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Introduction

Creep of concrete structures is an important issue in the field
of civil engineering. Its detrimental effects on safety, durability,
and functionality include a gradual increase of deformation, poten-
tially dangerous stress redistribution phenomena and long-term
reduction of compressive strength. Quantitatively accurate calcula-
tions of creep are therefore essential for structural analysis and
design.

Although the physical mechanisms responsible for creep are still
being investigated by the mechanics of concrete community, exper-
imental data have led to a consensus that concrete is susceptible to
three kinds of creep; linear, nonlinear, and tertiary. Within the linear
range, corresponding to stress levels below approximately 40% of
the concrete strength, the material is not significantly damaged, and
the response can be described by the linear theory of viscoelastic-
ity; creep strain is proportional to stress. For medium and high
stress levels, in the range of 40%–70% of concrete strength, crack-
ing phenomena renders the creep response nonlinear; creep strain is
no longer proportional to stress. In this state, there is an intimate
coupling between the level of stress and the evolution of creep. For
higher stress levels, experimental results (Carol and Murcia 1989;
Omar et al. 2009) suggest a rapidly increasing rate of creep up to
failure. This so-called tertiary creep is attributed to the unstable
development of cracks during the load holding process. The scope

of this paper is limited to the study of the first two stages of con-
crete creep. Its main contribution is the presentation of a new non-
linear creep model where a damage-dependent influence function is
introduced to account for the coupling between damage and creep,
and the combining of linear and nonlinear creep behaviors.

Simulations of the mechanical behavior of concrete under
long-term loading conditions necessitates models that consider si-
multaneously occurring creep and damage phenomena. Significant
progress has been made along these lines. In the coupled damage
and creep models (Mazzotti and Savoia 2003; Challamel et al. 2005;
Reviron et al. 2007; Benboudjema and Torrenti 2008), a generalized
Maxwell or Kelvin model is adopted to reproduce the creep behav-
ior, and a continuum damage model is used to take into account
the initiation and growth of microcracks. In the solidification-
microprestress-microplane theory (Luzio and Cusatis 2013), the
combination of the microplane model and microprestress-
solidification model is formulated to incorporate damage and creep
behavior into a united framework. In other studies, a time-dependent
extension of damage is proposed. The temporal variable, namely
the effective creep Poisson’s ratio of damaged concrete, is intro-
duced in the model of Li (1994) to consider the effects of creep
in the lateral direction.

As previously stated, under medium and high stress levels, creep
strain is associated with the growth and developing of microcracks
(Mazzotti and Savoia 2003; Neville 1971; Proust and Prons 2001).
Few analytic and computational models are available that account
for the combined effects of nonlinear creep and damage. According
to Bažant and Prasannan (1989), the nonlinear dependence of creep
with respect to stress is introduced by multiplying the current creep
rate by a nondimensional function. This function is related to the
current stress and does not depend on the previous stress history.
The model of Mazzotti and Savoia (2003) introduces the concept
of effective strain to replace the equivalent strain for damage evalu-
ation. Based on the assumption that the contribution of the elastic
strain to the damage evolution is greater than that of the creep
strain, the effective strain is written as the sum of the elastic strain
and a fraction of creep strain. Similar approaches were adopted by
others (Omar et al. 2003; Reviron et al. 2007). The physical model
proposed by Ruiz et al. (2007), which was experimentally vali-
dated, assumes that nonlinear creep strains are due to microcracks
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and defects within the material volume. The nonlinear relation
between creep strain and the stress level is introduced through a
stress-dependent creep coefficient. This nonlinear approach is sim-
ple but not suitable for the multiaxial stress state.

In the present paper, a coupled creep-damage-plasticity model
for concrete under long-term loading conditions is presented.
It takes into account creep, plasticity, and damage. Based on the
small strain additivity assumption, the energy-based framework of
the damage-plasticity model proposed by Wu et al. (2006) and Ren
et al. (2015) is adopted here. The creep behavior is described by
extending a modified ACI model to multidimensional stress states.
Nonlinear creep is introduced by multiplying the current creep
strain by a damage-dependent influence function that couples
damage and creep. The model is implemented numerically and
validated by comparing its results with experimental data from:
concrete subjected to uniaxial compression, reinforced concrete
beams under transverse loading, and reinforced concrete columns
under compressive loading. These numerical results are in good
agreement with the experimental results, and give confidences that
the model is capable of charactering both linear and nonlinear creep
deformations.

Coupled Creep-Damage-Plasticity Model

The constitutive relationship formulated in the present paper is
based on the assumption of strain additivity. Assuming small
strains, the total strain (ε) is comprised of three components;
the elastic (instantaneous and recoverable) strain (εe), plastic
(instantaneous and irreversible) strain (εp) and creep (time depen-
dent) strain (εc)

ε ¼ εe þ εp þ εc ð1Þ
For typical short-term loading conditions, or more precisely for

instantaneous loading conditions, the third term on the right-hand
side of Eq. (1) is nearly equal to zero. The additivity assumption
could be represented by the rheological model depicted in Fig. 1,
for which the components are coupled in series and thus equally
stressed.

The strain additivity assumption, which has also been referred to
as the strain splitting assumption, is the basis of several constitutive
models of concrete. (Rabier 1989; Bažant and Prasannan 1989;
Mazzotti and Savoia 2003; Wu et al. 2006; Voyiadjis et al. 2008).

According to the established concept in the damage mechanics
literature (Lemaitre and Chaboche 1990; Voyiadjis et al. 2008;
Vayiadjis and Kattan 2009), the applied nominal stress (σ)
is mapped into the effective stress (σ) by the fourth-order damage
effect tensor M

σ̄ ¼ M∶σ ð2Þ
In this work, the energy-based framework of damage-plasticity

theory proposed by Wu et al. (2006) and Ren et al. (2015) is

adopted to describe the degradation of concrete stiffness due to
the development of microcracks and the irrecoverable instantane-
ous plastic deformation simultaneously. The constitutive relation-
ship under conventional short-term loading condition can be
expressed as follows

σ ¼ ðI − DÞ∶σ̄ ð3Þ
where I = fourth-order identity tensor, and D = fourth-order damage
tensor which accounts for the degradation of the effective stress.
By comparing Eq. (3) with Eq. (2), the damage effect tensor is
expressed as follows

M ¼ ðI − DÞ−1 ð4Þ
Further, based on the strain additivity assumption, the effective

stress under long-term loading condition could be represented by

σ̄ ¼ E0∶εe ¼ E0∶ðε − εp − εcÞ ð5Þ
where E0 = fourth-order initial undamaged elastic stiffness tensor.
It is important to note that the plastic behavior and creep behavior
are formulated in the effective (undamaged) stress space, and,
therefore, the evolution of the plastic strain and creep strain should
be controlled by the effective stress rather than the nominal stress.
Furthermore, considering that the degradation of stiffness in tension
may differ from that in compression, the biscalar damage scheme is
adopted for which the damage tensor is split into two components

D ¼ dþPþ þ d−P− ð6Þ
where the scalar variables dþ and d− represent the tensile and the
compressive damage variables; Pþ and P− = fourth-order projec-
tion tensors. The derivation of Eq. (6) is provided in Appendix I.
Based on the framework of damage plasticity theory, numerous
equations of damage evolution and plasticity evolution have been
proposed. In the present paper, the damage evolution proposed
by Wu et al. (2006) and the phenomenological plasticity evolution
proposed by Ren et al. (2015) are adopted (see Appendix I for a
detailed discussion).

In summary, the constitutive equation of the coupled creep-
damage-plasticity model for concrete could be expressed as

σ ¼ ðI − DÞ∶E0∶ðε − εp − εcÞ ð7Þ
Summarizing, for low stress levels, the concrete stress is rela-

tively small, and concrete is not significantly damaged; Eq. (5) is
thus simplified to an elastic-plastic-creep model. In the time scale
of typical short-term loading conditions, there is not enough time to
develop creep, and it reduces to a classical damage plasticity model.
However, for long-term loading at moderate and high stress levels,
the concrete response is associated with significant and simultane-
ous damage growth, plastic deformation, and creep behavior.

Creep Modeling

Many theoretical and empirical models have been proposed to char-
acterize creep phenomena. The most widely used theoretical mod-
els rely on the generalized Maxwell or Kelvin models (Bažant and
Chern 1985; Bažant and Prasannan 1989; Bažant and Planas 1997),
wherein a number of springs and dashpots are assembled in parallel
or series. The empirical models, such as the ACI 209R-92 model
(ACI 2008), the B3 model (Bažant and Murphy 1995; Bažant
and Baweja 2000), the GL 2000 model (Gardner and Zhao 1993;
Gardner 2000; Gardner and Lockman 2001) and the fib MC 2010
model (fib 2010), are most often optimal curve fittings of available
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Fig. 1. Schematic representation of strain additivity assumption.
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experimental data. Most of these models are adopted in design rec-
ommendations and are widely used in practice.

Linear Creep Model

In the present paper, the ACI model (ACI 209R-92) is chosen to
calculate the creep strain under uniaxial stress states because it is
widely applied and well accepted by designers and researchers for
engineering applications. This model is primarily suitable for the
linear creep range that is typical of most civil engineering-related
structures. For completeness, the ACI model is summarized in
Appendix II. Given the elastic strain, εe, the ACI model is gener-
alized to multiaxial stress states as follows:

εcðt; t0Þ ¼ φðt; t0Þεe ¼
ðt − t0Þa

bþ ðt − t0Þa
φ∞εe ð8Þ

Eq. (8) shows that the creep strain is proportional to the elastic
strain. By differentiating Eq. (8) with respect to time, the creep
strain rate is obtained

ε̇cðt; t0Þ ¼ φ̇ðt; t0Þεe þ φðt; t0Þε̇e ð9Þ

The first term on the right-hand side of Eq. (9) is related to the
change of creep coefficient, and the second one represents the
contribution of the change in time of the elastic strain.

If the initial loading stage is relatively short and the load level is
maintained constant in time, the change of the elastic strain is neg-
ligible so that the second term in Eq. (9) can be omitted, and the
computational effort is significantly reduced. For such cases

ε̇cðt; t0Þ≈ φ̇ðt; t0Þεe ð10Þ

Similar to the damage and the plasticity, the creep evolution
under tensile and compressive stress states is allowed to differ.
Thus, the creep strain rate is decomposed as follows:

ε̇cðt; t0Þ ¼ ε̇cþðt; t0Þ þ ε̇c−ðt; t0Þ ð11Þ

where the tensile creep strain rate, ε̇cþðt; t0Þ, and the compressive
creep strain rate, ε̇c−ðt; t0Þ, are in turn written as

ε̇cþðt; t0Þ≈ φ̇þðt; t0Þεeþ ¼ φ̇þðt; t0ÞE−1
0 ∶σ̄þ

ε̇c−ðt; t0Þ≈ φ̇−ðt; t0Þεe− ¼ φ̇−ðt; t0ÞE−1
0 ∶σ̄− ð12Þ

In the present model, the effective stress is adopted to calculate
creep strain. In addition, due to a lack of sufficient experimental
data, it is assumed that the same evolution law is adopted to de-
scribe creep strain development under tensile and compressive
stress states in the illustrative examples presented in the “Numerical
Examples” section.

Nonlinear Creep Model

For medium and high stress levels, the dependence of creep strain
on stress becomes nonlinear and is accounted for through a
damage-dependent influence function. The functions h�ð·Þ are
defined in terms of corresponding damage variables

h�ðd�Þ ¼ 1þ c�1 ðd�Þc
�
2 ð13Þ

where two empirical parameters c�1 and c�2 reflect the effects of
concrete damage, especially at medium and high stress levels,
on the creep strain. This is a simplified expression of the nonlinear

dependence of creep on stress. The specific values of c�1 and c�2
need to be calibrated from the experimental data, and in the follow-
ing representative numerical examples c�1 ¼ 9, c�2 ¼ 0.91 are
adopted. The evolution of nonlinear creep strain is obtained by
multiplying Eq. (12) by Eq. (13)

ε̇cþðt; t0Þ≈ hþφ̇þðt; t0Þεeþ ¼ hþφ̇þðt; t0ÞE−1
0 ∶σ̄þ

ε̇c−ðt; t0Þ≈ h−φ̇−ðt; t0Þεe− ¼ h−φ̇−ðt; t0ÞE−1
0 ∶σ̄− ð14Þ

The evolution of each creep strain component is governed by the
corresponding damage variable, temporal variables, and the effec-
tive stress which is directly related to the elastic strain. The function
h�ð·Þ indicates that the evolution of damage is a prerequisite for the
evolution of nonlinear creep. For relatively low stress levels, neg-
ligible damage occurs during the whole loading process. In such
cases, the damage-dependent influence function h�ð·Þ is nearly
equal to one, and, therefore, the nonlinear creep evolution reduces
to a linear creep evolution. Increasing the stress level, damage be-
gins to growth and develop. Through the function h�ð·Þ, a signifi-
cant nonlinear amplification of creep strain caused by damage can
be reflected. Thus, the coupling between damage and creep strain is
considered in a phenomenological reduced form.

As stated previously, the present nonlinear creep model is suit-
able to describe linear creep behavior under low stress levels and
nonlinear creep behavior under medium and high stress levels,
but not apply to extremely high stress levels. This is not a serious
limitation for most civil engineering applications, considering that
they are not typically loaded by extremely high stresses that trigger
tertiary creep.

Creep Strain Algorithm

To calculate the creep strain according to the present theory, the
following three conditions need to be fulfilled:
1. The external load is constant during loading, i.e., σ̇ ≈ 0;
2. The ratio of the loading application time to the duration of

loading is very small. Assuming t1 indicates that loading is com-
plete and the load begins to remain unchanged, ðt1 − t0Þ ≪
ðt − t1Þ; and

3. The stress levels experienced by structural components must be
below approximately 70% of the concrete strength to ensure the
absence of tertiary creep.
In view of the above conditions, an explicit numerical scheme is

developed to integrate creep strain. Adopting the backward Euler
method and Eq. (14), the creep strain increment could be calculated
using Eq. (15)

Δεcðt; t0Þ ¼ Δεcþðt; t0Þ þΔεc−ðt; t0Þ ð15Þ

where the tensile creep strain increment, Δεcþðt; t0Þ, and the com-
pressive creep strain increment, Δεc−ðt; t0Þ, are expressed by

Δεcþðt; t0Þ ¼ hþðdþnþ1ÞΔφþ
nþ1ðt; t0ÞE−1

0 ∶σ̄þnþ1

Δεc−ðt; t0Þ ¼ h−ðd−nþ1ÞΔφ−
nþ1ðt; t0ÞE−1

0 ∶σ̄−nþ1 ð16Þ

Thus, the creep strain at time step nþ 1 is given by

εcnþ1ðt; t0Þ ¼ εcnðt; t0Þ þΔεcþðt; t0Þ þΔεc−ðt; t0Þ ð17Þ

From the viewpoint of numerical algorithms, it is more conven-
ient to use creep stress than creep strain. Therefore, the following
representation of creep stress is adopted in the computations

© ASCE 04020027-3 J. Eng. Mech.
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σ̇cþðt; t0Þ ¼ hþðdþÞφ̇þðt; t0Þσ̄þ
σ̇c−ðt; t0Þ ¼ h−ðd−Þφ̇−ðt; t0Þσ̄− ð18Þ

In the proposed nonlinear creep model, five creep-related
parameters are empirical and are of two kinds; φ�∞, a�, b� are free
and must be fitted using the results of long-term experiment tests,
whereas c�1 , c�2 remain approximately constant for practical
applications.

Numerical Scheme

In view of the previously described nonlinear creep theory, the
creep strain term is introduced into the damage-plasticity model
proposed by Wu et al. (2006) and Ren et al. (2015) to consider
the coupled creep, damage, and plasticity effects. The constitutive
law of the coupled creep-damage-plasticity model is summarized as
follows:

σ ¼ ð1 − dþÞE0∶ðεþ − εpþ − εcþÞ
þ ð1 − d−ÞE0∶ðε− − εp− − εc−Þ ð19Þ

According to the concept of operator splitting (Ju 1989; Simo
and Hughes 2006), the computation of the instantaneous stress
from the instantaneous strain could be decomposed into three parts;
elastic, plastic, and damage. Considering that the proposed model is
applicable for the sustained load situation, the creep part is added to
the algorithm. Thus, the numerical algorithm that we adopted con-
sists of four parts; the elastic-predictor, plastic-corrector, damage-
corrector, and creep-calculation steps.

In the computational analysis procedure, it is assumed that the
calculation at previous time step k has been completed (All the state
variables and internal variables at time step k are known). By pre-
scribing an increment in total strain, the aim of the proposed algo-
rithm is to update all the state variables and internal variables to the
next time step (kþ 1).

In the elastic-predictor step, the evolutions of plasticity, creep
and damage are frozen. The trial state of the effective stress is first
computed as follows:

σ̄trialkþ1 ¼ E0∶εkþ1 − σp
k − σc

k ð20Þ

The trial effective stress is split into positive and negative com-
ponents using the spectral decomposition method. Subsequently,
the trial states of the damage release rates, ðY�Þtrialkþ1 , and the energy
equivalent strains, ðεe�eq Þtrialkþ1

, could be explicitly obtained. Two sit-
uations including tensile and compressive states are discussed in
detail next. According to the trial solutions, the damage criteria
are adopted to judge whether or not damage evolves

ðR�Þtrialkþ1 ¼ jðεe�eq Þtrialkþ1
j − jðr�e Þkj ≤ 0 ð21Þ

If Eq. (21) is satisfied, the current time step remains elastic.
Neither plastic strain nor damage variables evolve because the
damage variables govern the evolution of the damage and plasticity.
Then, the updated variables at time step kþ 1 are equal to ones at
time step k

εp�kþ1 ¼ εp�k ; d�kþ1 ¼ d�k ; ðr�e Þkþ1 ¼ ðr�e Þk ð22Þ

On the other hand, if Eq. (21) is not satisfied in the elastic-
predictor step, plastic strain and damage variables evolve between

time step k and time step kþ 1, and the analysis goes into the
corrector step.

In the damage-corrector step, the damage thresholds, r�e , are
updated

ðrþe Þkþ1 ¼ maxfεeþeq ; ðrþe Þkg
ðr−e Þkþ1 ¼ maxfεe−eq ; ðr−e Þkg ð23Þ

and the damage variables are

dþkþ1 ¼ gþ½ðrþe Þkþ1�
d−kþ1 ¼ g−½ðr−e Þkþ1� ð24Þ

In the plastic-corrector step, the computation of the plastic strain
increment is explicitly determined as a function of the damage
variable and the effective stress increment. The tensile and com-
pressive plastic stress increments are computed as follows:

Δσpþ ¼ Hðdþkþ1 − dþk Þξþp ðdþkþ1Þn
þ
p ½σ̄þkþ1 − σ̄þk �

≈Hðdþkþ1 − dþk Þξþp ðdþkþ1Þn
þ
p ½ðσ̄þÞtrialkþ1 − σ̄þk �

Δσp− ¼ Hðd−kþ1 − d−k Þξþp ðd−kþ1Þn
−
p ½σ̄−kþ1 − σ̄−k �

≈Hðd−kþ1 − d−k Þξþp ðd−kþ1Þn
−
p ½ðσ̄−Þtrialkþ1 − σ̄−k � ð25Þ

The trial effective stress components, ðσ̄�Þtrialkþ1 , are adopted to
replace the real effective stress components, ðσ̄�Þkþ1. This ap-
proach not only is able to avoid complex and time-consuming iter-
ations but also has been proven to yield good results for concrete
structures, as demonstrated by extensive comparisons with test data
in Ren et al. (2015).

The creep strain at time step kþ 1 is computed in the creep-
calculation step, which needs to consider the effects of time.
According to the relationships defined in section “Creep Model-
ing,” the creep strain increment is explicitly determined as a func-
tion of current time, damage variables, and the effective stress using
Eq. (16). Then, the creep stress components under tensile and com-
pressive stress states are computed by

σcþkþ1 ¼ σcþk þΔσcþ ¼ σcþk þ hþðdþnþ1ÞΔφþ
nþ1ðt; t0Þ½σ̄þ�trialkþ1

σc−kþ1 ¼ σc−k þΔσc− ¼ σc−k þ h−ðd−nþ1ÞΔφ−
nþ1ðt; t0Þ½σ̄−�trialkþ1 ð26Þ

Similar to the simplified method in the plastic-corrector step,
the trial effective stress components, ðσ̄�Þtrialkþ1, are adopted to
replace the effective stress components, ðσ̄�Þkþ1, in the creep-
calculation step.

Finally, the effective stress components at time step kþ 1 are
updated by the following relationships

σ̄þkþ1 ¼ E0∶εþkþ1 − σpþkþ1 − σcþkþ1

σ̄−kþ1 ¼ E0∶ε−kþ1 − σp−kþ1 − σc−kþ1 ð27Þ

Then, the stress at time step kþ 1 could be expressed as
follows:

σkþ1 ¼ ð1 − dþkþ1Þσ̄þkþ1 þ ð1 − d−kþ1Þσ̄−kþ1 ð28Þ

At this stage of the computational procedure, all the state var-
iables and the internal variables at time step kþ 1 are updated. The
plastic-corrector step and creep-calculation step are used primarily

© ASCE 04020027-4 J. Eng. Mech.
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for updating the effective stress, whereas the damage corrector step
is used to describe the reduction effect of damage variables on the
effective stress. The total numerical implementation is straightfor-
ward. All involved numerical analyses could be directly calculated
without an iterative process, which greatly improves the computa-
tional efficiency.

Furthermore, according to the work of Ren et al. (2015),
the proposed numerical scheme at the material level is uncondition-
ally stable; the numerical stability of the model is governed at the
structural level. During numerical simulation, adopting a small-
time incremental step guarantees the stability of explicit methods.
For additional details and discussion related to the stability and
convergence of the proposed numerical algorithm, the reader is
referred to Ren et al. (2015).

The whole explicit numerical algorithm for the coupled creep-
damage-plasticity model is summarized in Fig. 2.

Numerical Examples

The coupled creep-damage-plasticity model proposed in the
present study was implemented in the finite-element (FE) software
ABAQUS version 6.13 through the user-defined material model
feature for the simulation of concrete behavior under long-term

Fig. 2. Explicit numerical algorithm.

Table 1. Model parameters for uniaxial compression tests

Item Value

Elasticity E0ð21500 MPaÞ; υð0.2Þ
Compressive strength fcð47.5 MPaÞ
Damage αcð0.5Þ
Plasticity ξ−p ð0.4Þ; n−p ð0.1Þ
Creep φ−∞ð5.4Þ

a−ð14Þ; b−ð0.6Þ
c−1 ð9Þ; c−2 ð0.91Þ Fig. 3. Representative finite-element mesh of uniaxial tests.

© ASCE 04020027-5 J. Eng. Mech.
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loading condition. The illustrative examples presented in this paper
are two-dimensional analysis because their purpose is to illustrate
the predictions of the present constitutive model.

Uniaxial Tests

The first verification exercise involves the experimental results
from a series of plain concrete cylinder tests under uniaxial

sustained stress (Freudenthal and Roll 1958; Roll 1964). The
cylinder specimens at the age of 28 days were subjected to a sus-
tained compressive stress in the range of 20%–65% of the compres-
sive strength, fc. Relevant model parameters are listed in Table 1.
It is noteworthy that these model parameters remain unchanged in
the numerical simulations of all the uniaxial tests, and the values in
brackets are chosen for simulations. Considering the axisymmetric
characteristics of the cylinder, the axisymmetric solid element,
CAX4R, is used to model concrete. A representative FE mesh is
shown in Fig. 3.

Fig. 4 compares the experimental results at different sustained
stress levels with those obtained from numerical simulations. It is
observed that both linear creep behavior and nonlinear creep
behavior are well predicted. Comparison of the numerical results
using the linear creep model and the nonlinear creep model is
shown in Fig. 5. As expected, at low (high) stress levels, the
simulated results using the linear creep model coincide (do not
coincide) with those of the nonlinear creep model. Generally,
the predictions using the proposed nonlinear creep model agree
reasonably well with the experimental results both for low and high
stress levels.

Creep Tests of Simply Supported RC Beam

A plain concrete prism specimen and two simply supported RC
beams performed by Clarke (1987) are simulated. The simulation
of the prism specimen is designed to calibrate the creep-related
parameters, with which the long-term deformations of RC beams
are predicted. These three tests use the same batch of concrete and
are exposed to the same environment.

The prism, 100 × 100 × 200 mm, was subjected to a sustained
compressive stress of 10 MPa at the age of 28 days. Two beams
without stirrups were loaded at the three points of the span. The
beam geometry is shown in Fig. 6, and the beam specimen dimen-
sions and loading program are listed in Table 2.

In the simulation, four-node plane stress elements are used to
model the concrete, and two-node truss elements are used to model
the reinforcing bar. The steel bars are modeled as elastic-perfectly

Fig. 5. Comparison of numerical results at different stress levels using
linear creep model (LCModel) and nonlinear creep model (NCModel).

Fig. 4. Simulation of creep tests at different stress levels: Comparison
of results using the proposed nonlinear creep model and experiment.

Table 2. Experiment program for RC beam

Parameter Unit

Specimen number

A2 B1

Specimen size a=mm 700 700
z=mm 700 700
b=mm 100 100
h=mm 152 152
h0=mm 130 130

Shear span ratio λ 5.38 5.38
Reinforcement area As=mm2 157.1(0+2D10) 314.2(2D10+2D10)
Compressive strength fc=MPa 32.4 32.4
Load P=KN 10 10

az z

h0 h

b

P/2 P/2

Fig. 6. Geometry of the simply supported beam.

© ASCE 04020027-6 J. Eng. Mech.
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plastic with material parameters: Es ¼ 200 GPa, fy ¼ 345 MPa.
It is assumed that there is no bond-slip between concrete and steel.
A representative FE mesh is shown in Fig. 7.

The creep-related parameters calibrated by the prism test are
listed in Table 3. The simulated creep coefficient, defined as the
ratio of the creep deformation to the initial deformation, is com-
pared with the experiment in Fig. 8. And Fig. 9 shows the com-
parison of the prediction results and experimental data obtained
from the RC beams. The simulated evolution of specimen A2
agrees very well with the experiment at all time, whereas some
differences are observed for specimen B1, which are attributed
to the random nature of concrete properties. Contours of simulated
beam tensile damage are shown in Fig. 10 and are typical of those
reflected by experimental observations. Because the level of
sustained load is low, both RC beams exhibit modest levels of ten-
sile damage. These calibration-prediction examples illustrate the
strong applicability and good prediction capability of the proposed
model.

Creep Tests of RC Short Column

This section presents numerical simulations of the experiments
performed on reinforced high strength concrete short columns
by Geng et al. (2013) whose geometry is shown in Fig. 11. At
the age of 28 days, the columns are subjected to a uniform pressure
along their length. Two specimens with different reinforcement ra-
tio are simulated with the specific loading program listed in Table 4.
Related concrete material parameters are listed in Table 5. The
steel reinforcement material parameters are: Es ¼ 200 GPa, fy ¼
345 MPa. The simulation procedure is the same as the one used in
the preceding RC beam simulations, and the illustrative FE mesh is
shown in Fig. 12.

The evolution of the creep coefficient is simulated and com-
pared with the experimental data in Fig. 13. Relatively good
agreement is observed for both specimens. There is a modest dis-
crepancy between the numerical results and experimental results,
particularly in the final stage of specimen RCC1 and the initial
stage of specimen RCC2, which can be attributed to the inability
of the simplified representation of the complex test environment.
The results suggest that the model offers promise for capturing
creep response under compressive loading.

Fig. 14 shows the simulations of the RC short column for
four stress levels; 20%, 35%, 50%, and 65% of compressive
strength, using the linear creep model and nonlinear creep model.
As expected, an increasing the stress level produces an increasing
difference between the results of the linear creep model and those
of the nonlinear creep model. It is also noted that larger creep
strain values are obtained using the nonlinear creep model.

LoadingLoading Displacement
Measured  Points

Fig. 7. Representative finite-element mesh of RC beam.

Table 3. Model parameters for RC beam

Parameter Series I

Elasticity E0ð22000 MPaÞ; υð0.2Þ
Damage αtð0.1Þ;αcð0.1Þ
Plasticity ξþp ð0Þ; nþp ð0.1Þ

ξ−p ð0.4Þ; n−p ð0.1Þ
Creep φ�∞ð2.93Þ

a�ð13Þ; b�ð0.6Þ
c�1 ð9Þ; c�2 ð0.91Þ

Fig. 8. Calibration of the prism specimen: Comparison of results given
by the proposed model and experiment.

Fig. 9. Predictions of the RC beams: Comparison of results given by
the proposed model and experiment.
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The effect of the reinforcement ratio on creep behavior has also
been investigated. For this purpose, the simulations of the RC short
column with four different reinforcement ratios, 0%, 0.5%, 1.1%,
and 3.0%, are performed. The numerical results are depicted in
Fig. 15. The results show that an increase in reinforcement ratio
leads to the reduction in creep deformation.

Conclusion

A coupled creep-damage-plasticity model for concrete under long-
term loading condition has been proposed which takes into account
linear and nonlinear creep behavior. The main conclusions are as
follows:
1. A model that combines the continuum damage theory and the

phenomenological plasticity model proposed by Ren et al. (2015)

Fig. 10. Simulation tensile damage contours of two simply supported RC beam: (a) specimen A2; and (b) specimen B1.

100

70
1515

dia.=6mm

15
15

27
0003

10
0

Reinforcing bar

Fig. 11. Geometry of RC short column.

Table 4. Experiment program for RC column

Parameter Unit

Specimen number

RCC1 RCC2

Sectional area A=mm2 10,000 10,000
Reinforcement area As=mm2 0 113.1(2D6+2D6)
Reinforcement ratio ρ 0% 1.1%
Load P=KN 250 250
Stress σ=MPa 25 25
Stress level σ=fc 39% 39%

Table 5. Model parameters for RC column

Item Value

Elasticity E0ð41,700 MPaÞ; υð0.2Þ
Compressive strength fcð64.5 MPaÞ
Damage αtð0.1Þ;αcð0.1Þ
Plasticity ξþp ð0Þ; nþp ð0.1Þ

ξ−p ð0.4Þ; n−p ð0.1Þ
Creep φ�∞ð0.94Þ

a�ð13Þ; b�ð0.6Þ
c�1 ð9Þ; c�2 ð0.91Þ

© ASCE 04020027-8 J. Eng. Mech.
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offers a basic framework for characterizing the constitutive
behavior of concrete. The advantage of the proposed model lies
in its ability to simultaneously capture stiffness degradation and
residual deformation.

2. Based on the assumption of strain additivity, a damage-
plasticity model is extended to account for the creep effect
by adding the creep strain to the damage-plasticity model using
a modified version of the widely-adopted and used ACI linear
creep model.

3. For medium and high stress levels, nonlinear creep is introduced
by multiplying the current creep strain by a damage-dependent
influence function. This function reflects the coupling relation-
ship between damage and creep.

4. Using the operator splitting method, an explicit algorithm
has been developed for the numerical implementation of the
proposed model. This algorithm does not require an iterative
process, which greatly improves the computation efficiency.

5. The illustrative examples of the monolithic concrete subjected
to uniaxial compression, and reinforced concrete beams sub-
jected flexural loads, and reinforced concrete columns subjected
to compression, suggest that the proposed constitutive model
and computational algorithms can capture the behavior of
concrete structures under long-term loading.

6. Several numerical examples are performed whose results
are consistent with the experimental results. These illustrative
simulations suggest that the proposed coupled creep-damage-
plasticity model could account for the long-term behavior of

Loading

Fig. 12. Representative finite-element mesh of RC column.

Fig. 13. Simulation of reinforcement high-strength concrete short
column test: Comparison of results given by the proposed model and
experiment.

Fig. 14. Simulation of RC short column test with different stress
levels using linear creep model (LC Model) and nonlinear creep model
(NC Model).

Fig. 15. Simulation of RC short column test with different reinforce-
ment ratio ρ.

© ASCE 04020027-9 J. Eng. Mech.
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concrete and can therefore be applied to practical engineering
design problems.

Appendix I. Damage-Plasticity Model

The damage plasticity model proposed by Wu et al. (2006)
and Ren et al. (2015) is summarized. The constitutive law is
expressed as

σ ¼ ðI − DÞ∶σ̄ ¼ ðI − DÞ∶E0∶ðε − εpÞ ð29Þ
Considering the different behaviors in tension and in compres-

sion, the stress tensor (nominal or effective) is decomposed
into positive (tensile) and negative (compressive) components as
follows:

σ ¼ σþ þ σ−; σ̄ ¼ σ̄þ þ σ̄− ð30Þ
Based on the spectral decomposition method (Simo and

Ju 1987a, b; Voyiadjis and Abu-Lebdeh 1994; Voyiadjis et al.
2008), the tensile effective stress and the compressive effective
stress are expressed as

σ̄þ ¼ Pþ∶σ̄
σ̄− ¼ σ̄ − σ̄þ ¼ P−∶σ̄ ð31Þ

And the fourth-order projection tensors read

Pþ ¼
X
i

Hð ˆ̄σiÞpðiÞ ⊗ pðiÞ ⊗ pðiÞ ⊗ pðiÞ

P− ¼ I − Pþ ð32Þ
where ˆ̄σi and pðiÞ are the i-th eigenvalue and eigenvector of the
effective stress tensor, and Hð·Þ is the Heaviside step function,
defined as

HðxÞ ¼
�
0 x < 0

1 x ≥ 0
ð33Þ

Based on the decomposition of the stress, one can assume
that Eq. (3) is valid for the tensile and compressive components
of the stress

σþ ¼ ð1 − dþÞσ̄þ
σ− ¼ ð1 − d−Þσ̄− ð34Þ

Substituting Eqs. (31) and (34) into Eq. (30), the explicit
expression of the fourth-order damage tensor can be obtained as
follows

D ¼ dþPþ þ d−P− ð35Þ
This type of the damage tensor is referred to as the biscalar

damage scheme.

Damage Evolution

Based the theory of irreversible thermodynamics, the energy
conjugate quantities of the tensile and the compressive damages,
which are defined as the damage release rates, are used as the
driving forces of the damage evolution

Y� ¼ − ∂ψ
∂d� ð36Þ

where the superscripts “�” denotes “þ” and “−”, which
represent tensile and compressive components, respectively;

ψ = Helmholtz free energy potential. One form of the explicit
expressions of the damage release rates proposed by Wu et al.
(2006) reads

Yþ ≈ 1

2E0

�
2ð1þ ν0Þ

3
3J̄þ2 þ 1 − 2ν0

3
ðĪþ1 Þ2 − ν0Ī

þ
1 Ī

−
1

�

Y− ≈ b0
�
αĪ−1 þ

ffiffiffiffiffiffiffiffi
3J̄−2

q �2 ð37Þ

where Ī�1 = first invariants of the corresponding effective stresses
components, σ̄�; and J̄�2 are the second invariants of s̄� which
are the deviatoric components of σ̄�. E0 and ν0 = initial elastic
modulus and the Poisson’s ratio of the undamaged concrete; b0 =
model parameter. And the parameter α is defined as

α ¼
fbc
fc

− 1

2 fbc
fc

− 1
ð38Þ

where fc = uniaxial compressive strength; and fbc = biaxial
compressive strength.

Using the test results of uniaxial tension and compression, the
energy equivalent strain proposed by Li and Ren (2009) is directly
connected with the damage release rate

εeþeq ¼
ffiffiffiffiffiffiffiffiffi
2Yþ

E0

s

εe−eq ¼ 1

E0ð1 − αÞ
ffiffiffiffiffiffi
Y−p

ð39Þ

Then, the damage evolution is defined as the function of the
energy equivalent strain

d� ¼ g�ðr�e Þ; r�e ¼ max
τ∈½0;t�ðε

e�
eq Þ ð40Þ

where the damage thresholds, r�e , are the maximum values
of the energy equivalent strain, εe�eq , throughout the entire loading
process.

Plasticity Evolution

A multivariable phenomenological plastic model proposed by
Ren et al. (2015) is adopted to consider the different plastic
evolutions under tensile and compressive stress states. The total
plastic strain rate is divided into the tensile (positive) and compres-
sive (negative) components

ε̇p ¼ ε̇pþ þ ε̇p− ð41Þ

where the tensile plastic strain rate, ε̇pþ, and the compressive
plastic strain rate, ε̇p−, read

ε̇pþ ¼ fþp ε̇eþ ¼ fþpE−1
0 ∶ ˙̄σþ

ε̇p− ¼ f−p ε̇e− ¼ f−pE−1
0 ∶ ˙̄σ− ð42Þ

The plastic functions, f�p , are defined as the effect of damage on
the plastic strain

f�p ¼ f�p ðḋ�; d�Þ ¼ Hðḋ�Þξ�p ðd�Þn�p ð43Þ

where ξ�p and n�p are plasticity-related parameters which need to be
identified from the experimental data.

© ASCE 04020027-10 J. Eng. Mech.

 J. Eng. Mech., 2020, 146(5): 04020027 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
ni

ve
rs

ity
 o

f 
H

ou
st

on
 o

n 
08

/1
1/

20
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



The rate forms of plastic stress components are expressed as
follows:

σ̇pþ ¼ E0∶ε̇pþ ¼ HðḋþÞξþp ðdþÞnþp ˙̄σþ
σ̇p− ¼ E0∶ε̇p− ¼ Hðḋ−Þξ−p ðd−Þn−p ˙̄σ− ð44Þ

Appendix II. The ACI Model

The ACI model assumes a linear creep relationship to predict creep
behavior of concrete. The creep coefficient defined as the ratio of
creep strain to initial strain is formulated as follows:

φðt; t0Þ ¼
ðt − t0Þa

bþ ðt − t0Þa
φ∞ ð45Þ

where t = current age of concrete, in days; t0 = age of concrete
at loading, in days; φ∞ = ultimate creep coefficient, and the
parameters a and b define the shape and size of the time-related
part.

The ultimate creep coefficient is defined as follows:

φ∞ ¼ 2.35γc ð46Þ
where γc represents the product of several applicable correction
factors, i.e., type of cement, type and period of curing, character-
istic compressive strength, age at loading, ambient relative humid-
ity, and temperature.

Data Availability Statement

Some or all data, models, or code that support the findings of this
study are available from the corresponding author upon reasonable
request.
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