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A Renewal Weakest-Link Model
of Strength Distribution of
Polycrystalline Silicon MEMS
Structures
Experimental data have made it abundantly clear that the strength of polycrystalline silicon
(poly-Si) microelectromechanical systems (MEMS) structures exhibits significant variabil-
ity, which arises from the random distribution of the size and shape of sidewall defects
created by the manufacturing process. Test data also indicated that the strength statistics
of MEMS structures depends strongly on the structure size. Understanding the size effect
on the strength distribution is of paramount importance if experimental data obtained
using specimens of one size are to be used with confidence to predict the strength statistics
of MEMS devices of other sizes. In this paper, we present a renewal weakest-link statistical
model for the failure strength of poly-Si MEMS structures. The model takes into account the
detailed statistical information of randomly distributed sidewall defects, including their
geometry and spacing, in addition to the local random material strength. The large-size
asymptotic behavior of the model is derived based on the stability postulate. Through the
comparison with the measured strength distributions of MEMS specimens of different
sizes, we show that the model is capable of capturing the size dependence of strength dis-
tribution. Based on the properties of simulated random stress field and random number of
sidewall defects, a simplified method is developed for efficient computation of strength dis-
tribution of MEMS structures. [DOI: 10.1115/1.4043440]

Keywords: renewal theory, size effect, strength statistics, structural reliability, weakest-link
model

1 Introduction
Microelectromechanical Systems (MEMS) have found use in

numerous technologies, including transportation systems, energy
conversion, biochemical threat detection, medical devices, etc.
[1,2]. It has been shown that the strength of polycrystalline
silicon (poly-Si), the work horse of MEMS devices, exhibits consid-
erable variability [3,4]. Meanwhile, it is generally accepted that the
design of MEMS devices should target a failure risk of the order of
10−4 or lower. Therefore, understanding and modeling the probabil-
ity distribution of failure strength of poly-Si MEMS structures have
become an important subject especially for devices that operate
under conditions of high stress and large deformation [2].
Over the past two decades, there has been a continuing interest in

studying the strength statistics of MEMS structures [2,5–8]. Fabri-
cation procedures inevitably lead to poly-Si structures whose side-
walls are characterized by a highly random geometry containing
stress-concentrating and in-turn failure initiating sharp corners
[5,9]. The random sidewall geometry obviously implies the uncer-
tainty in the degree of stress concentration. Meanwhile, the local
material strength may also exhibit some spatial variability. The
combination of random sidewall geometry and material strength
gives rise to the uncertainties in both the failure location and the
overall strength of MEMS structures.
The biggest challenge in the modeling of failure statistics of

MEMS structures is the aforementioned requirement of low
failure risk [5]. Although direct experimental testing and brute-force
stochastic simulations can provide useful statistical information

such as the sample mean and standard deviation, they could not
practically probe the left tail of the strength distribution that is
required for high reliability design. Therefore, analytical modeling
becomes an indispensable means for studying the strength distribu-
tion of MEMS structures.
The most widely used analytical model for strength distribution is

the infinite weakest-link model, in which the structure is repre-
sented, from the statistical viewpoint, by a chain comprised of an
infinite number of material elements [10,11]. By further assuming
that the failure strengths of the elements are statistically indepen-
dent, one can show that the probability distribution of structural
strength belongs to the class of extreme value statistics [11–13].
Extensive experimental data on brittle structures have indicated
that, among the three extreme distribution functions, the Weibull
distribution is the only valid option. However, it has been consis-
tently observed that the Weibull distribution is unable to provide
optimum fitting of the measured strength distributions of MEMS
specimens [7,8,14–16]. As an empirical remedy, the three-
parameter Weibull distribution was proposed to improve the
fitting [9,17]. However, it was determined that the model parame-
ters strongly depend on the specimen size, a result that cannot be
physically justified, and thus limits the prediction capability of
the three-parameter Weibull model. Recent studies have also
shown that the three-parameter Weibull distribution could lead to
an overestimation of design strength for large-size structures
[16,18–20].
The inapplicability of theWeibull distribution is rooted in the fact

that the sizes of many poly-Si MEMS structures and/or their com-
ponents (beams in resonators for example) are not sufficiently
large as compared to the characteristic dimension of the material,
e.g. grain size and sidewall defect size. Consequently, the structure
cannot be represented by an infinite chain model. To address this
issue, a finite weakest-link model was developed for poly-Si
MEMS structures [16]. In the model, the sidewall defects were
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modeled as V-notches of random depth and angle [8]. The structure
was statistically represented by a finite chain of elements, where
each element contains a single V-notch. The failure probability of
each element was calculated by considering both the random geom-
etry of V-notch and randommaterial strength. It was shown that this
model is able to provide optimum fits of the measured strength dis-
tributions of specimens of different sizes by using the same set of
model parameters. However, the model considers equal spacing
between the defects along the sidewall, which is certainly an
oversimplification.
In a recent study, a first-passage based probabilistic model was

proposed for failure of MEMS structures [21]. The model was for-
mulated by directly using the continuous random fields of material
strength and applied stress. The spatial autocorrelation features of
these random fields were also explicitly included in the model.
The failure probability was calculated through a level excursion
analysis. Although this model provides a more physical representa-
tion of the probabilistic failure along the sidewalls, the computa-
tional cost is much higher as compared to the finite weakest-link
model. In addition, some detailed statistical information, such as
the autocorrelation functions of the random strength field, is not
easily accessible.
The aforementioned finite weakest-link model is easy to use

but with some oversimplifications. On the other hand, the first-
passage model provides more physical insights into the failure sta-
tistics at a significant amount of computational cost. In this study,
we develop a probabilistic model for the strength of poly-Si
MEMS structures by combining the finite weakest-link model
and the renewal theory. The model removes the key oversimplifi-
cation used in the previous finite weakest-link model, while retain-
ing the desirable computational efficiency of the weakest-link
model.

2 Model Formulation
We limit our attention to uniaxial tension specimens since they

are the most commonly used configurations for measuring the
strength of the poly-Si used to fabricate MEMS devices. For the
purposes of stress analysis, the sidewall grooves created by the fab-
rication procedures are modeled as V-notches. Based on the exper-
imental observations [9], it is reasonable to consider that the
specimen attains its peak load capacity once a catastrophic crack
initiates at one of the notches. Note that this consideration may
not hold for other loading scenarios, for example a system of paral-
lel cracks (a limiting case of V-notches) under thermal stresses or
fluid pressure [22–24]. The location of fracture initiation along
the sidewall of the MEMS device is intrinsically random since the
sidewall V-notches have random geometries and the local material
resistance is also assumed to vary spatially.
Consider a specimen of length L subjected to remote stress σN

(Fig. 1(a)). Each sidewall of the specimen contains some number
of segments whose length is a random variable (Fig. 1(b)).

Except for the last segment, a V-notch exists in the middle of
each segment. Based on the foregoing discussion, we consider
that only segments with V-notches would contribute to the failure
of the specimen. Let k be the number of V-notches along each side-
wall. Clearly, for a given specimen length L, the number k is intrin-
sically random. The survival probability, or reliability, of the
specimen under stress σN can be calculated as

Rs(σN , L) =
∑∞
k=1

R(σN , L, k)

[ ]2

(1)

where R(σN, L, k)= survival probability of a sidewall of length L
that contains k number of V-notches. The failure probability, or
equivalently the probability distribution of structural strength, of
the specimen is simply Pf(σN, L)= 1−Rs(σN, L).
If the sidewall of length L consists of k number of V-notches, we

must have

∑k
i=1

li ≤ L and
∑k+1
i=1

li > L (2)

where li= length of ith segment. The total length of k+ 1 segments
would be larger than the actual sidewall length L (Fig. 1(b)).
However, this is inconsequential since what matters for the failure
statistics of the specimen is the first k number of segments with
V-notches, whose total length is no greater than L.
Let f(x) be the probability density function (pdf) of the segment

length. The overall reliability of the first segment is given by�L
0 f (l1)Re(σN , l1)dl1, where Re(σN, l )= reliability of the segment
of length l. The length of the second segment must satisfy 0≤ l2
≤L− l1, and therefore the overall reliability of the second one
is given by

�L−l1
0 f (l2)Re(σN , l2)dl2. Following the same analysis,

the overall reliability of the kth segment is given by�L−l1···−lk−1
0 f (lk)Re(σN , lk)dlk . The aforementioned consideration
only enforces the condition

∑k
i=1 li ≤ L. To further satisfy∑k+1

i=1 li > L, we also require lk+1≥ L− l1 · · ·−lk.
As mentioned previously, the survival of each sidewall requires

that all segments survive. By assuming the failure of the segments
are statistically independent from each other, we have

R(σN , L, k) =
∫L
0

∫L−l1
0

· · ·
∫L−l1−l2···−lk−1
0

∏k
i=1

f (li)Re(σN , li)

[ ]

× Fc(L − l1 − l2 · · · − lk)dlkdlk−1 · · · dl1
(3)

where Fc(x) =
�∞
x f (y)dy= complementary cumulative distribution

function (cdf) of the segment length. The integral in Eq. (3) can
be calculated in a recursive manner by noting that

R(σN , x, k) =
∫x
0
Se(σN , l)R(σN , x − l, k − 1)dl (4)

and R(σN , x, 1) =
∫x
0
Se(σN , l)Fc(x − l)dl (5)

where Se(σN, l )= f (l )Re(σN, l ).
The reliability function Re(σN, l ) of each segment is calculated

based on the probabilistic failure of the V-notch. Consider a
segment of MEMS containing a V-notch under tensile stress σN
(Fig. 2). The fracture of V-notch has been extensively studied,
and both strength and energy-based failure criteria have been pro-
posed [25–30]. Since the focus of this study is on uniaxial tension
specimens, for which the primary failure mode is mode I fracture,
we adopt a simple nonlocal strength criterion. We consider that
the crack starts to propagate from the V-notch tip once the nonlocal

(a)

(b)

Fig. 1 (a) Uniaxial tensile MEMS specimen with sidewall defects
idealized by V-notches and (b) schematic of the renewal
weakest-link model for failure of a sidewall
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stress σ evaluated at the notch tip reaches the material tensile
strength, i.e.

σ = r−1c

∫rc
0
σxx(y)dy = ft (6)

where rc is an averaging length scale, σxx= tensile stress in
x-direction, and ft= tensile strength of the material. The choice of
nonlocal stress in the present failure criterion takes into account
the finite fracture process zone (FPZ) formed at the notch tip,
whose size is proportional to the length scale rc.
Since the nonlocal stress is calculated from elastic analysis, we

may rewrite the failure criterion (Eq. (6)) as

σNz(a, θ, l) = ft (7)

where z is a dimensionless stress, which depends on the notch depth
a, notch angle θ, and segment length l. Clearly z is a random vari-
able, which is independent of the randommaterial strength ft. There-
fore, the reliability of a segment of length l can be written as

Re(σN , l) = Pr (ft/z ≥ σN |l) = 1 −
∫∞
0
F ft (xσN )fz(x|l)dx (8)

where F ft (x) is the cdf of material strength, fz(x|l) is the conditional
pdf of the dimensionless stress for given segment length l. This con-
ditional pdf can be calculated as

fz(x|l) = fzl(x, l)/f (l) (9)

where fzl (x, l ) is the joint pdf of dimensionless stress and segment
length, which needs to be evaluated numerically. Based on Eqs. (8)
and (9), we can rewrite the term Se(σN, l) in Eq. (4) as

Se(σN , l) = f (l) −
∫∞
0
F ft (xσN )fzl(x, l)dx (10)

Based on a series of recent studies on strength distribution of
brittle and quasibrittle materials [19,20,31], the material tensile
strength ft is considered to follow a grafted Gauss-Weibull dis-
tribution:

Fft (x) =
1− e−〈x/s0〉m ≈ 〈x/s0〉m (x≤ xgr) (11a)

Pgr+ rf
δG

			
2π

√
∫x
σgr

e−(x′−μG)2/2δ2Gdx′ (x> xgr) (11b)

⎧⎪⎨
⎪⎩

where 〈x〉=max (x, 0), m is the Weibull modulus, s0 is the Weibull
scale parameter, μG and δG are the mean and standard deviation
of the Gaussian distribution if extended to −∞, Pgr is the grafting
probability, which can be calculated as Pgr= (xgr/s0)

m, xgr is the
value of x at the grafting point, and rf is the parameter. The
grafted distribution contains six parameters, where any four of
them can be taken as independent. The remaining two parameters
can be solved by two constraints: (1) Fft (∞)=1, and (2) the pdf

of the grafted distribution is continuous at the grafting point:
dFft (x)/dx|x=x+gr =dFft (x)/dx|x=x−gr .

3 Large-Size Asymptotic Behavior
In this section we investigate the behavior of the present model at

the large-size limit (i.e. L→∞). We first discuss the asymptotic dis-
tribution of segment number k based on the theory of renewal
process [32–34]. We note that the probability distribution of the
total length of a specimen that contains s number of segments,
i.e. FL(L, s) = Pr

∑s
i=1 li ≤ L

( )
. It is clear that s is a large number

when L→∞. By the Central Limit Theorem, FL(L, s) would
approach a Gaussian cdf:

FL(L, s) ≈ Φ
L − sμl		

s
√

δl

( )
(12)

where Φ(x)= standard Gaussian cdf, μl= the mean segment length,
and δl= standard deviation of the segment length. Based on the
Berry-Esseen theorem, the actual distribution FL(L, s) converges
to the Gaussian cdf (Eq. (12)) with absolute error O(s−1/2).
Following Eq. (2), we can calculate the probability, P(k, L), that a

specimen of length L contains k number of V-notches as

P(k, L) = FL(L, k) − FL(L, k + 1) (13)

≈ Φ
L − kμl		

k
√

δl

( )
−Φ

L − (k + 1)μl								
(k + 1)

√
δl

( )
(14)

Based on the Central Limit theory of renewal process [32,34],
Eq. (14) leads to

P(k, L) =
1								

2πL/μl
√

δl/μl
exp −

(k − L/μl)
2

2δ2l L/μ
3
l

[ ]

when L → ∞

(15)

It is evident from Eq. (15) that, as L increases, the mean value of k
approaches L/μl, and the standard deviation of k approaches
ωl

					
L/μl

√
(ωl= coefficient of variation (CoV) of segment length l).

Consequently, the CoV of k decreases as L−1/2 for large L.
The simplest approach to derive the asymptotic strength distribu-

tion is to use the concept of stability postulate pioneered by Fisher
and Tippett [12]. Here we divide the sidewall into p segments of
equal length Lp, where p is a finite number. It follows that each
segment length Lp also approaches infinity. Based on the
weakest-link model, the strength distributions of the entire speci-
men and each segment can be related by

1 − Pf (σN) = [1 − Pfp(σN )]
p (16)

where Pfp(σN ) = strength distribution of sidewall of length Lp. Since
both the specimen length and segment length approach infinity, the
strength distribution functions of the specimen and the segment
must be of the same form and differ only by a linear transformation,
i.e. Pf(σN)=Pfp(k1σN+ k2), where k1, k2= parameters depending on
p. Substituting this expression into Eq. (16), we have

Pfp(k1σN + k2) = 1 − [1 − Pfp(σN )]
p (17)

Equation (17) is a functional equation representing the stability pos-
tulate. According to the theory of extreme value statistics
[12,35,36], the functional form of Pfp(σN) is determined by its left-
tail behavior.
To determine the left-tail distribution, we note that the dimen-

sionless stress is essentially bounded (z∈ [1, zm]). Equation (8) indi-
cates that, at small stresses, the reliability of each segment
containing a V-notch can be expressed by

Re(σN , l) = 1 −
1
f (l)

∫zm
0
xmfzl(x, l)dx

[ ]
σN
s0

( )m

(18)

Fig. 2 Analysis of a notched segment
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Substituting Eq. (18) into Eq. (3) yields

R(σN , Lp, k) =
∫Lp
0

∫Lp−l1
0

· · ·
∫Lp−l1···−lk−1
0

∏k
i=1

f (li) 1 − ψ(li)(σN/s0)
m[ ]

{ }
Fc(Lp − l1 · · · − lk)dlkdlk−1 · · · dl1 (19)

where ψ(li) = [
�zm
0 xmfzl(x, li)dx]/f (li). By expanding the term

∏k
i=1 f (li) 1 − ψ (li)(σN/s0)m[ ] and retaining the leading terms up to σmN , wehave

∏k
i=1

f (li) 1 − ψ(li)(σN/s0)
m[ ] ≈

∏k
i=1

f (li) −
∏k
i=1

f (li)

( ) ∑k
i=1

ψ (li)

( )
(σN/s0)

m (as σN → 0) (20)

Therefore, Eq. (19) can be rewritten as

R(σN , Lp, k) = P(k, Lp) − C(k, Lp)
σN
s0

( )m

(21)

where:

P(k, Lp) =
∫Lp
0

∫Lp−l1
0

· · ·
∫Lp−l1···−lk−1
0

∏k
i=1

f (li)Fc(Lp − l1 · · · − lk)dlkdlk−1 · · · dl1 (22)

C(k, Lp) =
∫Lp
0

∫Lp−l1
0

· · ·
∫Lp−l1···−lk−1
0

∏k
i=1

f (li)

( ) ∑k
i=1

ψ(li)

( )
Fc(Lp − l1 · · · − lk)dlkdlk−1 · · · dl1 (23)

We note that P(k, Lp)= probability that a specimen of length Lp
contains k number of V-notches. Clearly, we have∑∞

k=1 P(k, Lp) = 1, and the reliability of the entire specimen
(Eq. (1)) becomes

R(σN , Lp) = 1 −
∑∞
k=1

C(k, Lp)
σN
s0

( )m
{ }2

(as σN → 0) (24)

or: Pf (σN , Lp) ≈ C0(Lp)
σN
s0

( )m

(as σN → 0) (25)

where C0(Lp) = 2
∑∞

k=1 C(k, Lp).
Equation (25) indicates that the failure probability of a sidewall

has a power-law left tail. Based on the theory of extreme statistics,
the only possible distribution function that satisfies the stability pos-
tulate (Eq. (17)) is the Weibull distribution, i.e.

Pf (σN ) = 1 − exp −(σN/S)m[ ] (26)

where S= a parameter proportional to L−1/m. It should be empha-
sized that, as indicated by Eq. (18), the strength distribution of a
single segment has a power-law tail, which arises from the tail dis-
tribution of the local material strength. The power-law tail behavior
of the strength of a single segment dictates the asymptotic form of
the Weibullian strength distribution of the entire specimen at the
large-size limit.

4 Comparison with Experimental Data
We now compare the proposed model with the measured strength

distributions of uniaxial tensile poly-Si MEMS specimens. Two sets
of experimental data are considered. The first data set consists of
strength distributions of specimens of two gauge lengths (L= 20
and 70 μm) [9,37]. The nominal width of specimens of both
lengths is 2 μm. The 70 μm-long specimens were tested using an
on-chip tester, which involved a Chevron thermal actuator with a
prehensile grip mechanism. The 20 μm-long specimens were
tested using a slack-chain tester, where a number of specimens
were placed in a chain and loaded by a custom-built probe
station. The second data set consists of strength distributions of

specimens of gauge lengths of 7 and 70 μm, which were tested
using an on-chip tester [17]. For both data sets, the specimens
were produced by Sandia’s SUMMiT V poly-Si microfabrication
process [38]. Therefore, it is reasonable to assume that all speci-
mens share the similar random sidewall geometry.
To use the present model, we first determine the dimensionless

stress z as a deterministic function of segment length l, notch
depth a, and notch angle θ through a series of finite element simu-
lations. It is noted that the specimen width is significantly larger
than the notch depth, and meanwhile the spacing of the adjacent
V-notches is considerably larger than the notch depth as well as
the width of FPZ. Therefore, it is reasonable to assume that all
the V-notches are non-interacting for the calculation of the elastic
stress field of the near-tip region. In the finite element simulation,
we consider a segment of uniaxial tensile specimen containing a
V-notch at the middle under a unit far-field stress (σN= 1), as
shown in Fig. 2. The material is modeled as isotropic with Young
modulus E= 156 GPa and Poisson ratio μ= 0.22 [8]. To calculate
the dimensionless stress, we consider the averaging zone size rc
to be 5 nm, which is on the order of the FPZ size of poly-Si
[8,16,38].
The random geometry of the sidewall can be characterized by

three random variables (Fig. 2): (1) the notch angle θ, (2) the
notch depth a, and (3) the representative notch spacing c. The
existing experimental analysis of the sidewall geometry provides
the approximate range of these geometrical variables, but not the
full distribution functions. For the sake of simplicity, we assume
θ and c to follow bounded uniform distributions. For the notch
depth, we assume a Type III extreme value distribution with an
upper bound equals 62 nm [16,21]. The pdfs of θ, a, and c are
given by

fθ(θ) =
1
120

(20◦ ≤ θ ≤ 140◦) (27)

fa(a) = 0.232
62 − a

28

( )5.5

exp −
62 − a

28

( )6.5
[ ]

(0 ≤ a ≤ 62 nm)

(28)
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fc(c) =
1
600

(100 nm ≤ c ≤ 700 nm) (29)

where fθ, fa and fc are the pdfs of θ, a, and c, respectively. Note
that Eq. (28) permits negative values of a, which is physically
inadmissible. However, it is unlikely that a negative value
would be sampled since Pr (a ≤ 0) = 6.7 × 10−77.
Based on the notch geometry, the segment length can be

expressed by l= c+ 2a tan(θ/2). The probability distribution of l
can be calculated analytically as

f (l) =
∫l
0
fc(l − y)fq(y)dy (30)

where: fq(x) =
∫∞
0

4
4y + y3

fθ 2 tan−1(y/2)
( )

fa(x/y)dy (31)

It should be pointed out that the range of possible values of a, θ, and
c implies a finite minimum value of the segment length, below
which we have f (l )= 0. Figure 3 shows the pdf of segment length
based on Eq. (30), which matches well the result of direct Monte
Carlo simulations.
To obtain the joint pdf of dimensionless stress and segment

length, a total of 107 groups of a, θ and l are sampled from the dis-
tribution functions described by Eqs. (27), (28), and (30). For each
group of a, θ and l, we calculate the corresponding value of z by
interpolating the simulated function z(a, θ, l ). Based on these
groups of z and l values, we obtain the joint pdf fz(z, l ), which is pre-
sented in Fig. 4.
After determining the pdf of segment length and the joint pdf

fzl(z, l ), we use the present model to fit the aforementioned mea-
sured strength distributions. What needs to be calibrated is the cdf
of local material strength, Fft (x), i.e. the Weibull modulus m, the
Weibull scale parameter s0, the mean value μG and the standard
deviation δG of the Gaussian core. Figures 5 and 6 show the
optimum fitting of the measured strength distributions. The corre-
sponding fitted parameters of the material strength distribution
listed are as follows: data set 1: μG= 16.5 GPa, δG= 0.99 GPa,
m = 64, s0= 15.4 GPa; data set 2: μG= 17.2 GPa, δG= 1.03 GPa,
m= 64, s0= 16.1 GPa.
Figures 5 and 6 show that the present model can match well the

measured strength distributions of specimens of two different gauge
lengths. Clearly the measured distributions cannot be fitted by the
two-parameter Weibull distribution, which is represented by a
straight line in the Weibull scale. In order to improve the fitting
of experimental data, recent studies suggested the three-parameter
Weibull distribution [17], which introduces a strength threshold to
the two-parameter Weibull model. However, the functional form
of the three-parameter Weibull distribution still rests on the

extreme value statistics. For specimens considered here, the
extreme value statistics would be valid if there are a large number
(at least >105) of V-notches along the sidewall. However, this is
not the case for specimens of a gauge length on the order of 10−
100 μm, which contain about several hundred V-notches. The
agreement between the present model and the experimental data

Fig. 4 Joint pdf fzl(z, l ) of the dimensionless stress field

(a) (b)

Fig. 5 Optimum fits of the measured strength histograms (data set 1) by the present model

Fig. 3 Calculated pdf of segment length
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indicates that the strength threshold is unnecessary. The underlying
reason for the deviation of the measured strength distribution from
the two-parameter Weibull model is the finite random number of
V-notches along the sidewall.

5 Size Effect Analysis
As shown in Figs. 5 and 6, one salient feature of the strength dis-

tribution of MEMS specimens is its pronounced dependence on the
specimen size. Capturing this size effect has become an essential
aspect of model validation. For the conventional Weibull models
(e.g. two and three-parameter Weibull distributions), which are
anchored by the weakest-link statistics, the specimen size only
influences the Weibull scale parameter, and consequently the size
effect on the strength distribution manifests as a horizontal shift
of the strength cdf in the Weibull scale [20]. Based on Figs. 5
and 6, it is evident that, even with rather a limited size range, the
size effect on the strength distribution cannot be captured by a
simple horizontal shift in the Weibull scale. This suggests that the
classical Weibull models could not be used for design extrapolation
for MEMS devices of different sizes.
The present model naturally yields an intricate size effect on the

strength distribution, as indicated by Eq. (3). Figure 7 plots in both
Weibull and Gaussian distribution papers the predicted strength
cdfs of specimens of different lengths by using the model parame-
ters calibrated based on data set 1. It is seen that, for small-size spec-
imens, the strength cdf deviates significantly from the
two-parameter Weibull distribution, and in fact it can be better
approximated by a Gaussian distribution except for the left tail
portion. As the specimen size increases, the strength cdf starts to
approach the Weibull distribution. As indicated by the foregoing

analysis of large-size asymptotic behavior, the strength distribution
at the large-size limit must follow the two-parameter Weibull distri-
bution. Therefore, the specimen size influences not only the mean
and standard deviation of the strength distribution, but more funda-
mentally the functional form of the distribution.
It should be mentioned that previous studies also proposed to use

three-parameter Weibull distributions with size-dependent Weibull
modulus, scale parameter, and strength threshold [17]. Such models
can fit the measured strength distribution of MEMS specimens of
different sizes. However, in addition to the aforementioned ques-
tionable assumption of the Weibull statistical model, there is a
lack of physical relationship between these model parameters and
the specimen size, and consequently the prediction capability of
such models is rather limited.
Figure 8 plots the probability distributions of the number of

V-notches for different specimen sizes with comparison to
Eq. (15). It is observed that, as the specimen length increases, the
pdf of k approaches Eq. (15), which justifies that foregoing analysis
of the large-size asymptotic behavior. In fact, Eq. (15) could
provide a reasonable approximation of the distribution of k even
for intermediate specimen size L> 20 μm (i.e. �k ≥ 423). It is also
found that, for all specimen lengths, the expected value of k can
be reasonably approximated as �k = L/μl.
One direct consequence of the aforementioned size dependence

of the strength cdf is the size effect on the mean structural strength,
as shown in Fig. 9. The size effect shown here arises from the
weakest-link failure statistics, which is often referred to as the sta-
tistical size effect. It is noted that, in principle, there exists
another size effect associated with the fracture of V-notch [30],
which is related to the constancy of fracture energy. This size
effect, which is of deterministic nature, is defined as the energetic

(a) (b)

Fig. 6 Optimum fits of the measured strength histograms (data set 2) by the present model

(a) (b)

Fig. 7 Predicted strength distributions of MEMS specimens of different lengths presented in (a) Weibull
distribution paper and (b) Gaussian distribution paper
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size effect. However, the energetic size effect is not manifested here
since the notch size and the specimen width are not scaled.
The calculated size effect shown in Fig. 9 is qualitatively similar

to the Type 1 size effect curve for quasibrittle structures [20,40,41],
which can be approximated by

�σN(L) = μG
η1μl
L

+
η2μl
L

( )r/q[ ]1/r
(32)

where η1, η2, r, q= constants. At the large-size limit, the strength
distribution converges to the Weibull distribution, and based on
Eq. (26) the mean strength should scale with the specimen length
as �σN ∝ L−1/m. On the other hand, the large-size asymptote of
Eq. (32) follows �σN ≈ μG(η2μl/L)

1/q. Therefore, we may conclude

that q=m. Meanwhile, at the large-size limit, what matters for
the failure statistics is the Weibull tail of the material strength
cdf. μGη

1/m
2 must be related to the Weibull scale parameter s0 of

Eq. (32), i.e. μGη
1/m
2 = f1(s0).

At the small-size limit (i.e. L→ lm, lm ≈ 1.5 μm = the smallest
size of the specimen for the random sidewall geometry considered
here), Eq. (32) converges to �σN ≈ μG(η1μl/lm)

1/r . In this case, only
the Gaussian part of the material strength cdf is relevant for the
failure statistics. We may consider the mean strength and the
slope of the mean size effect curve, both of which are governed
by the mean and standard deviation of the Gaussian core of
Eq. (11), i.e. �σN (lm) = f2(μG, δG), and d�σN/dL|L=lm = f3(μG, δG).
Combining the aforementioned large and small-size asymptotic
conditions, we can relate the properties of the mean size effect
curve to the strength distribution of local material strength. This
is an attractive alternative to the histogram testing method. This
size effect analysis has recently been validated for some quasibrittle
materials, e.g. cold asphalt mixtures, based on the conventional
weakest-link model without considering the random stress
field [42].

6 Simplified Calculation Approach
It is clear that the main computational cost of the present model

arises from the evaluation of the multiple integrations in Eq. (3),
which is handled by the recursive equations (Eqs. (4) and (6)).
However, for long specimens, the computation becomes tedious.
It would be desirable to develop a simplified calculation method.
The direct way to avoid evaluating the multiple integration of

Eq. (3) is to approximate the reliability of each segment by a func-
tion that is independent of segment length. One plausible choice is
to use the expectation of the segment reliability, i.e.:

�Re(σN ) =
∫∞
0
Re(σN , l)f (l)dl (33)

Fig. 8 Probability distributions of the number of V-nocthes for different specimen lengths

Fig. 9 Size effect on the mean structural strength
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=1 −
∫∞
0
Fft (xσN )fz(x)dx (34)

where fz(x) =
�∞
0 fzl(x, l)dl= marginal distribution of the dimension-

less stress. The error due to this approximation may be evaluated by

Δ1(σN) =
∫∞
0
f (l)

|Re(σN , l) − �Re(σN )|
Re(σN , l)

dl (35)

As will be shown later, Δ1(σN) is negligibly small for specimens
considered in this study.
Based on the aforementioned approximation (Eq. (33)), the reli-

ability of a single sidewall of length L can be expressed by

R(σN , L) ≈
∑∞
k=1

P(k, L) �Re(σN)
[ ]k

(36)

where P(k, L) is defined in Eq. (22). By taking the logarithm of
Eq. (36), we have

lnR(σN , L) = ln Ek[Y(σN , k)]{ } (37)

where Y(σN , k) = �Re(σN )
[ ]k

, and Ek(·) = expectation with respect
to k. The logarithm of the expectation of Y(σN, k) can be
further approximated by ln Ek[Y(σN , k)]{ } ≈ Ek ln Y(σN , k)]{ }+
1
2ω

2
Y (σN , L), where ωY(σN, L)=CoV of Y(σN, k). It will be shown

later that, for specimens considered in this study, we may neglect
the term 1

2ω
2
Y (σN , L) and consider

ln Ek[Y(σN , k)]{ } ≈ Ek ln Y(σN , k)]{ } (38)

The resulting error, which depends on both σN and specimen length
L, can be calculated as

Δ2(σN , L) = 1 −
Ek ln Y(σN , k){ }
ln Ek[Y(σN , k)]{ }

∣∣∣∣
∣∣∣∣ (39)

By combining Eqs. (37) and (38), we have

lnR(σN , L) ≈ Ek ln Y(σN , k)]{ } (40)

=
∑∞
k=1

P(k, L)k�Re(σN) = �k(L)�Re(σN ) (41)

where �k(L) =mean value of k for a given sidewall length L. Equa-
tion (41) suggests that the overall failure probability of the specimen
can be approximately calculated as

Pf (σN , L) = 1 − �Re(σN )
[ ]2�k

(42)

It is evident that Eq. (42) can be considered as an equivalent
weakest-link model, which uses the expected number of V-notches
and the expectation of segment reliability. As shown in Fig. 8, we
may further approximate �k as L/μl. The computation of �Re(σN)
requires the detailed information of the statistics of segment length.
As a demonstration, we apply this simplified calculation method

to recalculate the strength distribution of specimens with its param-
eters calibrated by data set 1. Here we consider four different spec-
imens sizes L= 1.5, 20, 200, and 2000 μm. Figure 10 shows that the
strength distributions of these specimens calculated by the full
model (Eqs. (1) and (3)) and the simplified model (Eq. (42)). It is
found that these two models agree with each other very well for
specimens of L= 20, 200, 2000 μm, which covers the size range
of typical MEMS specimens. For the smallest specimen, two
models deviate from each other in the high stress regime (σN≥
3.7 GPa).
To explain the aforementioned observation, we examine the two

approximations introduced in the simplified method (i.e. Eqs. (33)
and (38)). Figure 11 shows the expected relative error, Δ1(σN),
for the relevant range of nominal stress. It is seen that Δ1(σN)
increases with the nominal stress σN. The error grows beyond 1%

as σN> 4.2 GPa. Meanwhile, we also plot the relative error Δ2(σN,
L) due to Eq. (38) for different specimen lengths (Fig. 12). It is
seen that for specimens of L= 20, 200, 2000 μm, the relative
error is below 10−3. For specimen of L= 1.5 μm, the error is
larger than 1% when σN> 4 GPa.
The foregoing analysis of the two approximations indicates that

the error of the simplified method would become significant only
in the high stress regime. Due to the presence of the size effect,
the relevant stress level for estimating the failure probability of
typical MEMS specimens (L ≥ 5 μm) does not fall into this high
stress regime. This indicates that the proposed simplified method
can be applied to most specimens, as shown in Fig. 10. As com-
pared to Eqs. (1) and (3), the simplified model (Eq. (42)) is far
more efficient since it does not require the calculation of multiple
integrations for all different possible segment lengths and different
σN values. This makes the computation of the present renewal
weakest-link model essentially the same as the conventional
weakest-link model, such as [16].

7 Conclusions
A renewal weakest-link model is developed for strength statistics

of uniaxial tensile poly-Si MEMS specimens. The model explicitly
considers both the random spacing and geometry of the sidewall

Fig. 10 Comparison of the strength distributions of MEMS spec-
imens predicted by the renewal weakest-link model and the sim-
plified model

Fig. 11 Plot of relative error Δ1(σN) defined in Eq. (35)
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grooves. It is shown that, at the large-size limit, the model predicts a
Weibullian strength distribution, which is consistent with the theory
of extreme value statistics. The model agrees well with the mea-
sured strength distributions of MEMS specimens of different
lengths.
The salient feature of the model is that it predicts an intricate size

effect on the strength distribution of MEMS specimens, which gives
rise to a mean size effect curve. Within the present model frame-
work, the asymptotic properties of the mean size effect curve can
be related to the statistical properties of the local material strength.
The relationship implies that the failure statistics of the specimen
can be determined from the mean size effect curve, which is much
more efficient than the conventional histogram testing method.
It is shown that the present renewal weakest-link model can be

approximated by an equivalent weakest-link model. The model
uses only the average number of surface grooves and the expecta-
tion of the reliability function of each groove. This simplification
provides an efficient means for determining the strength distribution
of MEMS specimens.
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[40] Bažant, Z. P., 2004, “Scaling Theory of Quaisbrittle Structural Failure,” Proc.
Nat’l. Acad. Sci., USA, 101(37), pp. 13400–13407.
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