition zone between fluids, the interface be-
tween fluids is assumed to be flat and the volume fractions are
given by

ϕ1 ¼ ð1 −Hðx − b1ÞÞ; ϕN ¼ Hðx − bN−1Þ ð14Þ

for the first and the last fluids, and

ϕi ¼ Hðx − bi−1Þ −Hðx − biÞ; i ¼ 2; : : : ;N − 1 ð15Þ

for all intermediate fluids. The Heaviside function Hð·Þ is used to
define the presence of the ith fluid between boundaries bi−1 and bi.
In this case, the flux for each fluid, qi, in a channel is given by the
power-law rheological model [Eq. (1)]

jqij ¼
�
w2niþ1

M 0
i

���� ∂p∂x
����
�

1=ni
at ϕi ¼ 1 ð16Þ

The pressure gradient for the particular ith fluid, which can be
explicitly found by equating expressions for fluid flux [Eqs. (12)
and (13)] using Eq. (16) at ϕi ¼ 1, reads�

dp
dx

�
i
¼ ðVwþ 2C 0V1=2x1=2Þni M 0

i

w2niþ1
at ϕi ¼ 1 ð17Þ

The pressure gradient for multiple fluids undergoes discontinu-
ous change on the boundaries between fluids

dp
dx

¼
�
dp
dx

�
1

ð1 −Hðx − b1ÞÞ

þ
XN−1

i¼2

�
dp
dx

�
i
ðHðx − bi−1Þ −Hðx − biÞÞ

þ
�
dp
dx

�
N
Hðx − bN−1Þ ð18Þ

whereas the pressure itself is continuous because the capillary pres-
sure drop is neglected. After substitution of Eq. (18) into the elas-
ticity Eq. (6) using Eq. (17), the final governing equation for
fracture width can be written in the following form:

wðxÞ ¼ K 0

E 0 x
1=2 − 4

πE 0

Z ∞
0

Fðx; sÞ
 
ðVwþ 2C 0V1=2x1=2Þn1

×
M 0

1

w2n1þ1
ð1 −Hðx − b1ÞÞ þ

XN−1

i¼2

ðVwþ 2C 0V1=2x1=2Þni

×
M 0

i

w2niþ1
ðHðx − bi−1Þ −Hðx − biÞÞ

þ ðVwþ 2C 0V1=2x1=2ÞnN M 0
N

w2nNþ1
Hðx − bN−1Þ

!
ds ð19Þ

Scaled Form of the Governing Equations

The numerical calculations adapted a set of dimensionless quan-
tities consistent with previous studies (Dontsov and Peirce
2015b; Dontsov and Kresse 2018; Bessmertnykh and Dontsov
2019)

~w ¼ wE 0

K 0x1=2
; ~x ¼

�
x
l

�
1=2

; ~s ¼
�
s
l

�
1=2

; χ ¼ 2C 0E 0

V1=2K 0 ;

l ¼
�

K 0nwþ2

M 0
wVnwE 0nwþ1

�
2=ð2−nwÞ

; li ¼
�

K 0niþ2

M 0
iV

niE 0niþ1

�
2=ð2−niÞ

;

ξi ¼
M 0

iV
niE 0ðniþ1Þ

K 0niþ2lðni−2Þ=2
¼
�
li
l

�ðni−2Þ=2
; ~bi ¼

�
bi
l

�
1=2

ð20Þ

where ~w = scaled fracture opening; ~x = distance from the fracture
front; χ = leak-off coefficient; l = length scale introduced based
on the parameters of water (nw ¼ 1; kw ¼ 1mPa · s); li = length
scale based on the parameters of the ith fluid; and ~bi = boundary
between the ith and the ðiþ 1Þth fluids.

Unlike previous studies for a single fluid, the case of multiple
fluids involves an additional dimensionless parameter ξi that char-
acterizes distinct properties of fluids. The parameter ξi is written in
terms of the length scales; for the fluids whose properties (ni and ki)
are the same as for water, li ¼ l and ξi ¼ 1. The length scale l can
be chosen arbitrarily or can be based on the properties of one of the
fluids. Here, l is defined based on the properties of water and used
throughout the paper.

By using the quantities from Eq. (20), the governing Eq. (19) for
a fracture with multiple power-law fluids can be rewritten in the
dimensionless form as follows:

1− ~wþ 8

π

Z ∞
0

G

�
~s
~x

��
ξ1

�
1þ χ

~wð~sÞ
�

n1 ~s1−n1
~wð~sÞ1þn1

�
1−Hð~s− ~b1Þ

�

þ
XN−1

i¼2

ξi

�
1þ χ

~wð~sÞ
�

ni ~s1−ni
~wð~sÞ1þni

�
Hð~s− ~bi−1Þ−Hð~s− ~biÞ

�

þ ξN

�
1þ χ

~wð~sÞ
�

nN ~s1−nN
~wð~sÞ1þnN

�
Hð~s− ~bN−1Þ

��
d~s¼ 0 ð21Þ

where the kernel of the integral is of the form

GðtÞ ¼ 1 − t2

t
ln

���� 1þ t
1 − t

����þ 2 ð22Þ

As discussed by Dontsov and Peirce (2015b), this kernel is
nonsingular. Next, the scaled governing Eq. (21) is discretized
using Simpson’s rule and is solved numerically using Newton’s
method for the parameters n1; n2; : : : ; nN ; χ; ξ1; ξ2; : : : ; ξN ; and
b1; b2; : : : ; bN−1 to obtain fracture opening ~wð ~xÞ. As an initial

© ASCE 04021064-4 J. Eng. Mech.
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guess, the maximum between limiting solutions for the first fluid
is used. Explicit expressions for these asymptotic solutions for
each fluid are provided next.

Asymptotic Solutions

This section presents toughness-, viscosity-, and leak-off-dominated
asymptotic solutions for the ith fluid. The toughness-dominated sol-
ution is obtained from Eq. (19) in the limit of M 0

i ¼ 0, which gives
the dry crack solution (Rice 1968)

wk ¼
K 0

E 0 x
1=2 ð23Þ

Viscous (mi) and leak-off ( ~mi) limiting solutions for the particu-
lar fluid are obtained from Eq. (19) or its scaled analogue [Eq. (21)]
by considering the region with this fluid, ðbi−1; bi� for the ith fluid,
and assuming the dominance of either viscosity (K 0 ¼ 0, C 0 ¼ 0)
or leak-off (K 0 ¼ 0, C 0 → ∞) term. Solution for the viscosity-
dominated regime wmi

is of the form

wmi
¼
�
βmi

VniM 0
i

E 0

�
1=ð2þniÞ

x2=ð2þniÞ; with

βmi
¼ 2ð2þ niÞ2

ni
tan

�
πni

2þ ni

�
ð24Þ

and for the leak-off-dominated regime w ~mi
is written

w ~mi
¼
�
β ~mi

ð2C 0ÞniVni=2M 0
i

E 0

�
1=ð2ð1þniÞÞ

xð4þniÞ=ð4ð1þniÞÞ;

with β ~mi
¼ 64ð1þ niÞ2

3nið4þ niÞ
tan

�
3πni

4ð1þ niÞ
�

ð25Þ

For the particular case of ni ¼ 0, coefficients β are equal:
β ~mi

¼ βmi
¼ 4π. Eqs. (24) and (25) correspond to the limiting so-

lutions for the case of a single power-law fluid (Desroches et al.
1994; Lenoach 1995). However, the scaled form of the limiting so-
lutions for the multifluid case differs from that for one power-law
fluid due to the specifics of scaling used.

The limiting solutions [Eqs. (23)–(25)] are rewritten in terms of
the scaled quantities [Eq. (20)] as follows:

~wk ¼ 1; ~wmi
¼ ðξiβmi

Þ1=ð2þniÞ ~xð2−niÞ=ð2þniÞ;

~w ~mi
¼ ðξiβ ~mi

Þ1=ð2ð1þniÞÞχni=ð2ð1þniÞÞ ~xð2−niÞ=ð2ð1þniÞÞ ð26Þ

The scaled viscosity and leak-off asymptotic solutions for each
fluid in the multifluid case have an additional multiplier related to
ξi compared with the case of a single fluid. This arises from the
unified scaling used for all fluids used in this work.

For the case of identical fluids, which is equivalent to the case of
a single fluid, it makes sense to choose the length scale parameter
from Eq. (20) based on the properties of this fluid, l ¼ li. In this
case, one obtains ξi ¼ 1 for all fluids and scaled limiting solutions
[Eq. (26)] reduce to the corresponding solutions for one power-law
fluid obtained by Gomez (2016) and Dontsov and Kresse (2018).

Numerical Results

The governing Eq. (21) is solved numerically to obtain scaled frac-
ture opening ~w. The following dimensionless quantities are provided
as the input parameters: leak-off coefficient χ, fluid properties ξi and
ni, and boundaries between fluids ~bi. These quantities are obtained
using Eqs. (4) and (20) from the prescribed parameters of the rock

and fluids, as well as the fluid leak-off coefficient, fracture propaga-
tion velocity, and boundaries between the fluids. Most of the numeri-
cal results are demonstrated for the following parameters:

E ¼ 20 GPa; ν ¼ 0.2; KIc ¼ 1 MPa · m0.5;

CL¼ 10−4 m=s0.5; V ¼ 10−2m=s
ð27Þ

which determine the dimensionless leak-off coefficient as χ≈ 26.
The length scale l is estimated based on the properties of water
(k ¼ 1mPa · s and n ¼ 1) and other prescribed parameters [Eq. (27)]
as l ≈ 3.9 · 105 m.

Next, estimates are provided to check applicability of the one-
dimensional Carter’s leak-off model for parameters in Eq. (27). The
one-dimensional Carter’s leak-off model is applicable as soon as
the distance from the fracture tip much larger than the diffusion
length scale

x ≫
ffiffiffiffiffiffiffiffi
4Dt

p
ð28Þ

or equivalently ffiffiffiffiffiffiffi
4D
Vx

r
≪ 1 ð29Þ

whereD = diffusion coefficient in the reservoir; V = fracture propa-
gation velocity; and x = typical distance from the tip. By focusing
solely on the reservoir part of the leak-off coefficient, the Carter’s
coefficient can be estimated from (Economides and Nolte 2000)

CL ¼ κðσ0 − p0Þ
μ
ffiffiffiffiffiffiffi
πD

p ð30Þ

using the diffusion coefficient

D ¼ κM
μ

ð31Þ

where κ = permeability; and pore compressibility modulus M is
given by

M ¼
�

ϕ
Kf

þ 1 − ϕ
Ks

�−1
ð32Þ

where Kf and Ks = bulk moduli of fluid and solid; and ϕ = porosity
of the rock. Estimate the magnitude of Carter’s leak-off coefficient
for the rock and fluid with the following properties: Kf ¼ 0.2 GPa,
Ks ¼ E=½3ð1 − 2νÞ�≈ 11 GPa, ϕ ¼ 0.2, μ ¼ 1mPa · s, κ ¼
0.3 mDa (1 Da ≈ 1 μm2), and σ0 − p0 ¼ 10 MPa. Then, the leak-
off coefficient can be estimated as CL ≈ 1 · 10−4 m=s0.5. Using
the propagation velocity of V ¼ 1 cm=s and distance from the
tip x ¼ 10 m, the characteristic parameter in Eq. (29) becomesffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4D=Vx
p ≈ 0.1. Therefore, for the chosen parameters, the inequal-
ity Eq. (29) is satisfied for distances from the tip considered in this
paper, and the applicability of Carter’s leak-off model is justified.
The diffusion length scale and Carter’s coefficient are not directly
correlated. That is, one can find a situation with relatively large
value for the diffusion length scale and small CL. At the same time,
there are physically admissible situations, in which the diffusion
length scale is small, whereas CL is high.

Fracturing fluids can vary from low-viscosity solutions such as
slick water (waterfrac) with a viscosity of the order of several mPa · s
to more viscous gel-like fluids such as linear gels (viscosity of ap-
proximately 50 mPa · s) and higher-viscosity gel-like fluids with the
addition of cross-linked polymers (viscosity of 100−1,000mPa · s)
(Montgomery 2013). The numerical results are demonstrated for the
fluids rheologies provided in Table 1.

© ASCE 04021064-5 J. Eng. Mech.
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The first three fluids are Newtonian with the viscosity 3, 10, and
40 mPa · s, whereas the last fluid is power-law fluid with the con-
sistency index k ¼ 1.436 Pa · sn and flow index n ¼ 0.58. The
boundaries between the fluids bi were varied from 0.5 to 50 m for
most of the results. To investigate the solution’s behavior in differ-
ent propagation regimes, this study considered the fracture with two
fluids (slick water and linear gel 1) for the parameters provided in
Table 2. For the cases where the propagation regime is not speci-
fied, parameters in Eq. (27) are used.

Comparison between One-Fluid and Two-Fluids
Solutions

This section presents the numerical solution for the scaled fracture
opening ~wð ~xÞ for the case of two fluids: slick water followed by
cross-linked gel from Table 1. It is important to mention that the
scaled fracture opening ~w is related to the apparent fracture tough-
ness; it is equal to 1 at the fracture tip and increases with distance
from the tip. The numerical results are shown on a logarithmic scale
to illustrate the solution at different length scales. For the case of
two fluids, one boundary between them, b1, is specified. The so-
lutions for various boundary locations were obtained: b1 ¼ 0.5 m
and b1 ¼ 50 m, which corresponds to smaller and larger volume of
the first injected fluid, respectively. Other parameters used are
given in Eq. (27).

Fig. 2 shows the multifluid numerical solutions (solid lines)
with the varied location of the boundary between fluids shown by
gray vertical lines. For comparison, the one-fluid solution for slick
water is shown by the dashed line and the one for a cross-linked gel
by the other dashed line. Solutions for each fluid have different
slopes far from the tip because they are determined by the flow
index n (which is different) and the propagation regime according
to Eq. (26).

For the presented case, the first fluid is Newtonian with the flow
index n ¼ 1, whereas the second fluid is power-law with the flow
index n ¼ 0.58; therefore, the slope is steeper for the second fluid.
This behavior means that, given that a hydraulic fracture propagates
with the same velocity, the apparent fracture toughness is larger for
a power-law fluid than for a Newtonian fluid. Also, the intercept of
~w on a logarithmic scale depends on both flow index n and con-
sistency index k as well as the propagation regime according to
Eq. (26). The limiting solutions are not plotted in Fig. 2; however,
b1 ¼ 0.5 m corresponds to the toughness–leak-off transition and
b1 ¼ 50 m is very close to the viscosity propagation regime for
both fluids.

The multifluid solution asymptotically reaches the solution for
the first fluid near the fracture tip (before the boundary) and the
solution for the second fluid far from the tip (after the boundary),
which can be observed on a logarithmic scale. In between, the sol-
ution smoothly transitions between them. The transition region ex-
tends far beyond the location of the boundary between fluids due to
the nonlocal effect of the integral kernel in the elasticity relation.
The transition behavior depends on both the location of the boun-
dary between the fluids and fluid properties contrast, assuming all
other parameters of a propagating fracture are the same. The tran-
sition occurs closer to the tip at the boundary location b1 ¼ 0.5 m
compared with b1 ¼ 50 m. The aforementioned asymptotic behav-
ior can be generalized for any number of sequential fluids as
follows: the numerical solution for multiple fluids asymptotically
approaches the solution for the first fluid near the fracture tip and
the solution for the last fluid far away from the tip. From a practical
perspective, the nonlocality of the response means that the injection
of a high-viscosity fluid at the end of the treatment may signifi-
cantly alter fracture behavior at distances further away from the
boundary between the fluids.

Analysis of the Solution with Respect to Propagation
Regime

To investigate the solution for two fluids in different propagation
regimes, the problem parameters were specified so that the boun-
dary between the fluids falls into the length scale of the correspond-
ing propagation regime for both fluids. The parameters used for
toughness, viscosity, and leak-off dominated regimes are provided
in Table 2. To focus purely on the effects of fluid viscosity and
exclude the solution’s dependence on the flow index, two Newto-
nian fluids with different viscosities are considered: slick water and
linear gel 1 from Table 1.

For the toughness-dominated regime, Fig. 3 shows the scaled
fracture opening for a different order of fluids: Fig. 3(a) shows
a less viscous fluid (slick water) followed by a more viscous fluid
(linear gel), and Fig. 3(b) shows a more viscous fluid followed by a
less viscous fluid. In both plots, the solution for the slick water is
shown by the dashed lines and the one for the linear gel is shown by
the other dashed lines. The solid line corresponds to the multifluid
solution with the boundary between fluids (gray vertical line)

Table 1. Parameters of power-law fluids used in calculations

Fluid
Consistency index,
k (10−3 Pa · sn) Flow index, n

Slick water 3 1
Linear gel 1 10 1
Linear gel 2 40 1
Cross-linked gel 1,436 0.58

Table 2. Modeling parameters used for different propagation regimes

Regime
E

(GPa) ν
KIc

(MPa · m0.5)
V

(m=s)
CL

(m=s0.5)
b1
(m)

Toughness, k 5 0.2 2 10−3 10−4 0.5
Leak-off, ~m 20 0.2 1 10−2 5 · 10−4 50
Viscosity, m 20 0.2 1 0.1 10−8 50 Fig. 2. Numerical solution for a semi-infinite HF with a single fluid

(slick water and cross-linked gel) and with two fluids for different
locations of the boundary between fluids shown by vertical lines: b1 ¼
0.5 m and b1 ¼ 50 m.

© ASCE 04021064-6 J. Eng. Mech.
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located within the toughness-dominated regime. The limiting sol-
ution for the toughness-dominated regime ~w ¼ 1 corresponds to
the solution for a dry fracture and is shown by a horizontal line.
The solution for any hydraulic fracture asymptotically approaches
this solution for a dry fracture at a small length scale near the frac-
ture tip.

For the multifluid solution, the transition from the solution for
the first fluid to the solution for the second fluid (for any fluid
order) is not visible because it effectively occurs between the
toughness asymptotes that are the same for both fluids. As a result,
as expected, the multifluid solution coincides with the solution for
the second fluid [linear gel in Fig. 3(a) and slick water in Fig. 3(b)]
throughout the whole fracture. Also, due to a larger viscosity of the
linear gel, it provides a larger increase in the apparent fracture
toughness than slick water.

For the case when the boundary between fluids is located in the
viscosity-dominated regime, the solution is provided in Fig. 4 in the
same form as in Fig. 3 except that the viscosity-dominated asymp-
totes (m, dashed lines) are plotted instead of full solutions for slick
water and linear gel. The dashed line before the boundary corre-
sponds to the viscous asymptote of the first fluid, and the one after

the boundary corresponds to the viscous asymptote of the second
fluid. For the considered case of two Newtonian fluids, these
asymptotes have the same slope (because n1 ¼ n2) and different
intercepts (because k1 ≠ k2). The intercept of the asymptote is
larger for the fluid with the larger consistency index k, i.e., for the
second fluid in Fig. 4(a) and for the first fluid in Fig. 4(b).

Because the boundary between fluids is located in the viscosity-
dominated regime for both fluids, the multifluid solution (solid
line) transitions between corresponding viscous asymptotic solu-
tions of these fluids. For the case of less viscous slick water
followed by a more viscous linear gel [Fig. 4(a)], the solution tran-
sitions from the lower asymptote to the higher asymptote by accel-
erating the increase of the scaled fracture opening. For the opposite
case of more viscous fluid followed by a less viscous fluid
[Fig. 4(b)], the transition occurs from the higher asymptote to the
lower one. However, in this case, the fracture opening does not
immediately decrease to follow the lower asymptote; instead, it
slightly slows down the width growth until it meets the asymptote.
The scenario of more viscous fluid followed by a less viscous fluid
corresponds to the unstable flow solution, but it is included for
completeness.

(a) (b)

Fig. 3. Numerical solution for two different Newtonian fluids with the boundary located in the toughness-dominated regime: (a) less viscous slick
water followed by a more viscous linear gel 1; and (b) the opposite order.

(a) (b)

Fig. 4. Numerical solution for two different Newtonian fluids with the boundary located in the viscosity-dominated regime: (a) less viscous slick
water followed by a more viscous linear gel 1; and (b) the opposite order.

© ASCE 04021064-7 J. Eng. Mech.
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For the leak-off-dominated regime, the solution is shown in
Fig. 5 in the same form as in Fig. 4. In this case, the transition
between fluids occurs from the leak-off-dominated asymptote of
the first fluid (line before the boundary) to the one of the second
fluid (line after the boundary). Also, the leak-off-dominated case
corresponds to the higher apparent fracture toughness. Otherwise,
the behavior of the solutions is qualitatively the same as for the
viscosity-dominated case (Fig. 4).

Effect of Viscosity Contrast for Two Newtonian Fluids

This section investigates the sensitivity of the numerical solution to
the viscosity of one of the two Newtonian fluids in a fracture. The
fluid viscosity was varied in a range from 3 to 40 mPa · s, and other
parameters used are specified in Eq. (27).

To illustrate the case of a lower-viscosity fluid followed by a
higher-viscosity fluid, Fig. 6 shows sensitivity of the solution to
the viscosity of the first fluid k1 ¼ 3; 10; 40mPa · s for the fixed
viscosity of the second fluid k2 ¼ 40mPa · s. Solid lines show
the numerical solution in the presence of both fluids, and the
dashed lines show the one-fluid solutions corresponding to the
first fluid. Fig. 6(a) shows the solution ~w in the scaled form,

and Fig. 6(b) shows the fracture opening w in millimeters versus
physical distance from the tip x in meters.

On a logarithmic scale, all solutions asymptotically reach the
solution for the second fluid with k ¼ 40mPa · s far away from the
tip. At the same time, in the shown range of values of x up to 100 m,
the transition to this asymptote does not occur. Instead, the solution
in this range is determined by the transition zone right near the
boundary, which is of great interest for hydraulic fracturing appli-
cations. The solution in the transition zone depends on the contrast
of fluid properties. The increase of the viscosity of the first fluid
shifts the corresponding solution upward by increasing the apparent
fracture toughness and fracture opening, given that other parame-
ters are the same.

Fig. 7 shows the sensitivity of the solution to the viscosity of
the second fluid, focusing on the case of a lower-viscosity fluid
with k1 ¼ 3mPa · s followed by a higher-viscosity fluid k2 ¼
3; 10; 40mPa · s. The solid lines show the two-fluid solution, as be-
fore, but dashed lines here correspond to the solution for the second
fluid. In this case, all multifluid solutions show similar behavior near
the fracture tip by following the asymptote for the fluid with k ¼
3mPa · s. On a logarithmic scale [Fig. 7(a)], multifluid solutions
asymptotically reach the corresponding solutions for the second fluid

(a) (b)

Fig. 5. Numerical solution for two different Newtonian fluids with the boundary located in the leak-off-dominated regime: (a) less viscous slick water
followed by a more viscous linear gel 1; and (b) the opposite order.

(a) (b)

Fig. 6. Sensitivity of (a) scaled; and (b) unscaled fracture opening of the HF with two fluids to the consistency index of the first fluid k1 ¼
3; 10; 40mPa · s at k2 ¼ 40 mPa · s.

© ASCE 04021064-8 J. Eng. Mech.
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far away from the tip. However, this is not observed for the considered
range of x ¼ ½0; 100� m; therefore, the solutions for the second fluid
are not shown in Fig. 7(b). Again, the solution in the physical range of
x mostly reflects the transition zone that spans not only behind the
boundary but also to some region in front of it. The larger the contrast
of properties between the first and the second fluid, the larger the in-
crease of the apparent fracture toughness and the fracture opening rep-
resented by the transition to the higher-viscosity solution.

Next, similar numerical results are shown for the case of a
higher-viscosity fluid followed by a lower-viscosity fluid. In this
scenario, the instabilities on the boundaries between fluids may de-
velop, which may restrict the applicability of the developed model.
However, the instabilities usually require some time to develop and
to reach the scale at which they become relevant. For each particu-
lar case, estimation of the effects of instabilities may be required.
For completeness, the results of the model are provided assuming
that instabilities are not relevant for the analysis. Fig. 8 shows the
results for the sensitivity to the viscosity of the first fluid k1 ¼
3; 10; 40mPa · s at k2 ¼ 3mPa · s, and Fig. 9 shows the results
for varied viscosity of the second fluid k2 ¼ 3; 10; 40 mPa · s at
k1 ¼ 40 mPa · s.

In these cases, the transition occurs from the solution for the
more viscous fluid to the solution for the lower-viscosity fluid.
The larger the contrast of properties, the wider the transition zone.
For the high contrast of fluid properties, ~w in the transition zone
behind the boundary almost reaches the plateau. The exact plateau
( ~w = constant) would mean that in this region the apparent fracture
toughness Kapp is constant, and the shape of the fracture opening
is close to the square-root behavior w ∝ x1=2 as for a dry crack but
with the increased fracture toughness Kapp ¼ constant × KIc.

Newtonian Fluid Followed by Power-Law Fluid

This section compares the multifluid solution for a Newtonian fluid
and a power-law fluid depending on the fluid order. As an example,
the following fluids are considered: slick water and cross-linked gel
from Table 1 that represent the Newtonian and power-law fluids,
respectively. It is assumed that the boundary between the fluids is
located at a distance from the fracture tip b ¼ 10 m.

Fig. 10 shows the scaled [Fig. 10(a)] and unscaled [Fig. 10(b)]
fracture opening for a fracture with Newtonian fluid followed
by power-law fluid (solid line, see label) and with the opposite

(a) (b)

Fig. 7. Sensitivity of (a) scaled; and (b) unscaled fracture opening of the HF with two fluids to the consistency index of the second fluid k2 ¼
3; 10; 40mPa · s at k1 ¼ 3 mPa · s.

(a) (b)

Fig. 8. Sensitivity of (a) scaled; and (b) unscaled fracture opening of the HF with two fluids to the consistency index of the first fluid k1 ¼
3; 10; 40 mPa · s at k2 ¼ 3 mPa · s.

© ASCE 04021064-9 J. Eng. Mech.
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order of fluids (another solid line, see label). As previously dis-
cussed, the transition between the one-fluid solutions for a
Newtonian fluid (dashed line, see label) and a power-law
fluid (another dashed line, see label) occurs, or the opposite
depending on the fluid order. In this case, the one-fluid so-
lutions have different slopes on a logarithmic scale, which are
determined by the flow indices n ¼ 1 and n ¼ 0.58 of the consid-
ered fluids.

For the Newtonian fluid followed by power-law fluid, the tran-
sition occurs to the solution with a larger ~w. However, for the
power-law fluid followed by the Newtonian fluid, the close to pla-
teau behavior of ~w is observed in a transition region. The latter
behavior corresponds to the toughness-dominated solution with
some value of apparent toughness, which is similar to the case
of more viscous fluid followed by a less viscous fluid, described
previously. In case of displacement of a more viscous fluid by a
less viscous fluid, the use of the current model may be limited
due to possible instabilities that may develop on the fluid–fluid in-
terface that are not considered by the model. Similar limitations can
relate to the considered case of a power-law fluid followed by a
Newtonian fluid.

In spite of that, it is interesting to investigate how fracture opening
depends on the fluid order. The apparent fracture toughness before
the fluid boundary is larger when the first fluid is power-law. Behind
the boundary, there is a transition zone where this trend stays, but
farther, there is an intersection point behind which the apparent frac-
ture toughness with Newtonian fluid injected first becomes larger.
This is consistent with the fact that the considered power-law fluid
provides a larger increase in a fracture toughness felt by a crack com-
pared with the Newtonian fluid. The same result can be concluded
for the fracture opening assuming the same fracture propagation
velocities. However, because in reality the velocities are different,
a fracture opening needs to be recalculated accordingly.

Solution for Three Fluids

This section shows the solution for a semi-infinite HF with three
sequentially injected fluids. In this case, the locations of two boun-
daries b1 and b2 are specified. As an example, three Newtonian
fluids from Table 1 are considered in the following order: slick
water followed by linear gel 1 followed by linear gel 2. This sce-
nario corresponds to the fluids injected in the order of increasing

(a) (b)

Fig. 9. Sensitivity of (a) scaled; and (b) unscaled fracture opening of the HF with two fluids to the consistency index of the second fluid k2 ¼
3; 10; 40 mPa · s at k1 ¼ 40 mPa · s.

(a) (b)

Fig. 10. Sensitivity of (a) scaled; and (b) unscaled fracture opening of the HF with two fluids, Newtonian fluid and power-law fluid, injected in
different order.

© ASCE 04021064-10 J. Eng. Mech.
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viscosity (3, 10, and 40 mPa · s). Other parameters used are given
in Eq. (27).

Fig. 11 shows the numerical solution (solid lines) for the boun-
daries between fluids b1 ¼ 10 m and b2 ¼ 50 m (gray lines). The
solutions for the first, second, and third fluids are shown by the
other lines. Near the tip, the multifluid solution follows the solution
for the first fluid, whereas far away from the tip, it follows the sol-
ution for the third fluid. The intermediate fluid asymptote is not
reached even on a logarithmic scale.

To compare the multifluid numerical solutions for the different
lengths of the region occupied by the intermediate fluid, the loca-
tion of the second boundary is changed from b2 ¼ 50 m to b2 ¼
20 m. Fig. 12 shows the corresponding multifluid solutions. The
boundaries are shown by vertical lines. The shift of the boundary
significantly changes the fracture opening, i.e., the length of the
region with the intermediate fluid affects the solution even though
its asymptote is not reached. Specifically, in the considered case,
the larger region with the intermediate fluid delays the transition to
the one-fluid solution of the last fluid (one-fluid solutions are
shown in Fig. 11), making effective fracture toughness (and frac-
ture opening) in the transition region smaller.

Summary

The problem of a semi-infinite hydraulic fracture propagating with
multiple immiscible sequentially injected power-law fluids was
solved numerically. The solution for the fracture opening asymp-
totically approaches the solution for the first fluid near the fracture
tip and the solution for the last fluid far away from the tip. The
behavior in a transition region also depends on the properties of
the intermediate fluids (if any) and the location of the boundaries
between them. However, the corresponding limiting solutions of
the intermediate fluids cannot always be reached in practice. The
transition region is located near the boundary and, even in the
assumption of a localized jump of fluid properties on the boundary,
this region spans far beyond the boundary location due to the non-
local effect associated with elastic interactions. The transition zone
between fluids increases in size with increasing contrast of the fluid
properties. This nonlocal response leads to the fact that the injection
of a high-viscosity fluid toward the end of the treatment, which is
commonly the case in practice, may significantly alter fracture
behavior ahead of the fluid interface and can even temporarily ar-
rest further fracture propagation.

(a) (b)

Fig. 11. (a) Scaled; and (b) unscaled solutions for the case of three fluids.

(a) (b)

Fig. 12. (a) Scaled; and (b) unscaled solutions for the case of three fluids with smaller and larger region occupied by the intermediate fluid. Vertical
lines show the boundaries between fluids for the solution.
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For the case of two fluids, depending on problem parameters,
the numerical solution captures the limiting solutions correspond-
ing to different propagation regimes related to each fluid. For the
interface between fluids located in different propagation regimes,
the transition between the corresponding asymptotic solutions was
demonstrated. For the transition in the toughness-dominated re-
gime, the two-fluid solution is equivalent to the solution for the
second fluid. For the viscosity-dominated regime, the transition
from the viscous asymptote of the first fluid to the one of the second
fluid occurs. The difference between the asymptotic solutions is
determined by different flow and consistency indices of the fluids.
Fluids with larger viscosity (or consistency index) cause a larger
increase of the apparent fracture toughness. A similar transition oc-
curs for the leak-off-dominated regime.

In the particular case of two Newtonian fluids with a specified
location of the interface, the transition is determined by the contrast
of fluid viscosities. Higher viscosity corresponds to a larger fracture
opening under the condition of a constant velocity of fracture
propagation. The fluid order determines the fracture shape. The so-
lutions corresponding to different orders of the same fluids intersect
at a point behind the boundary. Similar behavior was demonstrated
on the example of two fluids with different rheologies: Newtonian
and power-law. In this case, different flow and consistency indices
determine the transition between the corresponding one-fluid solu-
tions. It is worth reiterating that in the long term, the resistance to
fracture growth is determined by the properties of the last fluid. In
practical cases, however, this situation may not always be reached,
and hence the behavior is affected by all fluids that are present in
the fracture.

For more than two fluids, the asymptotic solutions for the in-
termediate fluids are not reached in practice due to the nonlocal
effect of elasticity. However, it was showed that the presence of
intermediate fluids significantly alters the solution in the transition
zone; therefore, it must be considered. Asymptotic solutions for
multiple power-law fluids were implemented in a commercial
HF simulator (Dontsov et al. 2019) to track the fracture front for
the cases when multiple fracturing fluids are used in the treatment.

Data Availability Statement

The computer code developed in this study is available from the
corresponding author by request.
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