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a b s t r a c t

To characterize the effects of free surfaces on dislocation mobility, the edge dislocation glide process
in thin silicon films is modeled using an interatomic potential and first principles calculations. The
influence of film thickness is determined, starting with the simulation of a silicene monolayer and then
increasing the number of layers. The energy barrier for dislocation glide in silicene was calculated to
be 1.5 eV, indicating a relatively high mobility of dislocation defects. In thin Si films a glide mechanism
via consecutive bond rotations was identified, with kink nucleation being observed at the free surfaces
of the film with subsequent migration. The influence of the free edge in finite size films is shown to
be negligible in relation to glide for dislocations at distances from the free edge larger than three
Burgers vectors. Molecular dynamics simulations reveal the possibility of more complex but lower
energy barrier atomic reconstructions triggered at the free surfaces of the film near the dislocation
core that may increase dislocation mobility at higher temperatures.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Silicon (Si) is one of the most technologically important chemi-
cal elements. It is still the work horse semiconducting material for
modern electronic devices. While bulk (3D) silicon is massively
produced (e.g. via the Czochralski process [1]) and used in indus-
try, basic research on its single atom-thin 2D analog silicene is
still in its infancy [2,3]. Between these extremes, the cutting edge
technology FET (field effect transistors) centerpiece channel is a
silicon fin of just a few nanometers thick, whose lattice quality is
crucial to ensure low carrier (electrons or holes) scattering, high
mobility, and ultimately best device performance. Can the ever
present dislocations in such thin crystal be annealed and thus
avoided? How can they move, and how would such thermally-
activated motion depend on thickness-dimension, within a whole
range from 2D-silicene to the 3D-wafer? This can be explored
theoretically, and is a motivation and subject of this study.

Point-like and extended line defects are usually present in Si
films after fabrication processes. The extended line defects known
as dislocations play an important role in plastic response of a
crystal. Dislocations are known to degrade the electronic prop-
erties of Si single crystal (SC); they perturb the crystal periodicity
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and thus cause scattering of conduction electrons. Therefore, crys-
tal defects are usually eliminated by annealing at high tempera-
ture, e.g. via furnace annealing [4] or rapid thermal annealing [5].

Due to Si abundance and its semiconducting properties, it can
become a key building element for the next generation elec-
tronics. The thinnest Si film is monolayer silicene. Silicene – the
silicon-based counterpart of graphene – is a two-dimensional
monolayer material with a buckled honeycomb lattice that ex-
hibits a range of promising electronic properties [6,7]. It was
first investigated theoretically [2] and recently synthesized on
different metallic substrates [3]. In spite of silicene’s recent dis-
covery, room temperature-operating silicene-based field-effect
transistors have already been produced and tested [8]. At the
same time, there are difficulties associated with the process of
silicene fabrication, largely caused by its instability when exposed
to air as well as high reactivity to oxygen. Therefore, other Si-
based nanomaterials are considered. For example, bilayer silicene
materials are claimed to be a better option in electronic applica-
tions, see e.g. study [9], in which such materials are synthesized
and analyzed.

Numerous works were devoted to investigation of dislocation
defects in bulk Si material with focus on their core structures and
migration mechanism, including calculations of kink formation
and migration energy barriers [10–13]. In order to understand
the details of the annealing process and reveal the effect of
finite thickness on dislocation migration process, in this work
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we investigate the glide process of an edge dislocation in thin
Si films for different thicknesses starting from a silicene mono-
layer. This paper is structured as follows: first, the computational
methods are described in the methodology section; next, results
for silicene and then for thin Si films are presented, including
energy barrier calculations and molecular dynamics simulations
of the dislocation glide process; finally, the main findings are
summarized.

2. Methodology

In the present work, calculations of atomic structures of Si
films were performed using the molecular statics method im-
plemented in LAMMPS [14], using the Stillinger–Weber (SW)
interatomic potential developed for Si [15]. SW is an empirical po-
tential that consists of two- and three-body terms that attempt to
describe complex interatomic interactions. It was constructed to
model solid and liquid forms of Si by fitting to the experimentally
measured bulk properties. SW is one of the most used potentials
for Si crystal because it provides a reasonably good description
of its overall behavior. However, the SW potential provides a
relatively poor description of low-buckled silicene material. For
example, it predicts a buckling wavelength magnitude of 0.784 Å,
almost two times higher than the 0.435 Å predicted by the more
accurate first-principles calculations.

In order to capture an edge dislocation glide process in silicene
(as well as 1.5- and 2-‘‘silicene layers’’ thick Si films), we use a
density functional theory (DFT) method based on the plane-wave
basis set with a cutoff energy of 30 Ry (408 eV) in a local density
approximation using Gaussian pseudopotentials [16], as imple-
mented in the Quantum Espresso (QE) simulation package. For
elastic constants calculations of silicene, 1.5- and 2-layers Si films,
the Brillouin zone was sampled according to the Monkhorst–
Pack [17] scheme with a 16 × 16 × 1 k-point mesh for unit
cells composed of four, six, and eight Si atoms, respectively.
To minimize the interactions between the neighboring cells the
vacuum space between layers was set to at least 15 Å in the out-
of-plane direction while maintaining in-plane periodicity. While
for the isolated domain constructed to model the dislocation,
only Γ point has been considered for the Brillouin zone sampling
and the vacuum space between periodic images was set to at
least 15 Å in all three directions to avoid spurious interactions. In
addition, the free edges were hydrogenated in order to eliminate
unpaired electrons.

We first examine the Si film stability and compare the SW
results with representative DFT predictions of the energy of the
optimized defect-free structure measured per atom and with
respect to bulk Si SC in cubic diamond phase, as demonstrated
in Fig. 1(a). The empirical potential and the DFT results show the
same trend: the energy monotonically increases with decreasing
film thickness; the highest value is associated with the least
stable Si monolayer. Si in the bulk phase appears to be more
stable than Si film of finite thickness, as expected.

To determine the minimum energy path (MEP) and corre-
sponding energy barrier for edge dislocation glide process in Si
films, including silicene, we employed the nudged elastic band
(NEB) technique [18] as implemented in both simulation pack-
ages mentioned above. We used 21 images for SW potential
calculations and 7 for DFT simulations.

2.1. Boundary conditions

A single dislocation introduces a displacement discontinuity
across the glide plane which breaks down periodicity of the
system and produces elastic fields that may persist over long
distances depending on the boundary conditions. To overcome

Fig. 1. (a) Energy per atom with respect to bulk diamond cubic Si SC and (b)
elastic constants computed (see Appendix A) with the SW potential (asterisk
symbols for finite thickness and solid lines for bulk Si SC) and a few DFT
calculated values (filled circles) as functions of Si film thickness. Here bottom
horizontal axis provides thickness h in Å while the top horizontal axes indicates
the number of ‘‘silicene layers’’. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

this issue different boundary conditions have been developed
to model dislocation defects [21], such as the cluster approach,
flexible boundary conditions [22], and periodic boundary condi-
tions with dislocation dipoles. Here we use the cluster approach,
an approximation for a single dislocation in an infinite medium,
achieved by applying the corresponding linear elastic anisotropic
material solution to an initially perfect SC simulation domain of
finite size. The initial structure is relaxed to obtain the optimal
dislocation core structure keeping the outermost atoms fixed to
approximate the infinite medium.

The linear elastic solution for an edge dislocation in an
anisotropic medium can be found in [20]. It requires appropriate
elastic constants input for a chosen crystal orientation. The elastic
constants calculated with the SW potential (and a few points
with DFT method) for an anisotropic Si films, being oriented
along [11̄0], [001̄], and [110] crystallographic directions for x, y,
and z-axis, respectively, as functions of thickness h, that runs
parallel to the z-axis, are shown in Fig. 1(b). The details of the
procedure and approximations for calculating of the presented
elastic constants for Si films are described in Appendix A. It can
be seen from Fig. 1(b) that all displayed elastic constants decrease
with decreasing thickness for the SW empirical potential, in
agreement with DFT results also shown.

Fig. 2 demonstrates the procedure for inserting an edge dis-
location of b =

1
2 [11̄0] Burgers vector, positioned at the origin

of the coordinate system, into a Si film, here a 1.5-‘‘silicene
layers’’ thick film (also referred here as nz = 1.5), by applying
the displacement associated with the linear elastic field given by
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Fig. 2. Atomic representation (visualized with OVITO software developed in [19]) of (left) the initially ‘‘perfect’’ film structure with h = 5.8 Å or nz = 1.5 and (right)
structure with an edge dislocation with b =

1
2 [11̄0] obtained by displacing atoms of the ‘‘perfect’’ structure according to the linear elasticity solution in anisotropic

material [20]. In the left structure atoms shown in salmon pink are allowed to relaxed while atoms colored in orchid blue remain fixed during energy minimization.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Eq. (B.1) in Appendix B and using the computed elastic constants
shown in Fig. 1(b). Since the discontinuous component of dis-
placement field (ux) is symmetric with respect to the y-axis, an
extra row of atoms should be deleted (inserted) below (above)
the glide plane to have a complete discontinuity jump of minimal
periodicity, i.e. having the total Burgers vector magnitude, above
the glide plane to create a ‘‘perfect’’ film structure prior to disloca-
tion insertion, see Fig. 2(left). Next, the dislocation is inserted by
displacing this ‘‘perfect’’ structure, as shown in Fig. 2(right). Note
that the latter structure is not yet relaxed, but the core structure
composed of connected pentagon and heptagon rings is relatively
well captured for an edge dislocation of glide type, i.e. with glide
plane that runs along the closely spaced planes.

To reduce the effect of fixed boundary conditions on the
energies of the initial and final structures (that differ by dislo-
cation position of one complete glide step, and hence, produce
an asymmetric MEP outcome) an appropriate shear strain in the
xy-plane (γ , that reflects the work done by moving a dislocation
by b/2) is applied for both initial and final structures to have the
same energy.

3. Results and discussion

3.1. Silicene

We start with modeling of the glide of an edge dislocation in
monolayer silicene using the NEB method with DFT calculations
as described in Section 2. To introduce an edge dislocation in
silicene (as for all calculations with thicker Si films) we use
the isotropic linear elastic solution for an edge dislocation in an
infinite medium. This avoids issues arising with the definition
of thickness in the monolayer material. The isotropic solution
requires knowledge of only Poisson’s ratio (see expressions for
displacements in eqs. (3-45,46) in [20]), which we compute in a
way similar to other elastic constants, as described in Appendix A.
The initially relaxed silicene is stretched by δ = 1% along one
direction and the optimal strain in the transverse direction (in-
plane) is found by applying a set of deformations and fitting
the strain energy data to a quadratic function. This allows us
to calculate both in-plane Poisson’s ratios νxy = −εyy/δ and
νyx = −εxx/δ which are 0.258 and 0.270, respectively. To use
the elastic continuum model for inserting an edge dislocation in
a monolayer silicene, we take the average value of the in-plane
ratios, i.e. ν = 0.264.

Moving on to dislocation glide, Fig. 3(a) shows the initial, sad-
dle point, and final images for zero applied shear strain, i.e. γ =

0, calculated using the NEB method with corresponding MEP
presented in Fig. 3(b). In order to reduce the effect of fixed
boundary conditions that lead to different energies for the initial
and final structures, a small shear strain is applied. We found that
3% shear strain leads to almost identical total energies for the
initial and final structures, and hence more accurate measures of
the energy barrier. Moreover, according to the data summarized
in the table form in Fig. 3(c), the average value of the forward
and backward energy barriers provides a good estimate for the
barrier of a single edge dislocation to glide in an infinite medium
of silicene despite the accumulated shear energy difference forced
by the fixed boundary conditions.

3.2. Silicon film

The Si film constructed for the considered crystal orientation
can be symmetric and asymmetric with respect to the plane lying
at the middle of the thickness while having the same structure
of the free surfaces. Fig. 4 shows two cases when thickness has
fractional nz = 1.5 and integer nz = 2 number of ‘‘silicene lay-
ers’’ that correspond to symmetric and asymmetric film surfaces.
Moreover, the free surface structure affects the edge disloca-
tion core structure: core atoms located at the top and bottom
free surfaces have identical arrangements in case of symmetry,
i.e. nz = 1.5, as shown in Fig. 4(a), while arrangement differs for
asymmetric free surfaces, i.e. nz = 2, see Fig. 4(b).

Next, in order to reveal the effect of the dislocation core
symmetry we perform the NEB calculation for one complete glide
step of the 1

2 [11̄0] edge dislocation in both 1.5 and 2-layers Si
films. As can be seen from Fig. 5(a, b) that include images labeled
by the reaction coordinate (RC) values from the found MEP, the
dislocation glides in a stepwise fashion by sequential bond ro-
tations, in accordance with expectations. Note that NEB predicts
this sequential bond rotation by itself for nz ≥ 2 (for nz = 1.5 left
unguided NEB predicts a higher energy path with simultaneous
two bond rotation and 2.21 eV single energy barrier), if the
initial and final structures that differ by one complete dislocation
glide step are used as an input. The energy variation along the
MEP presented in Fig. 5(c) demonstrates a noticeable difference
for symmetric and asymmetric core geometries, yielding higher
energy barrier for asymmetric case with rotated bond surrounded
by larger number of neighboring atoms. More precisely, the ta-
ble shown in Fig. 5(d) summarizes the calculated forward and
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Fig. 3. (a) Atomic images of silicene containing an edge dislocation with hydrogenated free edges along MEP found using NEB method with DFT calculations. Here
larger (smaller) blue (gray) circles represent Si (H) atoms. Atoms being fixed during the relaxation are shown under the hatched area. (b) Plot of the total energy
as function of reaction coordinate along the MEP for different levels of applied shear strain γ . (c) Table of the corresponding forward Ef and backward Eb energy
barriers as well as their averaged value for different shear strains. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

Fig. 4. (top) Atomic structure of Si films containing an edge dislocation of b =
1
2 [11̄0] Burgers vector with (a) nz = 1.5 and (b) nz = 2 thicknesses in terms of

‘‘silicene layers’’. (bottom) Atoms that compose the edge dislocation core in these Si films cuts are shown by purple and green colors for upper and lower layers
along z-axis, displaying different core symmetries for fractional and integer nz . (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

backward energy barriers, namely Ef and Eb, for different bond
rotations, that correspond to stepwise dislocation glide process
(i.e. one bond rotation can be associated with a double-kink
formation), along the dislocation line including rotation of single
bond and in specific sequence for both nz = 1.5 and nz = 2 Si
film thicknesses. For example, the symmetric core has a 1.26 eV
energy barrier for a single bond rotation at both surfaces while
asymmetric has 1.35 eV for the same surface and higher value
of 1.72 eV for the other surface. This can be explained by more
‘‘bulk-like’’ atomic surroundings for the latter bond which leads
to higher resistance for bond rotation.

To address the effect of thickness on the dislocation glide pro-
cess we study 4.5-layers Si film having symmetric free surfaces.
The side and top views of the edge dislocation core structure in
4.5-layers film is presented in Fig. 6(a), where the core atoms be-
longing to different layers (one layer has one pentagon–heptagon
pair) are colored differently, while bonds that rotate during glide
are all displayed in gray color. NEB with initial and final struc-
tures, where one complete dislocation glide step is overcome,

predicts a 32415 sequence for bond rotations with MEP shown
by dotted line in Fig. 6(b). Namely, the middle bond labeled 3, see
Fig. 6(a), rotates first, then bond 2 below, after that bond 4 above,
bond 1 at the bottom and finally bond 5 at the top surface of
the film. However, it is clearly not the most favorable path since
bonds at the free surfaces have a lower energy barrier for rotation,
as can be seen from the plot of nucleation barrier (black symbols)
found for a single bond rotation versus bond position along z-axis
in Fig. 6(c). Surface bonds within the dislocation core labeled by 1
and 5 have 1.36 eV energy barrier, next layers with bonds 2 and
4 have 1.99 eV, while 3rd bond has highest value of 2.03 eV. This
result also shows that the influence of the free surface becomes
insignificant at distances that are at least one layer away from it,
as evident from the calculated energy barrier for bond rotation
variation with distance to the free surface.

Next, we compare the MEP results presented in Fig. 6(b) for
different bond rotation sequences, such as initial 32415 (pre-
dicted by NEB for the whole glide process), 15243 (the bonds with
lower barriers are rotated first) and 12345 (glide starts from the
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Fig. 5. NEB calculations with SW potential for one complete glide step of an edge dislocation in 1.5- and 2-layers Si films. Atomic representations of sequential
images along the reaction path for dislocation core during glide for (a) nz = 1.5 and (b) nz = 2. (c) MEP of sequential bond rotations for both films, which numerical
values are summarized in table shown in (d). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

Fig. 6. Atomic structure of nz = 4.5 Si film (left) cut in the middle of the simulation domain along x-axis to display dislocation core, (right) top view on the core
structure, where different colors correspond to different layers along z-axis, while bonds that undergo rotation during glide are shown in gray color and numbered
according to z coordinate. NEB calculated (b) MEP for one complete glide step via different sequences of bond rotations and (c) corresponding energy barriers as
functions of rotated bond position and sequence. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

surface and propagates till the opposite free surface) sequences
obtained by sequential NEB calculations with one bond rotated at
a time. The corresponding energy barrier for each bond rotation in
these sequences as function of bond number or position is also in
shown Fig. 6(c). Clearly, the 12345 sequence provides the lowest
energy path among the considered sequences with slow variation
of the energy barrier, except for the last step, along the path and

with lowest energies for the intermediate structures (i.e. when
the one bond rotation is complete). In turn, the 32415 sequence
has a noticeably higher initial barrier, but also displays a lowest
barrier for the next to last bond rotation in comparison with
other sequences. Therefore, 12345 is considered as the MEP for
the one complete edge dislocation glide step in 4.5-layers Si film.
We conclude that such a sequential glide propagation mechanism
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Fig. 7. Atomic structures of 4.5-layers Si film with an edge dislocation (a) 6b
and (b) 0b away from the free edge. Here atoms shown in salmon pink are
allowed to relaxed while atoms colored in orchid blue remain fixed during
energy minimization. The NEB calculated (c) MEP for the edge dislocation glide
toward the free edge initially 6b away via 12345 sequence of bond rotations and
(d) corresponding energy barrier for each bond rotation. (For interpretation of
the references to color in this figure legend, the reader is referred to the web
version of this article.)

should apply for other thicknesses in Si films. As a result, all
further calculations are performed for this sequence (12345 in
case of 4.5-layers film).

Another interesting aspect to investigate is the influence of
finite film size on the dislocation glide process. In other words, to
what extent does the barrier to glide (along x-direction) change
when the dislocation approaches the free edge (equivalently, free
surface in the yz-plane)? In case of the presence of a free edge
the previously applied boundary conditions should be modified.
Using the concept of images, this is done by simply adding the
displacement field of an edge dislocation with Burgers vector of
opposite sign at a distance equal to the distance between the
original dislocation and the free edge, but keeping the free edge
atoms unfixed, as shown in Fig. 7(a). The complete solution for an
edge dislocation in the vicinity of a free surface however should
also include a correction to the solution that eliminates the spu-
rious traction components along the free surface [20]. But since
this correction does not produce any force on the dislocation [20]
and in our simulations the free edge atoms are not kept fixed, it
is neglected.

The NEB predicted MEP for an edge dislocation 6b away from
the free edge (also labeled as RC = −6) to glide all the way to

Fig. 8. (a) Total energy with respect to the value for the initial structure
with dislocation located 6b away from the free edge for Si film with different
thicknesses. (b) Energy barrier for each sequential bond rotation for different
film thicknesses with an edge dislocation in an infinite medium (filled symbols
and solid lines) and 3b distance away from the free edge (empty symbols and
dashed lines). (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

the free edge (RC = 0) is shown in Fig. 7(b), where the initial
and final structures for the whole glide process are displayed
in Fig. 7(a), respectively. Note that this path was calculated in
sequential manner, i.e. with the 12345 sequence of bond rotations
for nz = 4.5 Si film for each complete glide step of Burgers vector
in magnitude. The corresponding variation in energy barrier for
each glide step labeled by ‘‘nb’’, where n runs from 6 to 0, is also
included in Fig. 7(c) (here ‘‘inf’’ refers to the case without the free
edge, i.e. for in-plane periodic film). Since the free edge boundary
conditions depend on the dislocation position that changes during
glide process, while fixed boundary conditions are desired in NEB
calculations, some assumptions are needed. Here each complete
glide step is performed under different boundary conditions that
reflect the initial dislocation position. That is why a mismatch
in energy can be observed in Fig. 7(b) when one glide step
along the entire dislocation line is complete. Although we observe
the discontinuity in MEP due to the fixed boundary conditions
required by NEB set up, as can be seen in Fig. 7(b), that may lead
to slight overestimation of the energy barrier.

According to Fig. 7(c), which shows the energy barriers versus
rotated bond positions for different proximity of dislocation to
the free edge, a noticeable effect of the free edge presence on
dislocation glide process can be observed only at distances of 3b
and less. To be more specific, the initial bond rotation barrier
(i.e. for bond position = 1) reduces from 1.38 eV for 5b to 1.33
for 4b, 1.24 for 3b, 1.07 for 2b, and finally 0.44 eV for 1b.

In regard to the influence of thickness, the effect of the free
edge on dislocation glide should be more pronounced in thicker
films due to longer dislocation line and hence larger attractive
force to the free edge. In agreement with expectations, Fig. 8(a)
demonstrates the higher reduction in the total energy for thicker
films when the distance between dislocation and free edge de-
creases. The comparison for the energy barrier versus bond po-
sition, where bonds are rotated in a sequential manner starting
from the bottom film surface till the top one, for one complete
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Fig. 9. NEB calculated (a) MEP for one complete glide step of an edge dislocation
for 12345 sequence of bond rotations (see Fig. 6(a) for bonds numbering) under
different shear deformations and (b) energy barriers for each rotated bond in the
considered sequence as functions of applied shear strains for 4.5-layers Si film.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

dislocation glide step in an infinite medium and 3b away from the
free edge is also shown in Fig. 8(b) for different film thicknesses.
Small variation of the barrier for initial and final bonds (i.e. bonds
at the free surfaces of a film) and higher but rather close values
for the ‘‘inner’’ bonds to rotate can be observed from this plot for
a range of thicknesses, confirming a very local free edge effect on
the barrier for an individual bond to undergo glide. In addition,
the presence of the free edge (here 3b from the dislocation core)
the energy barrier curves for films with different thicknesses are
simply shifted by approximately the same magnitude (≈0.2 eV)
reflecting that the attractive force per dislocation line due to the
free edge is of similar magnitude, see Fig. 8(b).

Moving to the effect of an applied shear strain on the dis-
location glide process, Fig. 9(a) shows the MEP for sequential
bond rotations (starting from the bottom free surface, i.e. 12345
sequence of bonds) of an edge dislocation in 4.5-layers Si film un-
der different shear strain values denoted by γ , whereas Fig. 9(b)
demonstrates that the energy barrier for each bond decreases
linearly with shear strain having similar slopes for internal bonds
2,3,4 and outermost bonds 1,5. Different slopes for ‘‘outer’’ and
‘‘inner’’ bonds, or equivalently, dislocation segments, reflect in-
crease in resistance of kink to be formed at the ‘‘inner’’ position
along the dislocation line in comparison with location near the
top/bottom surface.

3.3. Molecular dynamics simulation of dislocation glide in Si film

In order to identify the glide mechanism, we performed molec-
ular dynamics (MD) calculations using the SW potential under the
NVT ensemble at T = 610 K for 4.5-layers Si film with an edge
dislocation subjected to 4% shear strain in the xy-plane. Similar
boundary conditions are used for dynamic calculations, i.e. the
outermost atoms along the simulation domain perimeter are kept
fixed, while the rest are allowed to move.

The edge dislocation glide is observed in the described above
MD simulation, as shown in Fig. 10 for different domain slices.

Specifically, initial atomic reconstruction occurs near the disloca-
tion core at free surfaces of the film. Subsequently, according to
results demonstrated in Fig. 10(a), bond rotation is observed in
the next to the free surface layer (i.e. bond 2 from the previous
notation for 4.5-layers Si film) when simulation time of 7.5 ns
is achieved. Next, at about 29 ns more complicated atomic rear-
rangement happens near the dislocation core that involves both
3rd and 4th layers along z-axis after which the whole dislocation
line shifts by one complete glide step, see Fig. 10(b).

According to the careful study that compares static and dy-
namic atomic-scale simulations of kink-pair nucleation on dislo-
cations, or equivalently, dislocation glide process [23], the kink
nucleation at the dislocation line is well captured by the simple
thermally activated law. Namely, the average time t required for
the formation of one stable kink pair can be determined as t =
1
νD

exp ( H
kBT

), where νD ≃ 1013 Hz is the silicon Debye frequency,
kBT is the thermal energy, H is the activation enthalpy. Based
on our results of energy barrier calculations, the time estimate
for 2nd bond to rotate (the energy barrier is H = 1.16 eV at 4%
shear strain) should be ≃0.4 ms which is 4 orders of magnitude
slower than 7.5 ns observed in MD simulations. Consequently,
the atomic reconstructions that happen near the dislocation core
at the top/bottom surfaces may lead to substantial energy bar-
rier reduction and facilitate much faster kink migration, in our
case achieved via simple bond rotation. Besides, more complex
atomic rearrangement triggered at the free surfaces near the
dislocation core as well may lead to the barrier reduction and
glide of larger segments of the dislocation line, as indicate our
MD simulations, where simultaneous propagation of 3rd and 4th
bonds is observed at 29 ns of run time.

4. Summary

First-principles and interatomic potential calculations have
been performed to investigate the edge dislocation glide mecha-
nism in monolayer silicene and thicker Si films, respectively. The
computed energy barrier of 1.5 eV for dislocation glide in silicene
appears to be significantly lower than graphene’s 7 eV [24],
indicating higher dislocation mobility in silicene. For thin Si films
we found that the glide process of an edge dislocation, having
pentagon–heptagon core structure at each layer, is achieved via
consecutive bond rotations starting from the free top (bottom)
surface of the film. The interactions between dislocation and free
edge in finite-size Si films become important or noticeably reduce
the barrier to glide only for the distance of 3 or less in terms
of Burgers vector magnitude, meaning that this effect can be
neglected for dislocation travel time estimations. Moreover, MD
simulations show that glide mechanisms via more complex bond
rearrangements are possible and may increase the dislocation
mobility at higher temperatures. To conclude, the presence of top
and bottom free surfaces in Si films provides a starting point for
dislocation migration by facilitating initial kink formation that
promotes further propagation.
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Appendix A. Elastic constants

A cubic diamond Si SC possesses a cubic crystal symmetry
which implies that it has only three independent elastic con-
stants, namely C (0)

11 , C
(0)
12 , C

(0)
44 . In case when the coordinate system

is oriented along crystals’ highest symmetry directions, i.e. ⟨100⟩,
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Fig. 10. MD simulation snapshots of 4.5-layers Si film with an edge dislocation at T = 610 K under applied shear strain γ = 4% sliced along z−direction at (a) 2nd
and (b) 4th layers. Here blue color corresponds to bonds between atoms having cubic diamond environment, while gray represent other atomic coordination reflecting
dislocation core and free surface atoms. The whole simulation domain (left), as well as zoomed images near the dislocation core are included. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

the elastic stiffness tensor writes in matrix form using the Voigt
notation as

C(0)
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C (0)
11 C (0)

12 C (0)
12 0 0 0

C (0)
12 C (0)

11 C (0)
12 0 0 0

C (0)
12 C (0)

12 C (0)
11 0 0 0

0 0 0 C (0)
44 0 0

0 0 0 0 C (0)
44 0

0 0 0 0 0 C (0)
44

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (A.1)

If the coordinate system is arbitrary rotated with respect to
crystals’ highest symmetry directions, the elastic stiffness tensor
C, that relates stress and strain tensors as σ = Cε, can be obtained
by applying the proper orthogonal transformation on the original
fourth-rank C(0) tensor, see eq. (2-43) in [20].

To compute the three independent elastic constants of bulk
Si SC, three different displacement boundary conditions are im-
posed and elastic constants are extracted from the quadratic
function fit of the calculated strain energies as functions of ap-
plied strain. Specifically, the applied strain and corresponding
strain energy in each case are (1) εxx = δ, E = C (0)

11 δ2/2; (2)
εxx = δ and εyy = δ, E = (C (0)

11 +C (0)
12 )δ

2; (3) 2εxy = δ, E = C (0)
44 δ2/2;

where δ ∈ [−0.001, 0.001]. For instance, SW potential predicts
151.4, 76.4, and 56.4, while DFT method gives 153.2, 56.7 and 86.2
values for C (0)

11 , C
(0)
12 , C

(0)
44 elastic constants in GPa, respectively.

A Si film of finite thickness (along z-axis) is considered under
plane stress condition and necessary in-plane (xy-plane) elastic
constants, i.e. C11, C22, C12, and C66, are found in similar manner
by fitting strain energies versus applied strains, but using the
elastic constants which dictate the out-of-plane deformations for
properly oriented bulk Si SC. In details, the applied strain and
corresponding strain energy are (1) εxx = δ (since σzz = 0, there is
also non-zero εzz = −

Cb
13

Cb
33

δ that was not imposed, but comes from

relaxation of the traction-free surfaces), E = (C11 − Cb
13

Cb
13

Cb
33
)δ2/2;

(2) εyy = δ (εzz = −
Cb
23

Cb
33

δ), E = (C22 − Cb
23

Cb
23

Cb
33
)δ2/2; (3) εxx =

δ, εyy = −δ (εzz =
(Cb

23−Cb
13)

Cb
33

δ), E = ((C11 + C22) − 2C12 −

(Cb
13−Cb

23)
2

Cb
33

)δ2/2; (4) 2εxy = δ, E = C66δ
2/2. Here C constants

labeled with ‘‘b’’ superscript are for bulk Si SC oriented along
[11̄0], [001̄], and [110] directions for x, y, and z-axis, while δ ∈

[−0.001, 0.001]. To calculate the volume needed for the strain
energy evaluation the film thickness is approximated by h =

nz
√
2a0, where nz is the number of layers in terms of the minimal

periodicity along [110] directions (nz can also be referred to the
number of ‘‘silicene layers’’ for the considered geometry), a0 is
the lattice constant of bulk Si SC that is 5.43 Å for SW potential
and 5.46 Å from DFT calculations.

Appendix B. Linear elastic solution for an edge dislocation in
anisotropic medium

According to [20] (see eq. (13-116)), linear elastic solution for
displacement u = (ux, uy, uz) due to the pure edge dislocation
with Burgers vector b = (bx, 0, 0) and dislocation line along ξ =

(0, 0, −1) in an infinite anisotropic medium writes in Cartesian
coordinates (denoted by x, y, and z) as:

ux =
bx
4π

[
tan−1 2xyλ sinφ

x2 − λ2y2
+

C2
11 − C2

12

2C11C66 sin 2φ
ln

q
t

]
,

uy =
λbx

4πC11 sin 2φ
[(C11 − C12) cosφ ln qt

− (C11 + C12) sinφ tan−1 λ2y2 sin 2φ
x2 − λ2y2 cos 2φ

],

uz = 0, (B.1)

where additionally introduced quantities are λ = (C11/C22)
1/4,

φ =
1
2 cos−1 C2

12+2C12C66−C2
11

2C11C66
, q = x2 + 2xyλ cosφ + y2λ2, t = x2 −

2xyλ cosφ + y2λ2. Here Cij refer to elastic constants of a material.
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