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a b s t r a c t 

A micropolar peridynamic model is presented for characterizing crack propagation in isotropic and or- 

thotropic brittle materials. The analytical formulation of the two-dimensional model is based on the def- 

inition of a micropotential energy function that accounts for the four independent elastic constants that 

define orthotropy and that in the limit can be reduced to isotropy. A distinctive feature of the model 

is that the bonds’ elastic parameters are continuous functions of orientation with respect to principal 

material axes. By defining three deformation parameters that quantify bond stretch, bond shear deforma- 

tion and particles relative rotation, the first continuum bond-based peridynamic model is obtained for 

two-dimensional Cauchy orthotropic materials characterized by four independent material moduli that is 

suitable for describing fracture as well as homogeneous and non-homogeneous deformations. 

The accuracy of the computational model as applied to crack-tip analyses is assessed by comparing the 

displacement and stress fields within the boundary layer that develops in the immediate vicinity of a 

crack with the analytical asymptotic results for an orthotropic continuum. The extension of such cracks 

when they are subjected to mixed-mode loading is simulated under the assumption of illustrative crack 

extension criteria, and the predictions are compared to those of the maximum hoop stress intensity factor 

criterion (HSIF-criterion) and the maximum energy release rate criterion (G-criterion). 

© 2020 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Peridynamic (PD) theory ( Silling, 20 0 0 ) represents the mechan-

ical behavior of solids not through differential equations as in the

case of classical continuum mechanics, but instead with integro-

differential equations that do not involve spatial derivatives. This

aspect lends itself to the description of discontinuities such as

cracks. Numerous PD formulations have been published; the larger

(smaller) portion involves isotropic (anisotropic) materials. A brief

review of PD for elasticity and fracture mechanics is warranted.

With respect to isotropy, significant efforts were aimed at repro-

ducing linear elastic behavior, and in particular to resolve the prob-

lem of fixed Poisson’s ratio associated with the original formu-

lation. In fact, the originally proposed PD, referred to as bond-

based PD (BBPD), is a central force model. Therefore, as in the rari-

constant theory ( Navier, 1827; Cauchy, 1850; Truesdell, 1984 ), Pois-

son’s ratio is restricted to ν = 1 / 4 for three-dimensional (3D) and
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lane strain configurations, and ν = 1 / 3 for plane stress. To over-

ome this limitation, Silling et al. (2007) developed the state-based

D formulation (SBPD) in which the force between two particles

epends on the deformations of all particles within their neigh-

orhood. Other effort s along these lines include the non-ordinary

tate-based model (NOSB), a tool for adapting classical material

odels for use with PD and for simulating a material with other

ypes of constitutive models ( Warren et al., 2009 ). 

However, in the context of bond-based models, Wang et al.

2018, 2017) derived a conjugated bond-pair-based PD formulation

nspired by the Keating model ( Keating, 1966 ) and characterized

y two independent elastic constants. Liu and Hong (2012) pro-

osed an approach based on a force compensation scheme and

hu and Ni (2017) derived a PD formulation that accounts for

ingle bond shear deformation and thus produces different val-

es of Poisson’s ratio. Gerstle introduced a two-parameter mi-

ropolar isotropic PD model ( Gerstle et al., 2007 ) comprised of

n Euler-Bernoulli beam-like microstructure. Recently, Diana and

asolo (2019a) proposed a generalized micropolar peridynamic

ormulation with three bond stiffness moduli and inspired by

oigt’s studies on crystals ( Voigt, 1887 ). PD theory has been ap-
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lied extensively to problems involving fracture ( Bobaru et al.,

012; Madenci and Oterkus, 2014; Casolo and Diana, 2018; Sho-

aei et al., 2018; Roy et al., 2017 ), plasticity and viscoelasticy

 Madenci and Oterkus, 2016; Rahaman et al., 2017; Weckner and

ohamed, 2013 ), thermo-mechanical effects ( Oterkus et al., 2014 )

nd corrosion ( Chen and Bobaru, 2015 ). Unlike other computational

aradigms such as the finite element method and the boundary el-

ment method in which the nucleation and extension of cracks re-

uires cumbersome remeshing procedures, in PD cracking is a con-

equence of the movement of material points. This feature makes

D very attractive for the simulation of failure and in particular the

nteraction between relatively large numbers of cracks. 

Anisotropic PD models have been proposed by Hu et al. (2011) ,

terkus and Madenci (2012) , Xu et al. (2008) , and Colavito

t al. (2007) , to simulate crack propagation in composites with

ni-directional fibers. The aforementioned models are based on a

omogenization approach in which the stiffness of the PD bonds

arallel to the fiber direction (fiber bonds) is fitted to the elas-

ic modulus of the lamina in the same direction, and all other

onds (matrix bonds) have their stiffness fitted to the lamina prop-

rties along the direction perpendicular to the fiber orientation.

n Hu and Madenci (2016) and Diyaroglu et al. (2019) , the lig-

ments are distinguished in normal and shear bonds depending

n their spatial orientations. Kilic et al. (2009) developed a mi-

roscale PD model with fiber and matrix phases represented as

istinct material points, and used it to predict matrix damage in

aminated composites, accounting for the inhomogeneous distinct

roperties of the fiber and matrix. These models have been able to

rovide predictions of fiber/matrix fracture and delamination that

re in good qualitative agreement with experimental observations.

he model presented by Hu et al. (2012) for unidirectional fiber-

einforced composites can be used for any grid orientation relative

o the fiber direction, but it suffers from fixed values of Poisson’s

atio and shear modulus. Askari et al. (2008) proposed another

D model in their study of crack propagation in a poly-crystalline

icrostructure. Ghajari et al. (2014) proposed the first continu-

us PD model for orthotropic media based on the use of eighth-

rder sinusoidal functions. Similar PD formulations for orthotropic

aterial were also proposed later by le Hu et al. (2014) and by

hou et al. (2017) . However, since such orthotropic models are

ased on a classical bond-based PD formulation, only two elas-

ic moduli can be independently prescribed. A discrete full or-

hotropic bond-based PD model has been proposed recently by

iyaroglu et al. (2019) . In the context of SBPD instead, an or-

hotropic PD model for linearly elastic solids was proposed by

ikata (2018) . It can be seen that in SBPD or classical BBPD there

re no forces out of the bond direction representing the shear

orce due to shear deformation ( Rabczuk and Ren, 2017; Ren et al.,

016 ). Moreover, state-based PD models may be associated with

 larger computational cost with respect to bond-based models

 Zhang et al., 2018 ). 

In this paper, the micropolar peridynamic (MPPD) formulation

ecently presented ( Diana and Casolo, 2019a; 2019b ), is extended

o fracture and is applied to the study of crack initiation, kinking

nd propagation in isotropic and orthotropic brittle materials. It is

ased on the use of continuous trigonometric functions and dif-

ers from other bond-based orthotropic peridynamic models which

re limited to two independent material constants. The conceived

odel is based on the definition of three deformation parameters:

he bond stretch; the bond shear deformation that accounts for the

otational degrees of freedom; and the particle’s relative rotation.

he formulation results, for the first time, in a continuous bond-

ased PD model for 2D Cauchy orthotropic materials characterized

y four independent material moduli that is suitable for describ-

ng fracture as well as homogeneous and non-homogeneous defor-

ations. Since three different stiffness parameters for each peridy-
amic ligament can be independently defined and calibrated, the

odel can be also be potentially extended to Cosserat orthotropic

aterials ( Diana and Casolo, 2019a ). 

This paper is structured as follows. In Section 2 , an analytical

mplicit linearized formulation of the proposed micropolar peridy-

amic model is given. Particular attention is paid to its numer-

cal implementation. The generalized three-parameter micropolar

odel is derived by defining specific deformation measures re-

ated to axial, shear and particles’ relative rotation deformations. In

his way, the PD micropotential energy function is written, and the

eneralized MPPD bond stiffness operator is obtained. The analyt-

cal expression of the four independent peridynamic constants for

rthotropic materials are thus given. The two-parameter isotropic

icropolar PD model is then obtained as a special case, by spec-

fying that the shear and axial stiffnesses are independent of the

ond angle of inclination. Moreover an energetic failure criterion

s presented in this section. Section 3 assesses the accuracy of the

D description of the stress and deformations that develop in the

mmediate vicinity of a crack-tip subjected to mixed-mode loading,

nd the directions the crack will kink/curve. Illustrative examples

nvolve a boundary layer analysis in which the boundaries of the

omputational model are subjected to the well-known asymptotic

esults for elastic isotropic and orthotropic materials. First, the nu-

erical results calculated for the stationary crack are compared

ith these asymptotic formulas. Second, the directions of crack

inking/curving simulated using two illustrative extension criteria

re compared to those associated with the maximum hoop stress

ntensity factor criterion (HSIF-criterion) and the maximum energy

elease rate fracture criterion (G-criterion). In the case of isotropic

aterials, the influence of the Poisson’s ratio on the crack kinking

ngles is also investigated. 

It is noted that all results are generated using MATLAB

 Matlab, 2017 ) computing within a UNIX environment. The post-

rocessing of the results is instead performed using PARAVIEW,

ATLAB and OVITO ( Stukowski, 2009 ). 

. The micropolar peridynamic model 

In micropolar Peridynamics (MPPD) the particles’ translational

egrees of freedom are augmented, in two dimensions, to include

 rotational degree of freedom θ ( Gerstle et al., 2009 ). In this way,

he equations of motion for any infinitesimal material particle at X

n the reference configuration at time t are derived from 

ü (X , t) −
∫ 

H X 

f ( u 

′ − u , X 

′ − X ) dV X ′ − b (X , t) = 0 for X ∈ �, 

(1) 

 ̈θ(X , t) −
∫ 

H X 

m ( u 

′ − u , X 

′ − X ) dV X ′ − c (X , t) = 0 for X ∈ �, 

(2) 

here � is the domain occupied by the body, whereas X 

′ − X = ξ
nd u 

′ − u = η are the relative position and the relative displace-

ent between the material points X and X 

′ (see Fig. 1 ). The body

orce vector is b , and f is the pairwise force. The applied body cou-

le is indicated by c , θ̈ is the angular acceleration vector, and J

enotes the mass moment of inertia per unit volume tensor. The

ntegrals are defined over a region H X referred to as the family of

 (i.e. the horizon region of radius δ). The linear and angular mo-

entuum equilibrium equations at time t in discretized form of

re: 
 

j=1 

f (u j − u i , X j − X i )�V j + b i = ρü i (3)
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Fig. 1. (a) Undeformed and deformed configuration of a micropolar peridynamic bond; (b) Linearized theory. 

Fig. 2. Sketch of the interactions between two particles: (a) due to normal spring, (b) due to shearing spring, (c) due to rotational spring. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

w

s  

w  

u

γ  

d  

m  

c  

t  

r  

t  

r  

t  

t

ϑ  

 

{  

w  

m

[  

1 This parameter can be used to improve the bond stretch measure in such a 

way that s = 

(u j n −u i n )+ κϑ 
| ξ| (11) where κ is a scaling parameter which regulates how 

much bending is considered in the bond stretch measure (for simplicity it is usually 

set to zero) ( Karihaloo et al., 2003; Pan et al., 2018; Lilliu and van Mier, 2003 ). 
∑ 

j=1 

m (u j − u i , X j − X i )�V j + c i = J ̈θi (4)

where subscript j denotes a particle within the horizon region of

particle i . Thus the sum in Eq. (3) is taken over all nodes j such

that | X j − X i | ≤ δ (i.e. neighboring particles of particle i ). By us-

ing mesh generation tools developed for finite-element analyses,

the structure is discretized into a set of subvolumes, each of which

contains at its centroid a single PD material point. Subsequently a

� algorithm determines the neighboring particles of each particle

of the discretization. A quadrature scheme in which partial neigh-

bor intersections are also considered has been implemented. The

results of the partial neighbor intersection computation, and thus

the value of the volume correction coefficient α is calculated by

Liu and Hong (2012) 

α(| ξ| ) = 

{ ξ−δ+0 . 5�x 
�x 

if (δ − 0 . 5�x ) < | ξ| ≤ δ
1 if | ξ| ≤ (δ − 0 . 5�x ) 
0 otherwise 

(5)

where �x is the grid spacing. 

In MPPD each bond connecting two particles i and j can be ide-

alized as an assemblage of two translational springs and a rota-

tional spring ( Diana and Casolo, 2019a ) ( Fig. 2 ). The force and dis-

placements vectors in a local coordinate system are 

{ f } T = { f i n f i t m 

i f j n f j t m 

j } (6)

{ u } T = { u 

i 
n u 

i 
t θ i u 

j 
n u 

j 
t θ j } (7)

Therefore three bond deformation parameters can be defined that

are functions of the relative displacements in the normal, tangen-

tial, and rotational sense, respectively (see Fig. 2 and 3 ). The defor-

mation in the normal direction is the classical peridynamic bond

stretch s , 

s = 

| ξ + η| − | ξ| 
| ξ| (8)
hich in a linearized theory is written as 

 = 

1 

| ξ| 
(
η · ξ

| ξ| 
)
= 

ηn 

| ξ| = 

(u 

j 
n − u 

i 
n ) 

| ξ| (9)

here ηn is the component of η along the undeformed bond of

nit vector ξ/| ξ|. The shearing deformation is 

= 

ηt 

| ξ| − θ̄ = 

(u 

j 
t − u 

i 
t ) 

| ξ| − (θ j + θ i ) 

2 

(10)

efined as the difference between the rotation angle of the liga-

ent and the particles’ average rotation. The latter reduces or in-

reases the bond shear deformation depending on the mutual ro-

ation sense of the particles itself. In particular, if the two particles

otate with an equal and opposite angle θ , the rotation contribu-

ion to the bond shear deformation is null. The deformation pa-

ameter associated with the rotational bond spring is defined by

he relative particles’ rotation measure, i.e. the difference between

he rotation angles of the two connected particles 1 

 = (θ j − θ i ) (12)

The compatibility equation can be written in a compact form as

 h } = [ B ] T { u } (13)

here { h } = { s γ ϑ} T is the vector of the springs deformation

easures and [ B ] T is defined by 

 B ] T = 

1 

| ξ| 

[ −1 0 0 1 0 0 

0 −1 −| ξ| / 2 0 1 −| ξ| / 2 

0 0 −| ξ| 0 0 | ξ| 

] 

(14)
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Fig. 3. Schematics of typical particles initial and deformed configuration for bond-based micropolar peridynamics. The particles orientation changes as result of the defor- 

mation process. 
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he constitutive behavior of the model is defined by the following

elation 

 q } = [ D ] { h } −→ 

{ 

f n 
f t 

m ϑ 

} 

= 

[ 

k n 0 0 

0 k t 0 

0 0 k ϑ 

] { 

s 
γ
ϑ 

} 

(15)

here [ D ] is a diagonal matrix 2 containing the bond normal, tan-

ential, and rotational stiffnesses, and relates the peridynamic ac-

ions between two particles to the parameters of bond deformation

efined above. The pairwise bond couple and forces can be viewed

s the springs’ reactions to the bond deformations s and γ and ϑ,
espectively. Note that m ϑ represents the self-equilibrated part of

he particles microcouples in a specific ligament. 

It is worth noting that the conceived general MPPD formula-

ion can lead to different centrosymmetric models depending on

he specific constitutive parameters k n , k t and k ϑ adopted. An im-

ortant consideration is that the shear stiffness parameter k t has

he same dimensions of the normal stiffness parameter k n and is

onceptually related to the shear modulus G of classical elasticity

 Diana and Casolo, 2019b ). 

The general form of the macroelastic energy density �( X ) for

icropolar peridynamics is obtained by considering the contri-

ution of the three springs and their corresponding deformation

easures such that 

(X ) = 

1 

2 

∫ 
H X 

( w s + w γ + w ϑ ) dV X ′ = 

1 

2 

∫ 
H X 

k n s 
2 | ξ| 
2 

+ 

k t γ 2 | ξ| 
2 

+ 

k ϑ ϑ 

2 

2 

dV X ′ (16) 

ith w = ( w s + w γ + w ϑ ) defined as the micropotential energy

unction satisfying the conditions of microelasticity ( Silling, 20 0 0 )

f n = 

∂ w s 

∂ηn 
; f t = 

∂ w γ

∂ηt 
; m ϑ = 

∂ w ϑ 

∂ϑ 

(17)

he macroelastic potential energy of a micropolar peridynamic

ody is then given by 

ˆ = 

1 

2 

∫ 
�

∫ 
H X 

k n s 
2 | ξ| 
2 

+ 

k t γ 2 | ξ| 
2 

+ 

k ϑ ϑ 

2 

2 

d V X ′ d V X (18)

or a single bond of length | ξ| between two particles i and j , we

an write a discrete form of the balance of the variation of the

otal macroelastic energy and the work W done by the external

odal forces { p } as 

ˆ = 

1 { u } T 1 

[ B ][ D ][ ξ ]�V i α�V j [ B ] T { u } = 

1 { u } T { p} = W (19)

2 2 2 

2 When considering non-isotropic materials, the [ D ] matrix which describes the 

onstitutive behavior of the bond is function of the orientation ( ψ) angle of the 

igament, since at each angle correspond a specific set of stiffnesses. 

t

here, due to Eq. (16) 

 ξ ] = 

[ | ξ| 0 0 

0 | ξ| 0 

0 0 1 

] 

(20) 

he bond stiffness matrix in the global coordinate system can be

xpressed by 

 K] bond = α�V i �V j [ R ] T [ B ][ D ][ ξ ][ B ] T [ R ] (21) 

here [ R ] is a rotation matrix. It is interesting to note that the

icropolar peridynamic model with frame-like ligaments con-

ecting particles, i.e. a 2D non-local lattice with Euler-Bernoulli

eam-like microstructure (e.g. Gerstle’s isotropic micropolar model

 Gerstle et al., 2009 )), is a special case of the conceived model de-

cribed in this section. Further details regarding this aspect can be

ound in Diana (2019) ; Diana and Casolo (2019b) . 

.1. The definition of the peridynamic traction vector 

Towards the goal of studying not only deformation in the

icinity of a crack tip, at this point it is interesting to in-

roduce a specific stress measure for micropolar peridynam-

cs which is strictly related to the original stress definition by

aint Venant (1845) and accepted later by Timoshenko (1983) and

ehoucq and Silling (2008) . For more details regarding the concept

f stress in PD, see Ballarini et al. (2018) . 

Considering an arbitrary plane π passing through X which has a

ormal vector n 

∗ and divides the family region H X into two pieces,

he force which one part exerts on the other can be expressed as

 (H X + , H X − ) = 

∫ 
H −

X 

∫ 
H + 

X 

f ( u 

′′ − u 

′ , X 

′′ − X 

′ ) dV X ′′ V X ′ (22)

he line segment X 

′′ − X 

′ given by two interacting material points

ntersects the dividing plane π at a unique point X . The line seg-

ent X 

′′ − X has the length ζ and points in the outer direction v ,

.e. v · n 

∗ > 0. The line segment X − X 

′ has the length υ and points

n the opposite direction such that 

 

′′ = X + ζv ; X 

′ = X − υv (23)

he integration over all interacting couples [ X 

′′ ; X 

′ ] can be rewrit-

en as a surface integral over the contact plane π of a correspond-

ng surface density, i.e. the traction vector t ( X, n 

∗). Hence, the

D traction vector with respect to plane π , with outward point-

ng unit normal n 

∗ at point X is now defined by Lehoucq and

illing (2008) 

 (X , n 

∗) = 

1 

2 

∫ 
L 

∫ δ

0 

∫ δ

0 

(ζ + υ) 2 f [ u 

′′ − u 

′ , v (ζ + υ)] v · n 

∗d ζd υd ω v 

(24) 
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Fig. 4. Definition of the micropolar PD traction vector at point X i according to Eq. (25) with respect to plane π of outward pointing unit normal n ∗ . The pairwise force f is 

characterized by normal and tangential components f n and f t . 
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where L denotes the unit sphere, and d ω v denotes a differential

solid angle on L in the direction of any unit vector v . The factor of

1/2 appears in Eq. (24) because the integral sums the forces on X 

′ 
due to X 

′′ and those on X 

′′ due to X 

′ ( Silling and Lehoucq, 2008;

Lehoucq and Silling, 2008 ). Eq. (24) can be simplified and written

in discrete form as 

t (X i , n 

∗) = 

1 

A i 

H −∑ 

k =1 

H+ ∑ 

j=1 

f (u j − u k , X j − X k )�V j �V k 

= 

1 

A i 

H −∑ 

k =1 

H+ ∑ 

j=1 

[ 
f n (u j − u k , X j − X k ) 

ηn 

| ηn | 

+ f t (u j − u k , X j − X k ) 
ηt 

| ηt | 
] 
�V j �V k (25)

where H 

− is the number of particles in the negative side of the

i -particle’s horizon. The summation involves only the set of bonds

passing through or ending at the cross section A i from the positive

side, as Fig. 4 shows. Obviously, following Eq. (24) the same oper-

ation involving this time the bonds from the negative side is also

required. The sought traction vector is then given by the average

of these two values. 

This being a micropolar model, the pairwise force f is character-

ized by normal and tangential components f n and f t . The normal

and tangential components of the traction vector defined above are

the normal and shear stress 

σn ∗n ∗ = t (X i , n 

∗) · n 

∗ (26)

τn ∗v = t (X i , n 

∗) · v (27)

where v denotes the direction orthogonal to that of the outer nor-

mal n 

∗. 

2.2. A full orthotropic micropolar peridynamic formulation 

The classical elasticity stress-strain relations (Hooke’s law) for

an orthotropic material under plane-stress or plane-strain condi-

tions in the principal material directions, inclined at angle ζ with
espect to the horizontal, can be written using the Voigt notation

s: 

 σ } = [ C ] { ε} −→ 

{ 

σ1 

σ2 

τ12 

} 

= 

[ 

C 11 C 12 0 

C 12 C 22 0 

0 0 C 66 

] { 

ε1 

ε2 

γ ∗
12 

} 

(28)

ssuming for simplicity that ζ = 0 , and thus considering a generic

oordinate system xy rotated by ψ with respect to the horizontal,

q. (28) can be rewritten as 

 σ } ψ = [ C ] ψ { ε} ψ (29)

eing [ C ] ψ defined as 

 C ] ψ = 

⎡ 

⎢ ⎣ 

C xx C xy C xs 

C xy C yy C ys 

C xs C ys C ss 

⎤ 

⎥ ⎦ 

= [ Q ] −1 [ C ][ Q ] −T 

= [ Q ] −1 

⎡ 

⎢ ⎣ 

C 11 C 12 0 

C 12 C 22 0 

0 0 C 66 

⎤ 

⎥ ⎦ 

[ Q ] −T (30)

here [ Q ] is 

 Q ] = 

⎡ 

⎣ 

cos 2 ψ sin 

2 ψ 2cos ψ sin ψ 

sin 

2 ψ cos 2 ψ −2cos ψ sin ψ 

−cos ψ sin ψ cos ψ sin ψ cos 2 ψ 

⎤ 

⎦ (31)

hus, the off-axis axial C xx and shear C ss moduli can be written as

unction of the direction defined by ψ , in terms of the four mate-

ial constants defined in Eq. (28) as 

 xx (ψ) = C 11 cos 4 ψ + C 22 sin 

4 ψ + 2 C 12 sin 

2 ψ cos 2 ψ 

+ 4 C 66 sin 

2 ψ cos 2 ψ (32)

 ss (ψ) = C 11 sin 

2 ψ cos 2 ψ + C 22 sin 

2 ψ cos 2 ψ 

−2 C 12 sin 

2 ψ cos 2 ψ + C 66 ( cos 2 ψ − sin 

2 ψ) 2 (33)

y analogy with the continuum, assume for instance that in an or-

hotropic peridynamic solid, the axial and shear bond stiffness (i.e.
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Fig. 5. Unit cells H i subjected to: χ1 ) isotropic expansion field of orthogonal PD stretch components s 1 = s 2 = s, γ = 0 ; χ2 ) simple extension field of orthogonal PD 

stretch components s 1 = s, s 2 = γ = 0 ; χ3 ) simple extension field of orthogonal PD stretch components s 2 = s, s 1 = γ = 0 ; χ4 ) pure shear field of orthogonal PD stretch 

components s 1 = s 2 = 0 , γ = s . 
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{  
 n and k t ) follow a law of variation with respect to ψ similar to

hat of C xx and C ss described by Eqs. (32) and (33) , respectively, in

uch a way that 

 n (ψ) = k n 1 cos 4 ψ + k n 2 sin 

4 ψ + 2 k v sin 

2 ψ cos 2 ψ + 4 k t 1 sin 

2 ψ cos 2 ψ

(34) 

 t (ψ) = k n 1 sin 

2 ψ cos 2 ψ + k n 2 sin 

2 ψ cos 2 ψ − 2 k v sin 

2 ψ cos 2 ψ

+ k t 1 ( cos 2 ψ − sin 

2 ψ) 2 (35)

here k n 1 and k n 2 are the PD axial micromoduli along principal

aterial axes, k t 1 is the shear micromodulus along one of the prin-

ipal material axis 3 and k v is a parameter related to the ratio be-

ween k t ( ψ) and k n ( ψ) in each direction. Hence, four independent

D micromoduli for describing the mechanical behavior of a 2D or-

hotropic solid have been defined. 

The relation between the orthotropic peridynamic moduli, k n 1 ,

 n 2 , k v and k t 1 and the classical continuum elastic constants

n Eq. (28) , is obtained following the approach introduced by

erstle (2016) . Given a specific homogeneous strain state, the

acroelastic energy density in a specific point was determined

rom the PD formulation and it was set equal to the strain energy

ensity determined from the classical theory of elasticity. Note that

or homogeneous deformation states, the particles microrotations

are null ( Diana and Casolo, 2019a ). To obtain the bond stretch

nd the bond shear deformation along a specific bond direction,

he strain vector 

 χ} = { s 1 s 2 γ } T (36)
3 In Cauchy orthotropic materials in fact, G 11 = G 22 = G, hence k t 1 = k t 2 ( Ostoja- 

tarzewski, 2002; Diana and Casolo, 2019b ). 

{  

{  
hat defines a specific deformation state of H X , is transformed into

 coordinate system whose first axis is aligned with the bond and

he second axis is orthogonal to the bond. In this way, being ψ the

ngle of inclination of a specific bond with respect to the horizon-

al direction we obtain 

 (ψ) = 

1 

2 

[ s 1 + s 2 + (s 1 − s 2 ) cos 2 ψ + 2 γ sin 2 ψ] (37)

(ψ) = 

1 

2 

[(s 1 − s 2 ) sin 2 ψ − 2 γ cos 2 ψ] (38)

t is worth noting that when a PD unit cell (the neighborhood of

 or the family of X ) is subjected to a specific homogeneous de-

ormation state defined by Eq. (36) , s 1 and s 2 are equivalent to ε1 

nd ε2 of the continuum. However γ in our model is a deforma-

ion measure referred to a single bond, thus in a pure shear defor-

ation state, γ = γ ∗/ 2 , where γ ∗ is the shear deformation of the

ontinuum. The four homogeneous deformation states considered

n Fig. 5 , can be described by the following deformation tensors: 

 F ] 1 = 

[ 

1 + s 0 

0 1 + s 

] 

; [ F ] 2 = 

[ 

1 + s 0 

0 1 

] 

;

 F ] 3 = 

[ 

1 0 

0 1 + s 

] 

; [ F ] 4 = 

[ 

1 γ
γ 1 

] 

(39) 

hich lead to the strain vectors 

 χ} 1 = { s s 0 } T (40)

 χ} 2 = { s 0 0 } T (41)

 χ} 3 = { 0 s 0 } T (42)
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Fig. 6. Comparison of the off-axis C xx and C ss classical continuum moduli (in MPa) and k n and k t MPPD moduli (in N/mm 

6 ) for an orthotropic material ( C 11 = 330 0 0MPa ; 

C 12 = 730MPa ; C 22 = 7300MPa ; C 66 = 6300MPa in the cases of ζ = 0 ; ζ = π/ 4 and ζ = π/ 2 ). 
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{ χ} 4 = { 0 0 2 γ } T (43)

where s < < 1 and γ = s . At this point we can derive the analyt-

ical expressions of the four classical continuum strain energy den-

sities and the corresponding micropolar peridynamic macroelastic

energy density functions, as described in Appendix A . 

In this way, a system of four equations φ(X ) i = �(X ) i , i =
1 . . . 4 is obtained ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

s 2 (C 11 + C 22 + 2 C 12 ) = 

tπs 2 δ3 

24 

(3 k n 1 + 3 k n 2 + 4 k t 1 + 2 k v ) 

s 2 C 11 = 

tπs 2 δ3 

384 

(38 k n 1 + 6 k n 2 + 24 k t 1 + 4 k v ) 

s 2 C 22 = 

tπs 2 δ3 

384 

(6 k n 1 + 38 k n 2 + 24 k t 1 + 4 k v ) 

2 γ 2 C 66 = 

tπγ 2 δ3 

192 

(6 k n 1 + 6 k n 2 + 24 k t 1 + 4 k v ) 

(44)

and that solved leads to: 

k n 1 = 

12 (C 11 − C 66 ) 

πtδ3 
(45)

k n 2 = 

12 (C 22 − C 66 ) 

πtδ3 
(46)

k v = 

12 (3 C 12 − C 66 ) 

πtδ3 
(47)

k t 1 = 

3 (8 C 66 − C 11 − C 22 − 2 C 12 ) 

πtδ3 
(48)

In the special case of isotropy under plane stress conditions they

reduce to two independent constants 

k n = 

12 (C 11 − C 66 ) 

πtδ3 
= 

6 E 

πtδ3 (1 − ν) 
(49)

k t = 

3 (8 C 66 − 2 C 11 − 2 C 12 ) 

πtδ3 
= 

6 E(1 − 3 ν) 

πtδ3 (1 − ν2 ) 
(50)

whereas in plane strain 

k n = 

12 (C 11 − C 66 ) 

πtδ3 
= 

6 E 

πtδ3 (1 + ν)(1 − 2 ν) 
(51)

k t = 

3 (8 C 66 − 2 C 11 − 2 C 12 ) 

πtδ3 
= 

6 E(1 − 4 ν) 

πtδ3 (1 + ν)(1 − 2 ν) 
(52)

where E and ν are the Young modulus and the Poisson’s ratio of

the material, respectively. 
By applying Eqs. (34) and (35) , a specific value is assigned

o the axial and shear PD springs constants, depending on the

rientation ψ of the bond. In this way the mechanical behav-

or of a Cauchy orthotropic material can be modeled ( Diana and

asolo, 2019b ). Since the conceived PD model is micropolar, the

articles are characterized also by a rotational degree of freedom

hat is required to ensure rotational invariance ( Diana and Ca-

olo, 2019a ). The microrotations and the micromoments in fact,

nsure the balance of angular momentuum of the peridynamic

ond. The definition of a shearing deformation measure which

oes not account for particle’s rotations instead, could lead to an

ncorrect description of the mechanical behavior of materials un-

ergoing non-homogeneous deformation fields, as demonstrated

y Diana (2019) ; Diana and Casolo (2019a) . However, when refer-

ing to a Cauchy continuum the definition of an equivalent lat-

ice model requires only two elastic moduli in isotropy (four for

n-plane orthotropy), and thus the definition of a rotational spring

onstant k ϑ is somewhat redundant ( Diana and Casolo, 2019b ). In

ur case, it can improve the numerical performance of the discrete

pproximation in the case of non-homogeneous strain conditions,

nsofar as it allows the description of variable axial bond forces

ith a reduced number of elements. It can be seen as the addi-

ion of a linear term (in the bond force between two particles) in

ddition to the uniform axial bond force ( Casolo, 20 06; 20 09; Di-

na and Casolo, 2019b ). In this sense, it can be stated that the in-

roduction of the rotational stiffness term allows an improvement

n the numerical behavior of the model implemented in situations

f high strain gradient, especially in the case of coarse meshes

 Diana and Casolo, 2019b ). Further details and a theoretical discus-

ion on this aspect can be found in Stakgold (1950) , Casolo (2006) ,

stoja-Starzewski (2002) and Diana and Casolo (2019b) . 

In the case of principal material directions not aligned with

espect to the horizontal and vertical directions, (being ζ � = 0),

qs. (34) and (35) can be rewritten in the general form 

 n (ψ − ζ ) = k n 1 cos 4 (ψ − ζ ) + k n 2 sin 

4 (ψ − ζ ) 

+ 2 k v sin 

2 (ψ − ζ ) cos 2 (ψ − ζ ) 

+ 4 k t 1 sin 

2 (ψ − ζ ) cos 2 (ψ − ζ ) (53)

 t (ψ − ζ ) = k n 1 sin 

2 (ψ − ζ ) cos 2 (ψ − ζ ) 

+ k n 2 sin 

2 (ψ − ζ ) cos 2 (ψ − ζ ) + 

− 2 k v sin 

2 (ψ − ζ ) cos 2 (ψ − ζ ) 

+ k t 1 [ cos 2 (ψ − ζ ) − sin 

2 (ψ − ζ )] 2 (54)



V. Diana and R. Ballarini / International Journal of Solids and Structures 196–197 (2020) 76–98 83 

Fig. 7. Axial bond force-bond elongation f n − s (a) and shear force-shear deformation f t − γ (b) relationships in micropolar peridynamics. 

Fig. 8. Geometry and boundary conditions used for the analysis of near-tip solution in orthotropic media; (a) Semi-infinite crack; (b) Kinked crack. 

F  

n  

t

2

 

S  

i  

m  

p  

u  

s  

u  

t  

a  

p  

w  

t  

d  

a  

f  

c  

2  

e  

c  

t  

c  

a  

A  

s  

f  

f  

w  

t

 

a  

t  

c  

s

i  

o  

o  

w

(  

n  

m  
ig. 6 show that the polar plot of the normal and shear spring stiff-

esses k n and k t have the same shape of that of C xx and C ss , and

hat they differ only of a scale factor. 

.2.1. Fracture criteria and local damage variables 

The nonlocal orthotropic PD model will be applied in the next

ection to the study of the stress and deformation fields in the

mmediate vicinity of a stationary crack-tip subjected to mixed-

ode loading, and to simulate its infinitesimal extension. This pa-

er is not concerned with the issue of which criterion should be

sed to dictate the direction of crack extension in an anisotropic

tructure. This because physically realistic crack propagation sim-

lations will require the detailed understanding of the spatial dis-

ribution of fracture toughness in addition to possible pointwise

nisotropy. The discussion is instead limited to illustrative exam-

les that illustrate the flexibility of the PD model, when coupled

ith chosen crack propagation criteria, in simulating complex frac-

ure scenarios. In fact, it will be seen that the illustrative criteria

o not necessarily predict the same extension directions, the same

s for the analytical criteria proposed for orthotropic continua. Be-

ore proceeding to the next Section, two illustrative crack extension

riteria are described; critical stretch criterion ( Silling and Askari,

005; Diana and Casolo, 2019a ), and critical bond micropotential

nergy criterion. We note that the former is a deformation-based

riterion widely used in PD ( Bobaru et al., 2015; Gerstle, 2016 );

he latter is an energetic criterion that relies of the previously dis-

ussed formulation. In order to make the results of the isotropic
nd orthotropic cases comparable, as inspired by the works of

zhdari and Nemat-Nasser (1996a) , we assume that fracture re-

istance is uniform. The maximum stretch failure criterion (hence-

orth referred to as the S-criterion) adopted here assumes a per-

ectly brittle material (namely PMB material ( Silling, 20 0 0 )), for

hich the elastic stretch at failure, s 0 t , coincides with the bond ul-

imate stretch s ut . 

The ultimate tensile stretch limit s ut for each bond is calculated

ssuming that the energy release rate of the material, G is equal

o the sum of the individual works required to break every bond

rossing the newly created fracture surface (divided by the new

urface area) ( Silling and Askari, 2005; Bobaru et al., 2015 ) 

G = 2 

∫ δ

0 

∫ δ

z 

∫ cos −1 ( z/ | ξ| ) 
0 

w s t 
∣∣ξ∣∣ d φ d z d ξ

= 

∫ δ

0 

∫ δ

z 

∫ cos −1 ( z/ | ξ| ) 
0 

k n ( ψ ) 
∣∣ξ∣∣s 2 ut ( ψ ) t 

∣∣ξ∣∣ d φ d ξ d z;

s 2 ut ( ψ ) = s 
2 
ut 

k n 

k n ( ψ ) 
;→ s 

2 
ut = 

4 G 

k n δ4 t 
(55) 

n which w s here represents the micropotential energy function

f the axial spring ( k n is the average value of the axial spring

ff-axis stiffness) when s = s ut and is equal to w s = w s | ξ| , where

 s is the area under the curve f n − s between s = 0 and s = s ut 

i.e. the micropotential function of the axial spring). It should be

oted that if assuming an isotropic surface energy in orthotropic

aterials, the critical stretch is function of the bond orientation
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Fig. 9. Displacements map near the tip in the case of an orthotropic material characterized by λ = 0 . 2 ρ = 1 . 2 , under Mixed-Mode I-II ( α = 45 ◦): right) Micropolar peridy- 

namic solution; left) Analytical solution. 
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angle. Fig. 7 shows the axial bond force-bond elongation f n − s

and shear force-shear deformation f t − γ relationships consid-

ered. Adopting a critical stretch criterion or S-criterion we refer

to the mechanical behavior of the equivalent axial spring, because

strain control is carried out exclusively on the bond stretch mea-

sure (see Fig. 7 ). Such a criterion was originally introduced in BBPD

( Silling and Askari, 2005 ) for dealing with mode I brittle fracture

problems. In state-based PD this criterion neglects the contribu-

tion of the deviatoric part of the deformation to the total stored

elastic energy density of the bond ( Dipasquale et al., 2017 ), and

in micropolar PD it does not take into account explicitely the bond

shear deformation. However, for homogeneous isotropic brittle ma-

terials at atmospheric pressure, the critical stretch criterion leads

to well simulated failure conditions and realistic crack paths even

in the case of pure mode II external loading ( Panchadhara and Gor-

don, 2016; Dipasquale et al., 2014; Jiang et al., 2017 ), and is used

in both classical and non-classical bond-based models ( Dipasquale

et al., 2014; Li et al., 2020 ), as well as in micropolar formulations

( Gerstle et al., 2007; Yaghoobi and Chorzepa, 2017 ). 

By adapting the energetic failure criterion presented by

Foster et al. (2011) to the conceived MPPD model, we obtain the

micropolar critical bond micropotential energy criterion (referred

to as the E-criterion). Unlike the S-criterion, this criterion consid-

ers that ligament failure depends also on the bond shearing de-

formation. In fact, the S-criterion considers only the contribution
f w s , whereas the E-criterion takes into account w s , w γ and w ϑ,

here w γ = w γ | ξ| , w ϑ = w ϑ , being w γ the area under the curve

f t − γ (i.e. the micropotential energy density function of the shear

pring). It should be reminded that when modeling Cauchy ma-

erials, the rotational springs is not necessary and its value can

e set to zero ( Diana and Casolo, 2019 ). Since we assume here

hat the surface energy is isotropic, as specified in Azhdari and

emat-Nasser (1996b,a) , the critical energy parameter is the same

or each bond. The critical value w u of the bond micropotential en-

rgy w = w s + w γ + w ϑ can be calculated for 2D cases by assum-

ng that the fracture energy G is equal to the total work required

o break all the bonds per unit of fracture surface 

 = 2 

∫ δ

0 

∫ δ

z 

∫ cos −1 ( z/ | ξ| ) 
0 

(
w s + w γ + w ϑ 

)
t 
∣∣ξ∣∣ d φ d ξ d z;

→ w u = 

3 G 

2 δ3 t 
(56)

dopting this energetic criterion the rupture of the bond is acti-

ated when its stored energy density, i.e. the quantity w called

lastic micropotential function reaches a critical value w u . 

In order to specify the status of a specific bond ξij connecting

wo particles X i and X j , a history-dependent scalar valued function

is introduced ( Silling and Askari, 2005 ), that in the case of S-
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Fig. 10. Stress components map near the tip, in the case of an orthotropic material characterized by λ = 0 . 2 ρ = 1 . 1 , under Mixed-Mode I-II ( α = 45 ◦): right) Micropolar 

peridynamic solution; left) Analytical solution. 

c

μ

w

μ

T  

a  
riterion can be written as 

S ( ξi j , t) = 

{
0 s ≥ s ut 

1 s < s ut 

(57) 
hile for the E-criterion is 

E ( ξi j , t) = 

{
0 w ≥ w u 

1 w < w u 

(58) 

hen, based on the function μ( ξij , t ), a local tensile damage vari-

ble is defined and computed at each time step t and for each par-
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Fig. 11. Orthotropic material characterized by λ = 0 . 2 ρ = 1 . 2 , under Mixed-Mode I-II ( α = 45 ◦). Analytical solution of LEFM in terms of stress components corresponding 

to the points aligned along y = −�x/ 2 (i.e. the PD particles nearest to the crack line) and comparison with micropolar peridynamic solution. 

Fig. 12. Map of the particles rotations in the case of an orthotropic material characterized by λ = 0 . 2 ρ = 1 . 1 , under Mixed-Mode I-II ( α = 45 ◦). The intensity of the rotations 

is higher in high-strain gradient zones such as in proximity of a crack tip. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4 For a material reference system forming a certain angle ζ with the 

crack axis x , constants S ij , should be modified to the new configura- 

tion and Eqs. (60) and (69) would be also modified acquiring the general 

form S xx μ4 − 2 S xs μ4 + ( 2 S xy + S ss ) μ2 − 2 S ys + S yy = 0 (61) p i = S xx μ2 
i 

+ S xy −
S xs μi ; q i = S xy μi + 

S yy − S xs (62) 
ticle X i as 

d(X i , t) = 1 −
∑ 

j=1 μ( ξi j , t)�V j ∑ 

j=1 �V j 

(59)

where d is the local tensile damage whereas μ = μS or μ = μE 

depending on the specific criterion adopted. The numerator in the

fraction represents the actual damaged volume of the unit cell con-

sidered, whereas the denominator is the volume of the family of

particle X i in the undeformed configuration. 

3. Fracture mechanics of 2D orthotropic materials 

Consider the plane elastostatics problem of a horizontal semi-

infinite crack subjected to asymmetric loading. The material is as-

sumed to be orthotropic, and the Cartesian coordinates x and y are

chosen to coincide with principal axes of the orthotropic material.

Define a local polar coordinate system ( r, θ ) on the crack tip. 

The fourth-order differential equation representing equilibrium

and compatibility produces the following characteristic equation
( Lekhnitskii, 1963 ) 

S 11 μ
4 + ( 2 S 12 + S 66 ) μ

2 + S 22 = 0 (60)

where S ij are the conventional compliance matrix components (i.e.

the inverse of matrix C in Eq. (28) ). The roots of Eq. (60) are always

complex or purely imaginary ( μi = μix + μiy , i = 1 , 2 ) and occur in

conjugate pairs as μ1 , μ1 or μ2 , μ2 
4 . The stresses and strains in

the immediate vicinity of the crack tip depend on the values of the

roots, as reviewed next. As in the isotropic case, the singularity of

the stresses is of order −1 / 2 and the parameters that determine

the amplitude of this singularity are again the mode-I and mode-

II stress intensity factors (SIFs) ( Chiang, 1991 ). For a given set of

elastic constants, Eq. (60) can be solved and in turn the expression
μi 
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Table 1 

Material moduli defined in the material reference system and corresponding to the four or- 

thotropic and isotropic materials considered. 

Material C 11 (MPa) C 12 (MPa) C 22 (MPa) C 66 (MPa) λ ρ

1, Isotropy 20,600 3500 20,600 8550 1 1 

2, Degenerate orthotropy 16,070 743 803 5330 2 1 

3, Cubic symmetry 8000 0 8000 2000 1 2 

4, General orthotropy 33,000 730 7320 6300 0.2 1.2 

Fig. 13. Off-axis C xx and C ss material moduli corresponding to the four orthotropic and isotropic materials considered. 

o  

c

u

u

σ

σ

f the displacements and stress field at small distances from the

rack tip can be written as ( Sih et al., 1965 ) 

 x = K 

∞ 

I 

√ 

2 r 

π
Re 

[ 
1 

μ1 − μ2 

{ 

μ1 p 2 
√ 

cos θ + μ2 sin θ

− μ2 p 1 
√ 

cos θ + μ1 sin θ
} ] 

+ K 

∞ 

II 

√ 

2 r 

π
Re 

[ 
1 

μ1 − μ2 

{ 

p 2 
√ 

cos θ + μ2 sin θ

−p 1 
√ 

cos θ + μ1 sin θ
} ] 

(63) 

 y = K 

∞ 

I 

√ 

2 r 

π
Re 

[ 
1 

μ1 − μ2 

{ 

μ1 q 2 
√ 

cos θ + μ2 sin θ

− μ2 q 1 
√ 

cos θ + μ1 sin θ
} ] 

+ K 

∞ 

II 

√ 

2 r 

π
Re 

[ 
1 

μ1 − μ2 

{ 

q 2 
√ 

cos θ + μ2 sin θ

− q 1 
√ 

cos θ + μ1 sin θ
} ] 

(64) 

xx = 

K 

∞ 

I √ 

2 π r 
Re 

[ 

μ1 μ2 

μ1 − μ2 

{ 

μ2 √ 

cos θ + μ2 sin θ
− μ1 √ 

cos θ + μ1 sin θ

} ] 

+ 

K 

∞ 

II √ 

2 π r 
Re 

[ 

1 

μ1 − μ2 

{ 

μ2 
2 √ 

cos θ + μ2 sin θ

− μ2 
1 √ 

cos θ + μ1 sin θ

} ] 

(65) 

yy = 

K 

∞ 

I √ 

2 π r 
Re 

[ 

1 

μ1 − μ2 

{ 

μ1 √ 

cos θ + μ2 sin θ

− μ2 √ 

cos θ + μ1 sin θ

} ] 

+ 

K 

∞ 

II √ 

2 π r 
Re 

[ 

1 

μ1 − μ2 

{ 

μ2 
2 √ 

cos θ + μ2 sin θ

− μ2 
1 √ 

cos θ + μ1 sin θ

} ] 

(66) 
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Fig. 14. MAT 1, Isotropic: Crack kinking corresponding to a pure mode I ( α = 0 ◦) and pure mode II ( α = 90 ◦), adopting the peridynamic S-criterion (map of vertical and 

horizontal displacements). 

Fig. 15. MAT 1, Isotropic: Crack kinking corresponding to a pure mode I ( α = 0 ◦) and pure mode II ( α = 90 ◦), adopting the peridynamic S-criterion (damage map). 
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τxy = 

K 

∞ 

I √ 

2 π r 
Re 

[ 

μ1 μ2 

μ1 − μ2 

{ 

1 √ 

cos θ + μ1 sin θ

− 1 √ 

cos θ + μ2 sin θ

} ] 

+ 

K 

∞ 

II √ 

2 π r 
Re 

[ 

1 

μ1 − μ2 

{ 

μ1 √ 

cos θ + μ1 sin θ

− μ2 √ 

cos θ + μ2 sin θ

} ] 

(67)

where and Re denotes the real part of the corresponding statement

and p i , q i for i = 1 , 2 are given by 

p i = S 11 μ
2 
i + S 12 (68)

q i = S 12 μi + 

S 22 

μi 

(69)

Suo (1990) has emphasized the importance to fracture mechanics

analysis of the fact that the stress and deformation in plane prob-

lems depends only on two non-dimensional elastic parameters λ
nd ρ defined as 

= 

S 11 

S 22 

and ρ = 

2 S 12 + S 66 

2 

√ 

S 11 S 22 

(70)

These parameters measure the anisotropy of the material in the

ense that λ = 1 , ρ � = 1 corresponds to cubic symmetry, λ � = 1, ρ =
 is referred to degenerate orthotropy, and λ = ρ = 1 corresponds

o the case of isotropy. In the most general case, orthotropic mate-

ials are characterized by λ � = 1, ρ � = 1. Positive definiteness of the

train energy density function implies λ > 0 and ρ > −1 . In what

ollows, the aforementioned parameters for characterizing the or-

hotropic materials under consideration are used. 

The ability of the conceived MPPD formulation in characteriz-

ng the fields surrounding a crack-tip is illustrated for the case

f a material characterized by λ = 0 . 2 and ρ = 1 . 2 . The univer-

al nature of the asymptotic fields near the crack front eliminate

he need to model finite geometry specimens and specific load-

ngs when studying the near-crack front region. The dominance of

he asymptotic solution allows a boundary layer analysis involving

nly the near-front region, to which the effects of the loading and

pecimen geometry are transmitted by prescribing to its bound-

ry the displacement field from this elastic solution and the asso-

iated stress intensity factors ( Dontsova and Ballarini, 2017; Paris,

014 ). This ‘boundary layer’ analysis greatly reduces the simulation

olume size, and allows the results to be applied to finite geome-
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Fig. 16. MAT 1, Isotropic: Kinking angles corresponding to general Mixed-mode loadings and computed adopting the MPPD S-criterion and E-criterion. 

Fig. 17. MAT 1, Isotropic, Mode II loading conditions: Computed kinking angles adopting the peridynamic S-criterion with ν = 0 . 1 and ν = 0 . 2 . 
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ry configurations whose near-crack front regions are dominated

y their own (known) stress intensity factors ( Dontsova and Bal-

arini, 2017 ). The semi-infinite crack is assumed horizontal, ζ =
 , the mixity mode angle α = tan 

−1 (K 

∞ 

II 
/ K 

∞ 

I 
) = 45 ◦, and the dis-

retization adopted is characterized by δ = 0 . 05 a and m = 3 . 2 , val-

es that represent a good compromise between the accuracy of

he elastic local solution and the computational effort, as demon-

trated by previous works carried out by the authors ( Diana and

asolo, 2019a; Ballarini et al., 2018 ). The performed analysis setup

s shown schematically in Fig. 8 (a), where a circular shape of diam-

ter 2 a , unit thickness, and crack of length a (note that this model

epresents a crack whose length is infinite compared to the size of

he modeled region), is subjected to displacement boundary condi-

ions along its entire circumference corresponding to Eqs. (63) and
64) . Figs. 9–12 show that the stress and displacements com-

uted using the conceived micropolar formulation are in excellent

greement with the analytical values. For additional details regard-

ng the validation of the model in the case of general homoge-

eous and non-homogeneous in-plane deformation fields, and in

he case of material reference system not aligned with the Carte-

ian axes, see Diana (2019) . When the magnitude of the prescribed

ar-field displacements given by Eqs. (63) and (64) increases so

hat the crack extension criteria is satisfied, the ‘pre-existing’ crack

f Fig. 8 (a) could extend in a direction dictated by a yet another

hysically based criterion. Define the direction of an infinitesimal

xtension by the angle β , which depends on the spatial distri-

ution of the fracture toughness (and possibly on its anisotropy)

nd on K 

∞ 

II 
and K 

∞ 

I 
. Numerous extension directions have been pro-
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Fig. 18. MAT 2, Degenerate orthotropy (Mode I): Variation of HSIF and G versus the kink angle β . The results are normalized by K 0 ( K ωω (ω = 0) ) and G 0 (the energy-release 

rate for collinear extension of the main crack.). 

Fig. 19. MAT 2, Degenerate orthotropy: Kinking angles corresponding to general 

Mixed-mode loadings and computed adopting the MPPD S-criterion and E-criterion. 
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posed ( Khan and Khraisheh, 20 0 0 ). The most commonly used and

accepted criteria can be grouped under two headings: stress-based

(or K-based) criteria ( Erdogan and Sih, 1963; Williams and Ew-

ing, 1984 ) and energy-based criteria ( Wu, 1978; Griffith, 1920 ), in

which the critical condition refers to one of the extremum of the

stated parameter (stress, stress intensity factors or energy). 

In this paper, we refer to the maximum hoop stress intensity

factor criterion (HSIF-criterion) ( Azhdari and Nemat-Nasser, 1996b;

Erdogan and Sih, 1963 ) and the maximum energy release rate frac-

ture criterion (G-criterion) ( Azhdari and Nemat-Nasser, 1996a; Wu,

1978 ). The former relies on the definition of two stress intensity

factors; the so-called ‘hoop’ (HSIF) and ‘shear’ (SSIF) stress inten-

sity factors, respectively ( Huajian and Cheng-Hsin, 1992; Azhdari

and Nemat-Nasser, 1996b ). The first involves the circumferential

stress and the latter the shear stress. According to this criterion,
he crack will extend along a path whose tangent forms an an-

le, βK max 
ωω 

., perpendicular to the maximum circumferential (hoop)

tress. For anisotropic materials, HSIF and SSIF are more convenient

uantities than the commonly used Modes I and II stress intensity

actors, since HSIF and SSIF uncouple the Modes I and II on planes

t suitable angles relative to the main crack ( Azhdari and Nemat-

asser, 1996b; Obata et al., 1989 ). The HSIF and SSIF can be written

s a linear combination of the apparent stress intensity factors, K 

∞ 

I 
nd K 

∞ 

II 
as 

 ωω = K 11 K 

∞ 

I + K 12 K 

∞ 

II , K rω = K 21 K 

∞ 

I + K 22 K 

∞ 

II (71)

here 

K 11 = Re 

[ 
1 

μ2 − μ1 

{
μ2 ( c + μ1 s ) 

3 / 2 − μ1 ( c + μ2 s ) 
3 / 2 

}] 
K 12 = Re 

[ 
1 

μ2 − μ1 

{
( c + μ1 s ) 

3 / 2 − ( c + μ2 s ) 
3 / 2 

}] 
K 21 = Re 

[ 
1 

μ2 − μ1 

{
μ2 ( c + μ1 s ) 

1 / 2 
( s − μ1 c ) 

− μ1 ( c + μ2 s ) 
1 / 2 

( s − μ2 c ) 
}]

 22 = Re 

[ 
1 

μ2 − μ1 

{
( c + μ1 s ) 

1 / 2 
( s − μ1 c ) 

− ( c + μ2 s ) 
1 / 2 

( s − μ2 c ) 
}]

(72)

ence, the initial crack will kink at the angle β that maximizes

he functional K ωω (i.e. HSIF). Along the direction for which HSIF

s extremum, SSIF is zero. Therefore, the maximum- K ωω and the

ero- K r ω fracture criteria yield identical results. 

The maximum energy release rate criterion (G criterion) stems

rom the principle of minimum potential energy. The formal defini-

ion of the strain energy release rate, G , refers to the change in po-

ential energy with respect to an infinitesimal crack extension. In

he absence of additional work, this can be equated with a change

n the work necessary to virtually close the crack. A finite kink

nergy release rate in two dimensions is defined by, G = ∂ W/∂ c,
here c is the kink length. 

According to the G-criterion ( He and Hutchinson, 1989 ), the

rack will propagate along the direction β , that maximizes the en-

rgy release rate. This direction will be referred to as the G max an-

le, βG max 
( Becker et al., 2001 ). The energy-release rate at the in-
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Fig. 20. MAT 3, Cubic symmetry (Mode II): Variation of HSIF and G versus the kink angle β . 

Fig. 21. MAT 3, Cubic symmetry (Mode II): Kinked crack according to S-criterion and standard E-criterion (without any conditions on the sign of the bond stretch). Similarly 

to what predicted by the G-criterion, according to the standard E-criterion crack branching occurs because the fracture criterion offers almost equal opportunity for the crack 

to open in two directions. The negative kinking angle is associated with a tensile stress whereas the positive kinking angle is associated with a compressive stress. 

Fig. 22. MAT 3, Cubic symmetry: Crack kinking predictions adopting the standard E-criterion and the E-criterion with the condition of positiveness of the bond stretch to 

avoid crack propagation in compressive zones ( σ xx stress map). 
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eption of kinking is given by 

 = 

1 

4 

√ 

π

N ∑ 

k =1 

∫ s 2 k +1 

s 2 k −1 

[ K ωω V 

k (s ) + K rω U 

k (s )] 
1 √ 

s + 1 

ds (73)

his equation gives the energy-release rate due to the nucleation of

n infinitesimally small kink along the angle β and gives the same
esults of the commonly used energy-release-rate formula, namely

he modified Irwin formula ( Sih et al., 1965 ). The numerical rou-

ine that is needed to perform the above integration is based on

he method that models a kink as a continuous distribution of edge

islocations ( Obata et al., 1989 ). The kink length is partitioned in N

ubintervals, s is the abscissa defined along the crack line and U ( s ),
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Fig. 23. MAT 3, Cubic symmetry: Kinking angles corresponding to general Mixed- 

mode loadings and computed adopting the MPPD S-criterion and E-criterion. 
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V ( s ) are the kink opening displacements in the kink and normal to

the kink directions which can be derived from the dislocation den-

sity functions b x ( s ) and b y ( s ) ( Azhdari and Nemat-Nasser, 1996a ).

At this point, the remaining problem is to seek the theoretical

kinked crack angles βK max 
ωω 

, βG max according to the aforementioned

criteria, and compare them with those resulting from peridynamic

simulations, for an assigned material and mode mixity, α = K 

∞ 

II / K 

∞ 

I 
angle. As stated previously, the extension direction may be influ-

enced also by potential anisotropy and spatially random distribu-

tion of the surface energy of the material. For the purposes of this

discussion, and in order to guarantee consistency among the re-

sults compared, illustrative examples assume always isotropic sur-

face energy as specified in Azhdari and Nemat-Nasser (1996b,a) . In

fact, here we want here to investigate in which ways the elastic
Fig. 24. MAT 3, Cubic symmetry: Crack kinking angles corresponding to a Mixed-Mode

(right). 
nisotropy of the material and the the specific features of the fail-

re criteria considered, can influence the kinking phenomenon. 

The same conditions are considered for the numerical microp-

lar peridynamic simulations, which follow an implicit non-linear

uasi-static scheme in displacement control ( Ni et al., 2019 ). 

Assuming that the plane of the main crack is the principal

lane of orthotropy xz , we consider three different orthotropic ma-

erials characterized by an almost degenerate orthotropy ( λ = 2 ,

= 1 ), cubic symmetry ( λ = 1 , ρ = 2 ), and general orthotropy or

rthotropic symmetry ( λ = 0 . 2 , ρ = 1 . 2 ). An isotropic material un-

er plane stress conditions is also considered in this study ( Fig. 13 ).

or each material, several K 

∞ 

II 
/K 

∞ 

I 
mode mixity ratios are studied,

nd then the crack kinking angles β are determined adopting both

he PD bond failure criteria described in the previous section (S-

riterion and E-criterion). 

.1. Isotropy 

In isotropic materials, the commonly used maximum HSIF and

aximum energy release rate G fracture criteria are known to lead,

o the first order in the kink angle, to the same extension direc-

ions. 

The largest discrepancy between the two theories is associated

ith pure shear loading (the most asymmetric case for isotropic

aterials) ( Azhdari and Nemat-Nasser, 1996a ); for this case the

orresponding equations show that the crack would kink at angles

f about −71 ◦ and −77 ◦, according to maximum HSIF and maxi-

um energy-release rate, respectively. In the specific case of the

sotropic material (MAT 1) under plane-stress conditions ( ν = 0 . 17 ,

n average value between 0 and 1/3, see Table 1 ), the numeri-

ally simulated MPPD kinking angles β are in good agreement with

he analytical values predicted by G-criterion and HSIF-criterion, as

hown in Figs. 14–16 . Both the peridynamic failure criteria consid-

red in this study lead to consistent predictions of the crack ini-

iation angles and as in the case of G and HSIF fracture criteria

he greatest dissimilarity among the computed values of β cor-

esponds to the case of pure Mode II loading ( Fig. 16 ). It should

e emphasized that in the case of pure mode II loading, the frac-

ure angles are well simulated even adopting the maximum ax-

al stretch criterion, and this can be explained by the fact that in

sotropic materials the crack front is expected to be always locally

ssociated with Mode I or, in other words, the material fails in a

ocal opening mode. However, according to the G-criterion and to

he HSIF-criterion, the crack kinking angle is not influenced by the
 I-II ( α = 45 ◦) and computed adopting the MPPD S-criterion (left) and E-criterion 



V. Diana and R. Ballarini / International Journal of Solids and Structures 196–197 (2020) 76–98 93 

Fig. 25. MAT 4, General orthotropy (Mode I): Variation of HSIF and G versus the kink angle β . 

Fig. 26. MAT 4, General orthotropy: Crack kinking angles corresponding to a pure Mode I ( α = 0 ◦) and computed adopting the MPPD S-criterion (left) and E-criterion (right). 

Dashed black lines indicate the analytical predictions of the HSIF and G criteria. 
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pecific value of the Poisson’s ratio of the material. Examples of

racture criteria for isotropic materials that take into account the

ffect of the Poisson’s ratio ν , are the minimum strain energy den-

ity (SED) criterion proposed by Sih (1974) and the maximum tan-

ential strain (MTSN) criterion proposed by Chang (1981) , even if

hese criteria led to very different predictions. Regarding the PD

ailure criteria, it is noted an influence of the Poisson’s ratio of the

aterial on the computed kinking angles especially in the case of

eridynamic S-criterion and pure Mode II loading. Fig. 17 shows

hat the Poisson’s ratio affects the results and in particular, the

arger is its value, the smaller is the magnitude of the resulting

inking angle. In any case the computed angles are always consis-

ent with those corresponding to G-criterion and HSIF-criterion. 

.2. Orthotropy 

Regarding the pure Mode I case, it is observed that the en-

rgy release rate G has always (if the material reference system

s aligned with the horizontal) an absolute maximum at β = 0 ◦.

he HSIF has an absolute maximum at the same angle, but only

or r = E 11 /E 22 ≤ 4 , as in the case of MAT 2 (see Fig. 18 ) and MAT

. Considering first the degenerate orthotropic material (MAT 2),

oth the MPPD S-criterion and E-criterion, predict a simple exten-

ion of the main crack under pure Mode I loading, hence the same

= 0 as the analytical fracture criteria. Moreover, even for gen-

ral Mixed-Mode conditions, their predictions are very similar and
ead to kinking angles that are in good agreement with those cor-

esponding to the analytical values ( Fig. 19 ). This is not surpris-

ng, also considering that in degenerate orthotropic materials the

rthotropic shear factor ρ = 1 , and its off-axis shear modulus di-

gram is similar to that of isotropic materials. For this reason, a

eridynamic failure criterion that takes into account also the shear

omponent of the bond micropotential energy function, as the E-

riterion does, seems to not give further conditions for the main

rack to kink at a relatively different angle with respect to that of

-criterion. 

However, the K-based and G-based fracture criteria, in gen-

ral, do not predict the same angle for crack kinking ( Azhdari and

emat-Nasser, 1996a ), and their differences appear more evident

n orthotropic materials. 

It should be also be noted that in the case of pure shear, the

-curve possess two maxima associated with opposite kinking an-

les, and one local minimum point in between. In other words,

ccording to G-criterion, the main crack would branch at β = ±k

nder pure Mode II loading ( Fig. 20 ). 

By considering the fact that cracks generally propagate into ten-

ion (but not compression) zones, it is clear that the interpretation

f the fracture mode and the branch angle must be accompanied

y the consideration of the HSIF at the maxima of the G-curve.

n the case of α = 90 ◦, HSIF is positive when β is negative and

herefore, fracture may occur only for negative angles β , as shown

n Fig. 20 . 
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Fig. 27. MAT 4, General orthotropy: Crack kinking angles corresponding to a Mixed-Mode I-II ( α = 45 ◦) and computed adopting the MPPD S-criterion (left) and E-criterion 

(right). 

Fig. 28. MAT 4, General orthotropy: Crack kinking angles corresponding to a pure Mode II ( α = 90 ◦) and computed adopting the MPPD S-criterion (left) and E-criterion 

(right). Dashed black lines indicate the analytical predictions of the HSIF and G criteria. 
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For this reason we don’t consider theoretical G-criterion kink-

ing angles associated with compression, since the G-fracture cri-

terion (by itself) is not sufficient for describing properly the phe-

nomenon of kinking ( Azhdari and Nemat-Nasser, 1996a ). In the fol-

lowing figures the kinking direction corresponding to positive an-

gle predicted by the G-criterion are not reported. Similarly to the

predictions of the G-criterion, in PD simulations under mode II and

performed adopting the energetic E-criterion, crack branching oc-

curs for all the materials considered because the fracture criterion

offers almost equal opportunity for the crack to open in two direc-

tions. The negative kinking angle is associated with a tensile stress

whereas the positive kinking angle is associated with a compres-

sive stress, as shown in Fig. 21 which reports the case of MAT 3

(cubic symmetry). To avoid this behavior when dealing with the

MPPD E-criterion, we superimpose a further condition of positive-

ness of the bond stretch to determine if a ligament fails or not un-

der a certain load. In other words, only those bonds for which the

stretch is not negative, are affected by the degradation function μE 

(see Fig. 22 ). 

This is in a certain sense similar to the tension-compression

split of the stored energy functional usually considered in phase

field models ( Miehe et al., 2010 ). In fact, the standard phase-

field approach cannot discriminate between the asymmetric ten-
ile and compressive behavior, and it predicts identical cracking in

egions under compression, which is not realistic for brittle and

uasi-brittle fracture ( Bourdin et al., 20 0 0 ). Nevertheless for gen-

ral mixed-Mode loading the analytical kinking angles appear to

e well approximated by the micropolar peridynamic E-criterion

 Figs. 21 –23 ). 

When considering instead a general orthotropic material, it is

oted that under Mode I, HSIF shows one local minimum and two

ymmetrically located maxima if r = E 11 /E 22 ≥ 4 (as in the case of

AT 4). This means that, similarly to the G-criterion under pure

hear, the HSIF-criterion predicts that the main crack of MAT 4

ranches in two directions of β = −18 ◦ and β = +18 ◦ ( Fig. 26 ).

ccording to the G-criterion instead, the crack would not branch

ut kink at β = 0 (simply extends). This observation may serve to

how again how differently the G and HSIF-criteria may predict the

racture path, reminding that here, we are not considering the ef-

ect of the material resistance to fracturing which should be con-

idered in the prediction of the crack path ( Azhdari and Nemat-

asser, 1996a; 1996b ). 

Results of peridynamic analyses of pure Mode I (MAT 4) don’t

how any branching, even when the MPPD S-criterion is con-

idered, as Fig. 26 shows. This is not surprising since the HSIF-

riterion and the MPPD S-criterion are theoretically different. In
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Fig. 29. MAT 4, General orthotropy, material reference system inclined at ζ = 5 ◦: Crack kinking angles corresponding to a pure Mode I ( α = 0 ◦), and computed adopting the 

MPPD S-criterion (left) and E-criterion (right). Dashed black lines indicate the analytical predictions of the HSIF and G criteria. 

Fig. 30. MAT 4, General orthotropy, material reference system inclined at ζ = 90 ◦: Crack kinking angles corresponding to a Pure Mode II ( α = 90 ◦), and computed adopting 

the MPPD S-criterion (left) and E-criterion (right). Dashed black lines indicate the analytical predictions of the HSIF and G criteria. 
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5 Some same cases discussed in Azhdari and Nemat-Nasser (1996a) are consid- 

ered in this section. 
act, the first one is a stress-based fracture criterion and the sec-

nd one is a deformation-based criterion. The G-criterion and the

PPD E-criterion instead, show a conceptual similarity since they

an be both considered energetic fracture criteria. However, all the

lassical (G and HSIF) criteria and PD failure criteria (E and S) show

bvious differences from each other, and they are here compared

nly qualitatively, in order to show the differences in the predicted

rack paths. In any case, regarding the analyses performed on gen-

ral orthotropic material (MAT 4) under general mixed-Mode load-

ng, the kinking angles predicted by the PD E-criterion seem to

e fairly close to those predicted by the classical G and HSIF cri-

eria (see Figs. 27, 28, 29 and 30 ). The MPPD S-criterion instead,

hat leads to kinking angles that are, in general, in good agree-

ent with those corresponding to the G and HSIF classical criteria

n the case of isotropy (MAT 1) or degenerate orthotropy (MAT 2),

eems to suffer the lack of information about the shear compo-

ent of the bond strain energy density in the other cases, at hight

ode-mixity angles ( Figs. 21, 22, 23, 24, 25, 26, 27, 28, 29 and 30 ).

his evidence is more pronounced when the loading is pure shear.

In fact, under these conditions, the kinking angles computed

sing S-criterion and corresponding to cubic symmetry (MAT

), and general orthotropy (MAT 4), show higher dissimilari-

ies with respect to the angles β predicted by both the classi-

al criteria of elasticity and the MPPD E-criterion, as shown by
igs. 21, 23, 28 and 30 . This is explained by the fact that in or-

hotropic materials the crack front is in general locally associated

ith a mixed-Mode deformation, however the MPPD S-criterion

oes not take into account the shear deformation of the ligament.

hile for isotropic materials this aspect can be considered accept-

ble, the same may be not true in the case of anisotropic materials,

n which a PD failure criterion that takes into account shearing de-

ormations could be required for describing properly the kinking

henomenon, specially approaching pure Mode II loading condi-

ions, where the bond shearing deformation measure should not

e in general neglected. 

It is worth noting at this point, that all the considerations here

resented are referred exclusively to the kinking angles predicted

dopting the conceived micropolar peridynamic model. 

Lastly, we consider also the case of a material reference sys-

em inclined at ζ � = 0 with respect to the main crack axis x 5 . We

ocused the attention on MAT 4, since among the orthotropic ma-

erials considered in this study, it is the one that shows the most

vident dependence of the mechanical behavior on the angle ζ .

esults confirm that the kinking angles β predicted by the MPPD



96 V. Diana and R. Ballarini / International Journal of Solids and Structures 196–197 (2020) 76–98 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

e  

s  

i  

o  

p

A

 

t  

t

φ

 

φ  

φ  

φ

 

T  

f  

i  

E

�

 

�  
failure criteria may be quite different in some cases, the same as

between the classical HSIF and G fracture criteria (see Figs. 29 and

30 ). Another consideration is that considering a pure Mode II far-

field load, while for ζ = 0 , the angles β computed with the MPPD

criteria are smaller than those corresponding to the classical frac-

ture criteria, in the case of ζ = 90 ◦, it can be seen that there is an

opposite trend (see Fig. 30 ): the kinking angles predicted by the E-

and S-criteria are larger than the kinking angles calculated follow-

ing the classical fracture criteria. 

4. Conclusions 

In this paper a micropolar peridynamic model is applied to the

study of crack initiation and kinking in isotropic and orthotropic

brittle materials under mixed mode loadings. The analytical formu-

lation of the two-dimensional model is derived from the definition

of a specific micropotential energy function for micropolar nonlo-

cal lattices which allows for a four independent elastic constants

(full orthotropic) peridynamic model that reduces to a (two inde-

pendent) constants isotropic model as special case. A distinctive

aspect of the conceived formulation is that the bond elastic param-

eters are continuous functions of the bond orientation in the prin-

cipal material axes. The crack-tip problem and the kinking phe-

nomenon is investigated by performing an analysis of the bound-

ary layer that surrounds the front of a two dimensional crack sub-

jected to different K 

∞ 

II /K 

∞ 

I ratios, and assuming an isotropic sur-

face energy. Results obtained in this study can be summarized in

the following points: 

• The proposed micropolar peridynamic scheme demonstrated its

accuracy in predicting the displacement and the stress fields in

the vicinity of a crack in orthotropic materials. 

• The computed kinking angle β in isotropic materials adopting

both the S-criterion and E-criterion are in good agreement with

those predicted by the classical G and HSIF fracture criteria.

Moreover it is shown that the Poisson’s ratio of the material

in MPPD can affect the computed kinking angles, especially in

the case of peridynamic S-criterion and pure Mode II loading. 

• The simulations of crack kinking in an orthotropic materials

under general mixed-Mode loading drive home the point that

the crack extension directions are sensitive to the specific cri-

terion that is adopted. In addition, because peridynamic mod-

els rely on specific cohesive laws such as the illustrative linear

one used in this paper, the angles of crack kinking they pre-

dict may differ from those predicted by a continuum theory

for which the energy release rate is associated with a Dirac-

Delta-type cohesive law for which only the area (energy release

rate) is relevant. In fact, it is expected that if the peridynamic

model presented here were to adopt a different shaped cohe-

sive law, the crack kinking directions would change. Neverthe-

less it was observed that the kinking angles predicted by the

peridynamic E-criterion, even adopting medium grids, are fairly

close to those predicted by the classical G-criterion or HSIF cri-

terion. With the understanding of the differences in the funda-

mental structure of the continuum theory and the peridynamic

theory just stated, we can say a few words about the MPPD

S-criterion. It leads to kinking angles that are very similar to

those predicted by the E-criterion and that are, in general, in

good agreement with the predictions of the G and HSIF clas-

sical criteria, in the case of isotropy or degenerate orthotropy.

Computed kinking angles corresponding to general orthotropy

or cubic symmetry instead, show higher dissimilarities with the

angles β predicted both by the classical criteria of elasticity

and the MPPD E-criterion, for deformation modes approach-

ing pure shear. This evidence could be explained considering

that in orthotropic materials the crack front is in general locally
associated with a mixed-Mode deformation, and the MPPD S-

criterion does not take into account the shear deformation of

the ligament. While for isotropic materials this aspect can be

considered acceptable, the same may be not true in the case of

anisotropic materials, in which a PD failure criterion that takes

into account shearing deformations could be required for de-

scribing properly the kinking phenomenon in micropolar peri-

dynamics. However, the situation may change when consider-

ing the actual anisotropy of the fracture resistence of the mate-

rial. 

• The G-criterion and the conceived MPPD E-criterion show a

conceptual similarity since they can be both considered ener-

getic fracture criteria. However, it is emphasized that while the

classical (G and HSIF) criteria and Peridynamic failure criteria

are fundamentally different from each other, the results pre-

sented in this paper are illustrative; the ‘correct’ crack exten-

sion direction depends on the cohesive laws adopted and the

details of the material microstructure. 

The peridynamic model described in this paper provides a pow-

rful tool for simulating crack growth in anisotropic materials and

tructures. However, like other computational models, it must be

nformed by experimental results that will shed light on what sort

f crack growth criteria and what sort of cohesive laws are appro-

riate for a specific anisotropic material or structure. 

ppendix A. Strain energy and macroelastic energy densities 

Given the four deformation states described by Eqs. (40)–(43) ,

he conventional linear elastic strain energy density functions of

he orthotropic continuum are obtained by 

(X ) 1 = 

1 

2 

C i j εi ε j = 

1 

2 

⎡ 

⎢ ⎣ 

C 11 C 12 0 

C 12 C 22 0 

0 0 C 66 
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s 
s 
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·
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s 
0 
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s 2 

2 

(C 11 + C 22 + 2 C 12 ) (A.1)
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2 
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] { 
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0 
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} 

·
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0 
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s 2 
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C 11 (A.2)

(X ) 3 = 
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C i j εi ε j = 
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2 

[ 

C 11 C 12 0 

C 12 C 22 0 

0 0 C 66 

] { 
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·
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C 22 (A.3)

(X ) 4 = 

1 

2 
C i j εi ε j = 

1 

2 

[ 

C 11 C 12 0 

C 12 C 22 0 

0 0 C 66 

] { 

0 

0 

2 γ

} 

·
{ 

0 

0 

2 γ

} 

= 2 γ 2 C 66 

(A.4)

he PD macroelastic energy density functions corresponding to the

our deformation states described by Eqs. (40)–(43) are obtained

nstead substituting Eqs. (34) and (35) and Eqs. (37) and (38) in

q. (16) 

(X ) 1 = 

1 

2 

∫ 
H X 

k n (ψ) s 2 | ξ| 
2 

d V X ′ 

= 

1 

2 

δ∫ 
0 

4 

π/ 2 ∫ 
0 

k n (ψ) ts 2 | ξ| 2 
2 

d ψd ξ

= 

tπs 2 δ3 

48 

(3 k n 1 + 3 k n 2 + 4 k t 1 + 2 k v ) (A.5)

(X ) 2 = 

1 

2 

∫ 
H 

k n (ψ) s 2 (1 + cos 2 ψ) 2 | ξ| 
8 

+ 

k t (ψ) s 2 ( sin 2 ψ) 2 | ξ| 
8 

d V X ′

X 
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