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Abstract A static meshfree implementation of the

bond-based peridynamics formulation for linearly

elastic solids is applied to the study of the transition

from local to nonlocal behavior of the stress and

displacement fields in the vicinity of a crack front and

other sources of stress concentration. The long-range

nature of the interactions between material points that

is intrinsic to and can be modulated within peridy-

namics enables the smooth transition from the square-

root singular stress fields predicted by the classical

(local) linear theory of elasticity, to the nonsingular

fields associated with nonlocal theories. The accuracy

of the peridynamics scheme and the transition from

local to nonlocal behavior, which are dictated by the

lattice spacing and micromodulus function, are

assessed by performing an analysis of the boundary

layer that surrounds the front of a two dimensional

crack subjected to mode-I loading and of a cracked

plate subjected to far-field tension.

Keywords Discrete approach �Non-local elasticity �
Peridynamics � Stress � Mode I crack fields

1 Introduction

Classical continuum mechanics (CCM) has provided

the foundation for models of the response of solids

subjected to mechanical, thermal, electrical and other

types of loading. The theoretical underpinnings pro-

vided by CCM have enabled the development of

rigorous and robust analytical and computational

techniques that capture complex behavior in solids

and structures including large deformations and time-

dependent nonlinear relationships between stress and

strain. However, because of the intrinsic features and

requirements of its governing equations, CCM is

severely limited in its ability to describe problems

involving geometric discontinuities such as cracks.

For example the classical (local) theory of elasticity,

developed within the CCM framework, cannot

account for the initiation of a crack in an originally

uncracked solid, without resorting to special treat-

ments such as the introduction of potential crack

initiation lines modeled as cohesive zones that obey

certain traction-separation laws [5, 18, 40, 42]. In fact,

the partial differential equations associated with

boundary value problems of elasticity are not defined

along the line that defines the crack front, and

therefore they predict singular strain and stress fields.

Classical plasticity, which is also within the frame-

work of CCM, is yet another example of a theory that

is limited in its scope. Because it does not consider

internal length scales representing the underlying
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microstructure and the evolution of defects, it cannot

account for localization and other important features

of plastic deformation. The limitations of CCM have

been remedied to some extent, either by introducing

into the theories supplementary conditions, or by

generalizing the theories to include material length

scales that are capable of capturing additional phe-

nomena. For example, in order to deal with problems

involving cracks in nominally linear elastic solids and

structures, it became necessary to develop an entirely

new branch of mechanics called linear elastic fracture

mechanics (LEFM) [4, 27, 29]. LEFM, which is

applicable when inelastic deformation is limited to a

sufficiently small region surrounding the crack front,

has proved to be successful in predicting the propa-

gation of existing cracks at known locations within a

structure. However, LEFM cannot predict crack

initiation, and semi-empirical conditions must be

introduced to determine the magnitude of the applied

load that causes crack extension and the path taken by

the crack as it grows. In order to take into account the

effects of microstructure on the macroscopic mechan-

ical response of materials in regions experiencing high

strain gradients, numerous mathematical models of the

so-called generalized (micropolar/micromorphic)

continuum were introduced in the 1960’s [37], along

the lines set out by the Cosserat brothers [17]. This

approach, which involves internal length scales intro-

duced into the model by involving strain gradient

terms in the constitutive laws [2, 38, 45], can be

formulated in gradient or integral forms [22]. It has

been extensively applied to eliminate the physically

inadmissible stress and strain singularities associated

with cracks as predicted by the classical theory of

elasticity. In this context, Aifantis proposed a gradient

elasticity model with only one additional constant in

the constitutive equation that eliminates strain singu-

larities along dislocation lines and crack fronts [1].

Other analytic crack-tip strain and stress fields have

been derived using an implicit enhanced gradient

elastic theory [3, 30]. While gradient-elasticity theo-

ries provide a satisfactory description of the non-local

behavior, they suffer from the problem of how to

interpret and satisfy the strain gradient boundary

conditions. In the integral model, the stress-strain

relations present additional integral terms involving an

appropriately weighted strain field [22, 23, 45]. Erin-

gen et al. [23] applied this idea to obtain a nonlocal

elasticity solution of the Griffith crack problem that

exhibited a finite stress along the crack front. How-

ever, the integral type nonlocal theory retains the

problem of requiring displacement field continuity

[20]. Recently the first mathematical formulation of a

continuum without spatial derivatives was proposed

by Silling [48]. Inspired by the original molecular

theory of elasticity by Navier [41], Cauchy [15] and

Poisson at the beginning of XIX century [11, 44], the

Peridynamic (PD) theory replaces the differential

equations of CCM with integro-differential equations.

Solid materials are considered as a collection of

infinitesimal particles held together by infinitesimally

small forces that are functions of relative displacement

between two interacting particles within a material

horizon of radius d. The size of the horizon changes

depending on the nature of the problem. For problems

that do not exhibit significant nonlocal behavior the

radius is assumed to approach zero, rendering PD

equivalent CCM [51]. On the other hand, for problems

that are expected to have nonlocal physical behavior

[35], an appropriate nonzero value of the horizon is

required. In summary, the most important features of

PD are that it accounts for long-range forces and non-

local physical behavior, and that the governing

equations are valid even when geometric discontinu-

ities evolve within the solid. The PD model as

originally proposed (bond-based PD, i.e. BB-PD) is

a central force model, and therefore (as for the Navier

and Poisson elasticity theory), the Poisson ratio is a

fixed value m ¼ 1=4. However, Silling introduced a

more general formulation, coined state-based PD (SB-

PD), which eliminates this limitation of the BB-PD

[53] and the non-ordinary state-based model (NOSB),

a tool for adapting classical material models for use

with peridynamics. PD has been used to model a wide

variety of problems involving fracture

[8, 12, 25, 35, 49], plasticity and viscoelasticy

[36, 39, 55]. In the context of crack problems, a

bond-based formulation has been used for computing

the PD version of the J-Integral [28] and a NOSB

peridynamic model has been proposed to approximate

the stress and displacements solutions associated with

LEFM [9]. However, the authors are not aware of any

systematic study on the transition from local to

nonlocal behavior of a crack in a nominally elastic

material.

In this paper a peridynamic formulation that

includes two definition of stress within a solid is used

to study the transition from local to nonlocal behavior
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of the stress and displacement fields in the vicinity of a

crack front and other sources of stress concentration.

Some theoretical aspects of PD are treated and the

numerical implementation of the model is discussed.

In particular, an implicit BB-PD scheme is used and an

analytical formulation of the stiffness matrix is

derived. Convergence of the PD formulation to the

results predicted by LEFM, in the limit of the horizon

going to zero, is presented first. This is followed by an

investigation of the non-local behavior predicted by

the PD model (m-convergence [6]). Finally, an

application of the model to a centrally cracked two-

dimensional plate subjected to uniform far-field ten-

sion is presented and discussed within the context of

network materials.

2 The discrete linearized peridynamic model

PD can be considered a macroscopic scale version of

molecular dynamics (MD), in that the material is

modeled as points whose time-dependent position are

determined by integration of their equations of motion.

Therefore discontinuities such as cracks evolve natu-

rally as a consequence of the movements of these

points. PD can be summarized as follows. The

acceleration of any particle at X in the reference

configuration at time t is found from

q
€

uðX; tÞ �
Z

Hx

fðu0 � u;X0 � XÞdVX0 � bðX; tÞ ¼ 0 for X 2 b;

ð1Þ

where b is the domain occupied by the body, while

X0 � X ¼ n and u0 � u ¼ g are the relative position

(i.e. reference bond) and the relative displacement

between the material points X and X0. The body force

vector is b, and f is the pairwise force function in the

peridynamic bond.1 The integral is defined over the

horizon region Hx of radius d (see Fig. 1). For static

problems the discretized form of the (linear momen-

tum) equilibrium equations take the form [57]:

X
j¼1

fðuj � ui;Xj � XiÞDVj þ bi ¼ 0 ð2Þ

where subscripts j denote the particles within the

horizon of particle i. Thus the sum in Eq. 2 is taken

over all nodes j such that jXj � Xij � d (i.e. neighbor-

ing particles of particle i). In the case of a microelastic

PD material, a linear relationship is adopted between

pairwise forces and displacements, and the previoius

equation reduces to

X
j¼1

�
CðnÞg

�
ij

DVj þ bi

¼
X
j¼1

�
cðnÞ n� n

jnj3
g

�
ij

DVj þ bi ¼ 0

ð3Þ

where cðjnjÞ is the micromodulus function. In this

work we adopted two micromodulus functions; one is

constant (cylindrical) and the other is conical. They

are written as

cðjnjÞ ¼
cH0 cylindrical function

cH0

�
1� jnj

d

�
conical function

8><
>:

ð4Þ

The latter exhibits faster convergence to the classical

elasticity solutions (as the horizon approaches zero)

[6, 7]. The expression of cðjnjÞ is obtained by equating,
for a homogeneous deformation, the microelastic

energy density of peridynamic continuum with the

strain energy density of classical linear elastic homo-

geneous body [26]

/ðXÞ ¼ WðXÞ ¼ 1

2

Z

Hx

cðjnjÞs2jnj
2

dVX0 ð5Þ

where s is the bond stretch

s ¼ jnþ gj � jnj
jnj ð6Þ

which in a linearized theory is written as

s ¼ 1

jnj

�
g � n

jnj

�
¼ gn

jnj ð7Þ

where gn is the component of g directed along the

undeformed bond of unit vector n=jnj. For plane-stress
conditions we obtain1 The pairwise force fðn; gÞ is collinear with the deformed

locations of the two particles.
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cH0 ¼

9E

ptd3
cylindrical function

36E

ptd3
conical function

8>><
>>:

ð8Þ

where t is the thickness and E is the Young’s modulus.

The computer code performs the discretization of the

PD body using mesh generation tools developed for

finite-element analyses.

Thus the spatial domain is discretized into a set of

subvolumes, each of which has a single PD material

point located at its centroid. Subsequently an algo-

rithm determines the neighboring particles (i.e. the

connections) of each particle of the discretization. The

linear relationship between the magnitude of the

pairwise force and the bond relative elongation is

taken as (see Fig. 2)

f ¼ cH0 s ð9Þ

We implemented a quadrature scheme in which

partial neighbor intersections are also considered. This

aspect adds complexity to the creation of neighbor lists

(see Fig. 3) but it increases the precision of the

quadrature. The results of the partial neighbor inter-

section computation is calculated using the value of

the volume correction coefficient a [33], defined as

aðnÞ ¼

n� dþ 0:5Dx
Dx

if ðd� 0:5DxÞ\n� d

1 if n�ðd� 0:5DxÞ
0 otherwise

8>><
>>:

ð10Þ

where Dx is the grid spacing. The linear problem is

solved using an implicit scheme where the stiffness

matrix is defined at bond level i.e. ½K�bond as

½K�bond ¼
c

jnj3
aDViDVj

nx
2 nxny � nx

2 � nxny

nxn2 ny
2 � nxny � ny

2

�nx
2 � nxny nx

2 nxny

�nxny � ny
2 nxny ny

2

2
66664

3
77775

ð11Þ

where nx and ny are the components of the bond vector

between the particles i and j. This expression of ½K�bond
can be obtained considering the definition of the

macroelastic potential energy for a PD body

ŴðXÞ ¼ 1

2

Z

b

Z

Hx

cðjnjÞs2jnj
2

dVX0dVX ð12Þ

In the case of a single bond of length jnj between two

particles i and j (see Fig. 4), we can write in a discrete

form the balance of the total macroelastic energy and

the work U done by the external nodal forces fpg (in

the hypothesis of small deformations) as

Ŵ ¼ U �! 1

2
fugT 1

2
fbgcðjnjÞDVijnjaDVjfbgTfug

¼ 1

2
fugTfpg

ð13Þ

where c is the micromodulus of the bond, fug is the

vector representing the particle displacements,

Fig. 1 Reference and

deformed configuration of

the peridynamic body
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fug ¼ uix uiy u j
x u j

y

n oT
ð14Þ

DVi and aDVj are the volumes of the bond particles

(DVj is reduced according to Eq. 10), while b
T defined

as

fbgT ¼ 1

jnj f�cosw � sinw cosw sinwg ð15Þ

and relates the bond particles displacements with the

bond stretch in such a way that

s ¼ fbgTfug ð16Þ

The factor 1/2 in Eq. 12 is included because the energy

stored in each bond is associated equally with the two

particles i and j, thus in the case of a uniform grid it is

removed from Eq. 13 in order to avoid double-

counting of the bonds i� j and j� i. In this way,

following Eq. 13, ½K�bond is given by

½K�bond ¼ fbgcðjnjÞDVijnjaDVjfbgT ð17Þ

Following the assembly of the global structure stiff-

ness matrix, the displacements and forces can be

determined in the usual manner. It is worth noting that

in BB-PD the Poisson ratio of the material assumes the

value 1/3 for (2D) plane stress and 1/4 for (2D) plane

strain and 3D analyses. This is a result of the pairwise

central force nature of the interaction between parti-

cles. The restriction on Poisson ratio is removed in the

improved state-based PD [52, 53]. The state-based PD

formulation eliminates the Poisson ratio restriction,

Fig. 2 (sx) Bond force-bond stretch relationship in peridynamics; (dx) conical and cylindrical influence functions

Fig. 3 (sx) Proximity search procedure for neighboring list

identification (in green the full neighboring particles with a ¼ 1

and in cyan the partial neighboring particles); (dx) Volume

correction coefficient a within the horizon. The ratio decreases

to 1/2 at the border of a horizon
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but it comes with a computational penalty, normally

increasing the cost by a factor of at least two compared

with the BB-PD [16]. Since we are interested in the PD

modelling capabilities of nonsingular near-front fields,

and since the specific value of the Poisson ratio does

not influence the qualitative nature of the solutions, in

this paper we use the BB-PD formulation.

3 Convergence schemes, local and nonlocal

behavior

One can dictate whether a PD converges to either local

or nonlocal material response. As shown schemati-

cally (see Fig. 5), in d-convergence the horizon size is
reduced while the number of nodes is maintained

constant inside the horizon region (thus increasing the

overall grid density).

Withm-convergence, on the other hand, the horizon

size is fixed while the grid density is increased

(m ¼ d=Dx is increased). In d-convergence the non-

local solution is expected to converge to the classical,

local solution. On the other hand, under m-conver-

gence the exact nonlocal solution for the particular

horizon size selected is approached (i.e. a parameter

related with the internal length of the material). The

value of d=Dx ¼ horizon/grid spacing ¼ 3 (i.e. the

value of m) represents a good compromise between

computational costs and accuracy of the solution in PD

simulations involving materials with classical local

behavior. Thus in this work the minimum value chosen

for the horizon is d ¼ 3Dx, (m ¼ 3). If m ¼ 1, d ¼
1Dx and the PD model reduces to a truss-type system,

in which each node is connected to only its nearest

neighbors [33]. The modelling of materials which

exhibit evident long range effects is more delicate. It is

worth noting that the stiffness matrix for a nonlocal

model contains nonzero entries for each pair of nodes

that interact directly, and is inherently more dense than

that of a local model. Moreover, large increases in

computational costs occur as the number of elements

within each quadrature point’s horizon increases

leading to higher integration costs as well as higher

linear or non-linear solver costs due to an increase in

the overall size of the system. Figure 6 shows the

structure of the stiffness matrix for d ¼ 3Dx and d ¼
12Dx (where Dx is the grid spacing), for a discretized

circle made of 14,400 equally spaced particles.

3.1 Peridynamic asymptotic local near crack-front

solution

In this section, the ability of the PD solver to capture

the near-crack front displacement and stress fields of

classical elasticity (in the limit of the horizon going to

zero, i.e. d-convergence) is investigated. The universal
nature of the asymptotic fields near the crack front

eliminate the need to model finite geometry specimens

and specific loadings when studying the near-crack

front region.

The dominance of the asymptotic solution allows a

boundary layer analysis involving only the near-front

region, to which the effects of the loading and

specimen geometry are transmitted by prescribing to

its boundary the displacement field from this elastic

solution and the associated stress intensity factors

[21, 43]. The performed analysis setup is shown

schematically in Fig. 7, where a circular shape of

diameter 2a, unit thickness, and crack of length a (note

that this model represents a crack whose length is

infinite compared to the size of the modeled region), is

subjected to displacement boundary conditions along

its entire circumference corresponding to the plane

stress ‘‘K-field’’ solution (Williams [56])

Fig. 4 Schematics of bond configuration connecting two

particles i and j and definition of displacement and force

components
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Fig. 5 d-Convergence scheme (upper part of the figure) andm-convergence procedure (lower part of the figure) for a discretized circle

of radius a

Fig. 6 Sparsity pattern of the K-matrix computed for a peridynamic model with d ¼ 3Dx (sx) and d ¼ 12Dx (dx). The non-zero

elements in K-matrix are counted by the nz parameter
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�
ux

uy

�
¼ KI

2l

ffiffiffiffiffiffi
r

2p

r cos
h
2

� �
k�1þ2 sin2

h
2

� �� �

sin
h
2

� �
kþ1�2 cos2

h
2

� �� �

8>>><
>>>:

9>>>=
>>>;

ð18Þ

where the polar coordinates (r; h) are defined at the

crack-tip, l ¼ E=2ð1þ mÞ is the shear modulus, and

k ¼ ð3� mÞ=ð1þ mÞ for plane stress. The boundary

layer analysis thus greatly reduces the simulation

volume size, and allows the results to be applied to

finite geometry configurations whose near-crack front

regions are dominated by their own (known) stress

intensity factors [21]. The strategy used in this work to

model the pre-existing crack is to include in the

proximity search procedure a geometric entity through

which bonds cannot pass. Any bond that would pass

through the crack plane is excluded from the model. In

this way the crack has zero thickness which does not

depends on the specific discretization of the problem,

and some particles near the crack line would have a

truncated sphere of interaction Hx. If instead the crack

is modeled simply eliminating a row of particles, the

consequence is that the crack thickness depends on the

discretization.

In what follows, E ¼ 70 GPa, m ¼ 1=3, and the

loading amplitude is specified by prescribing KI ¼ 1,

with the displacement boundary conditions given by

Eq. 18 applied over a boundary region along the

circumference. Four values of grid spacing

(Dx ¼ 1=15a; 1=30a; 1=60a; 1=120a) and two differ-

ent micromodulus functions (constant and conical)

have been used with a constant value of m equal to 3,

as specified in the previous section. In this way,

keeping m ¼ 3 fixed, the value of d was progressively
decreased and set equal to d ¼ 0:2a; 0:1a; 0:05a;

0:025a, respectively. Eight different linear analyses

have been performed using the PD code. The error

norms (Table 1) show that even for d ¼ 0:1a the

computed values of the crack opening displacement

Duy (Fig. 8) and the ux and uy displacement values are

in perfect agreement with the analytical values

obtained with Eq. 18. In fact, for the models with d ¼
0:1a and d ¼ 0:05a (see Fig. 9), the average differ-

ence between the computed values of the vertical

displacement field and those provided by the asymp-

totic formulas are less than 0.35% and 0.18%, respec-

tively. Moreover the conical micromodulus function

reduces the average difference in vertical displace-

ments with respect to the values obtained adopting a

constant micromodulus function (see Table 1).

Even though the PD theory is more general than the

conventional (elasticity) theory, it is possible to relate

the PD bond forces and their distributions, to the notion

of stress in the continuum theory [24]. According to a

physically-based interpretation of stress similar to that

given by Cauchy [10, 13] in the early discussions on

elasticity,2 and adapting this concept to peridynamics,

the PD traction vector with respect to plane p and with

outward pointing unit normal n� at point X can be

obtained by computing all the interactions between

particles arranged on a line normal to the area of

interest and particles beneath this surface. This

concept can be expressed in integral form as

tðX; n�Þ

¼
Z

Ls

Z

Hþ
X

fðu0 � bu;X0 � bXÞdVX0ds ð19Þ

where Hþ
X is the positive part of the horizon region HX

(i.e. the family of X) and Ls is the set of collinear

Fig. 7 Geometry and boundary conditions used for the analysis

of near-tip solution under Mode I

2 Adapted from [10]: Let us consider a plane p of unit normal n�

through a point X, dividing the body into two parts, which we

will suppose horizontal [...]. Let us denote by bþ the upper part

and b� the lower part, in which we will include the material

points belonging to the plane itself. Consider a cylinder B,

having an infinitesimal base dA on the plane p and containingX,
located in the half space b�, the height of which is at least the

same as the radius of molecular activity. The force of the

molecules of bþ over those of B, divided by dA, will be the

pressure exerted by bþ over b�, with respect to the unity of

surface and relative to the point X.
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points (characterized by a maximum distance d from

X) in the opposite direction of n� such that

Ls ¼ bX 2 H�
X : ðbX ¼ X� sn�Þ; 0� s\d

n o
ð20Þ

being

Table 1 Average error (respect to analytical solution LEFM) in peridynamic displacements solution for the three models adopted

with different d and m ¼ 3

Av. error (%) d ¼ 0:2a d ¼ 0:1a d ¼ 0:05a d ¼ 0:025a

ux (cylindrical) 0.324 0.238 0.065 0.029

uy (cylindrical) 0.517 0.301 0.174 0.096

ux (conical) 0.371 0.163 0.071 0.037

uy (conical) 0.479 0.243 0.127 0.081

Fig. 8 Crack opening displacement, Duy, obtained considering (sx) cylindrical micromodulus function and (dx) conical micromodulus

function with an assigned value of m (i.e. d-convergence)

Fig. 9 Displacement map obtained from the Peridynamic simulation with d ¼ 0:05a and m ¼ 3: (sx) ux (dx) uy
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H�
X ¼ fX0 2 b : ðX0 � XÞ � n�\0g ð21Þ

Equation 19 represents the original definition of the

peridynamic traction vector given by Silling [48] in

the context of homogeneous deformations. Other more

sophisticated notions of the traction vector are possi-

ble for collections of particles that interact through

finite distances [32, 34]. However, as Silling asserts,

all such notions are somewhat artificial, since the idea

of a stress is fundamentally tied to the idea of particles

that are in direct contact with each other [48]. The

formal discretized equation of the peridynamic trac-

tion vector in the case of regular grid of particles can

be written as

tðXi; n
�Þ

¼
XS�
k¼1

XHþ

j¼1

fðuj � uk;Xj � XkÞDVjDxk

¼ 1

Ai

XS�
k¼1

XHþ

j¼1

fðuj � uk;Xj � XkÞDVjDVk

¼ 1

Ai

XS�
k¼1

XHþ

j¼1

�
f ðuj � uk;Xj � XkÞ

gn
jgnj

�
DVjDVk

ð22Þ

where i is the index of the particle for which the

traction vector is computed, S� is the total number of

collinear particles Xk determined by the limit of the

influence zone of the i-particle in the negative side,

and Hþ is the number of particles in the positive side

of the i-particle’s horizon. Ai denotes the area

corresponding to the i-particle, as Fig. 10 shows.

According to Love [34], when defining a stress

measure in a system of particles, the linear dimensions

of the surface of interest on p are supposed to be such

that the forces between particles, whose distance apart

are greater than these linear dimensions, are negligi-

ble. Hence, in our case the intersection between HX

and p is a circle of radius d. The normal component of

the traction vector defined above is the normal stress

rn� ¼ tðXi; n
�Þ � n� ð23Þ

It is worth noting that in principle, the fact of

choosing a positive side instead of a negative side of

the discretized domain HX is arbitrary. Moreover due

to the discrete nature of Eq. 22 and following the

considerations made in [24, 32] we calculate rn�
relatively to plane p and with outward pointing unit

normal n� at Xi heuristically as the average of the two

values obtained integrating only in the positive part

and then in the negative part of the horizon region. For

a more precise measure of the stress, the partial

intersections and the partial particles volumes should

also be considered in the computations. A specific

subroutine which reads the displacement values as

input and computes the peridynamic traction at X

summing up the forces which satisfy the definition just

given, has been implemented. Clearly according to

this definition of stress, there is a less number of

interactions between particles j and k at zones close to

the problem boundaries. Particles in these zones would

have a truncated sphere HX with radius d, where

particles within this volume interact.

The full-field LEFM classical ryy near-tip solution

ryy ¼
KIffiffiffiffiffiffiffiffi
2pr

p cos

�
h
2

��
1þ sin

�
h
2

�
sin

�
3h
2

��
ð24Þ

is compared with the PD solution obtained with the

different models adopted. Given the specific condi-

tions of the problem here analyzed, ryy obtained with

this procedure is in good agreement with the analytical

formula, as the horizon size decreases. In fact Figs. 11,

12, 13 and 14 clearly show the accuracy of the

proposed algorithm in computing ryy near the tip, even
in this case of non-homogeneous deformation field. It

is noted that since we calculate the PD stress ryy at

each point Xi, we refer to ryy; h ¼ 0 as the stress

Fig. 10 Definition of the PD traction vector at point Xi

according to Eq. 22 with respect to plane p of outward pointing

unit normal n�
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Fig. 11 Details of the 1D near-tip stress ryy obtained considering (sx) cylindrical micromodulus function and (dx) conical

micromodulus function with an assigned value of m (i.e. d-convergence)

Fig. 12 a Full ryy stress field map computed with the PD solver for d ¼ 0:05 and m ¼ 3, adopting a conical micromodulus function

Fig. 13 Contours of the ryy stress field map computed with the PD solver for d ¼ 0:05 and m ¼ 3; comparison of the PD solution with

the classical LEFM solution; (sx) cylindrical function; (dx) conical function
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computed for those points nearest to the crack plane,

i.e. the points along y ¼ �Dx=2. For this reason in all
the figures which show the 1D near-tip stress

ryy; h ¼ 0, also the stress values corresponding to

x=a\0 are reported. In fact these values are associated

with physical particles positioned behind of the crack

tip. An important consideration is that due to what just

said and due to non-local actions, there exists a

transition zone in which ryy is reduced from a

maximum value ahead the crack-tip, to zero behind

the tip, where no bonds can cross, of course, the crack

line [19]. Given a specific mesh, the size of this

transition zone depends on the non-locality of the

model, thus in the case of a fixed grid spacing Dx, it
increases as the m-parameter increases (refer to

Fig. 15 for a graphical explanation of this concept).

The differences between the solutions obtained con-

sidering a cylindrical and conical micromodulus

function appear to be more evident in the stress map

than in the displacement map (see for example

Table 1; Fig. 13). For each discretization considered,

the analytical asymptotic local near-front ryy is quite
better approximated by the conical function solution

than the cylindrical one, specially along h ¼ 0. In fact

a deeper analysis of the results show that the differ-

ences between the analytical solution and the PD

solution results, in the case of conical micromodulus

function, are more influenced by the orientation h than
those obtained with the constant function.

At this point it is interesting to compare the

definition of stress used in this work, to that introduced

in [32], which is strictly related to an original stress

definition due to Saint Venant [46] and accepted later

by Cauchy [32, 54]. According to this definition [14],

the total stress on an infinitesimal element of a plane

taken within a deformed elastic body is defined as the

resultant of all the actions of the molecules situated on

one side of the plane upon the molecules on the other,

the directions of which intersect the element under

consideration. Replacing the notion of molecule with

the PD particle results in a mechanistic definition that

is consistent with the well known stress concept of

classical continuum theory [32]. Considering an

arbitrary plane p passing through X which has a

normal vector n� and divides the family regionHX into

two pieces, the force which one part exerts on the other

can be expressed as

FðHXþ ;HX�Þ

¼
Z

H�
X

Z

Hþ
X

fðu00 � u0;X00 � X0ÞdVX00VX0 ð25Þ

The line segment X00 � X0 given by the couple of

interacting points intersects the dividing plane p at a

unique point X. The line segment X00 � X has the

length f and points in the outer direction v, i.e.

v � n� [ 0. The line segment X� X0 has the length t
and points in the opposite direction such that

Fig. 14 Three-dimensional ryy near-tip peridynamic stress distribution obtained considering a fixed grid spacing: (sx) non-local stress

field (cylindrical function, d ¼ 0:2am ¼ 12), (dx) local stress field (conical function, d ¼ 0:05am ¼ 3)
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X00 ¼ Xþ fv; X0 ¼ X� tv ð26Þ

The integration over all interacting couples ½X00;X0�
can be rewritten as a surface integral over the contact

plane p of a corresponding surface density, i.e. the

traction vector tðX; n�Þ. Hence, the PD traction vector

with respect to plane p, with outward pointing unit

normal n� at point X is now defined by [32]

tðX; n�Þ ¼ 1

2

Z

L

Zd

0

Zd

0

ðfþ tÞ2

f½u00 � u0; vðfþ tÞ�v � n�dfdtdxv

ð27Þ

where L denotes the unit sphere, and dxv denotes a

differential solid angle onL in the direction of any unit

vector v. The factor of 1 / 2 appears in Eq. 27 because

the integral sums the forces on X0 due to X00 and those
on X00 due to X0 [32, 51]. Equation 27 can be

simplified and written in discrete form as

tðXi; n
�Þ

¼ 1

Ai

XH�

k¼1

XHþ

j¼1

fðuj � uk;Xj � XkÞDVjDVk

¼ 1

Ai

XH�

k¼1

XHþ

j¼1

�
f ðuj � uk;Xj � XkÞ

gn
jgnj

�
DVjDVk

ð28Þ

where H� is the number of particles in the negative

side of the i-particle’s horizon.

The summation involves only the set of bonds

passing through or ending at the cross section Ai from

the positive side, as Fig. 16 shows. Obviously,

following Eq. 27 the same operation involving this

time the bonds from the negative side is also required.

The sought traction vector is then given by the sum

divided by two of these two values.

The stress algorithms described by Eqs. 22 and 28

lead both, to the classical LEFM solution as the

horizon goes to zero (see Fig. 17). However each

definition of stress is characterized by distinctive

features so that different non-local solutions can be

obtained, as the horizon size increases. In fact the

stress definition derived from Eq. 27 is differently

influenced by long-range interactions with respect to

Eq. 22. Both stress definitions can be traced back to

original concepts developed in the early days of

elasticity, however the stress definition corresponding

to Eqs. 27–28 seems to be strictly related to the

classical and local continuum concept of stress. In

particular, the normal stresses near the crack surfaces

are almost vanishing with Eq. 28 while one observes

non-vanishing normal stress near the crack surfaces

using the approach derived from Eq. 22 close behind

the tip, as previously discussed . Indeed, ryy obtained
with Eq. 28 also experiences a transition zone in

Fig. 15 Definition of theHþ
X region valid for the calculus of ryy

and corresponding to the first three particles siting behind of the

crack-tip: Example with m ¼ 5

Fig. 16 Definition of the PD traction vector at point Xi

according to Eq. 28 with respect to plane p of outward pointing

unit normal n�
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which the ryy stress goes from amaximum value ahead

the crack-tip, to zero behind the tip. However such

transition zone is not as smooth as that corresponding

to Eq. 22, as Fig. 17 shows. Moreover higher maxi-

mum non-local stress along the crack plane is obtained

with Eq. 28.3 Other definitions of stress could lead to

other less or more different non-local solutions. This

should not be surprising because the bond-based

peridynamics microelastic model is built considering

only the pairwise force acting between particles as

work-conjugate of the corresponding bond stretch of

the ligament. Thus the equilibrium Eq. 1 together with

a constitutive f–s relationship essentially contain the

totality of the peridynamic model for linear and non-

linear materials [50] and no concept of stress and strain

are strictly needed or directly used within the theory.

3.2 Peridynamic nonlocal near-front solution

For an assigned grid spacing Dx, an increase in both

the horizon size and the value of m results in the stress

field changing from the values predicted by the

singular solution to finite (non-singular) values con-

sistent with the previously mentioned non-local solu-

tions. This aspect is emphasized by considering

different values of m (note that d is not held fixed so

at the same time also the value of the horizon is

increased) are adopted for a given discretization

Dx ¼ 1=60a. The influence of the micromodulus

function adopted (cylindrical and conical) is also

investigated. Since we do not have the exact solution

for the nonlocal problem, we compare the results with

those of the classical solution for illustration purposes.

It can be noted that the non-local stress solutions

shown in this paragraph are consequence of the

specific heuristic stress computation algorithm used

in this work and which is applied to the study of the

transition from local to nonlocal behavior of the ryy
stress field. As seen in Fig. 18, as the horizon increases

(and thus the m value), the difference between the PD

model and the classical singular model of the stress

component ryy increases. This effect is less evident but
still present for the case of conical influence function.

In fact, the computed magnitude of stress ahead of the

crack tip changes from a certain value to zero within a

very short distance. In the case of d ¼ 0:2a and m ¼
12 a strong non-local behavior appears. The estimated

stress has a maximum at some distance in-front of the

tip and then drops towards a lower magnitude at the

tip, a feature that is in accordance with other non-local

(gradient and integral) theories and experiments in

network materials (see Fig. 19 for details). This

particular behavior has been widely observed in

network materials and implies that the physical stress

field in heterogeneous fiber-based materials is finite

and experiences nonlocality: the fibers introduce long-

ranging actions that limit the size of gradients in strain

and stress around defects and cracks [30]. Differences

are also evident in the near-tip horizontal displacement

field between the two extreme cases of d ¼ 3 with

conical micromodulus function and m ¼ 12 with

cylindrical function (see Fig. 20). Moreover, the

results in the sequences shown in Figs. 21 and 22

suggest that as the level of nonlocality increases, the

shape of the crack-front becomes more and more

Fig. 17 Details of the 1D near-tip stress ryy obtained with Eq. 22 and with Eq. 28: (sx) local solution and (dx) non-local solution

3 It can be noted that Eq. 28 is used in this work only to compute

the results shown in Fig. 17.
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Fig. 18 Details of the 1D near-tip stress ryy obtained considering (sx) cylindrical micromodulus function and (dx) conical

micromodulus function for a fixed grid spacing Dx ¼ 1=60a, while increasing the value of m (and thus also the value of d)

Fig. 19 Full ryy stress field map computed with the PD solver for d ¼ 0:2 and m ¼ 12 and cylindrical micromodulus function

Fig. 20 Contour map of the ux near-tip peridynamic displacements obtained considering a fixed grid spacing: (sx) non-local solution

(cylindrical function, d ¼ 0:2a m ¼ 12); (dx) local solution (conical function, d ¼ 0:05a m ¼ 3)
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blunt. This type of blunting is a phenomenon observed

experimentally in microstructured materials such as

non-woven felts and paper. It is caused by bending

deformation of fiber segments in the vicinity of the

crack-front [30]. In a bond-based PD model instead,

this behavior is due to a macroscopic bending

deformation of the horizon region corresponding to

particles siting near the crack-tip. The blunting effect

may be observed visually: when loaded, blunted

cracks have rectangular shapes rather than sharp

elliptical as expected in linearly elastic fracture

mechanics. PD can easily model this important feature

of such type of materials because of its implicit

definition of an internal length related to the horizon d.
However at this point it is important to know what is

the value of m for an assigned d and crack length a

such that the non-local PD solution is well approxi-

mated numerically for that situation (i.e.

m-convergence Fig. 23). Adopting a fixed value of

d ¼ 0:2a, m is increased from m ¼ 3 to m ¼ 24. The

results summarized in Fig. 23 reveal that m ¼ 12 is a

good balance and compromise of accuracy of the non-

local numerical solution and computational efficiency.

Note that the normal stress on the crack surfaces ryy
very close to the crack front does not vanish. The

distance from the crack-tip to the point of maximum is

roughly 0.25 times the characteristic length parameter

d that controls the range of nonlocal actions.

4 Square plate with a pre-existing central crack

subjected to far-field tension (the Griffith

problem)

In this example we apply the PD solver to what is

referred to as a multiscale Griffith problem. A square

Fig. 21 Crack opening displacement, Duy, obtained considering (sx) cylindrical micromodulus function and (dx) conical

micromodulus function for a fixed grid spacing Dx ¼ 1=60a while increasing the value of m (and thus also the value of d)

Fig. 22 Crack surface

profiles obtained

considering a fixed grid

spacing: (sx) non-local

crack tip (cylindrical

function, d ¼ 0:2a m ¼ 12);

(dx) local crack tip (conical

function, d ¼ 0:05a m ¼ 3).

The increase of the density

of peridynamic particles

within the horizon results in

severe blunting at the tip in

contrast to the sharpened

shape given by the local PD

model and LEFM
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plate with a central crack (crack length l ¼ 1=2a) and

unit thickness is considered, with uniform ry stress

applied at the boundaries as shown in Fig. 24. The

simulation is presented for the purpose of demonstrat-

ing the convergence capabilities of the PD solver in

problems involving finite size. To this end two

different PD nonlocal solutions are compared (both

obtained adopting m ¼ 12) that correspond to horizon

values equal to d ¼ 1=5a ¼ 2=5l and d ¼ 1=20a ¼
1=10l, respectively.4 As discussed in previous

sections, since we do not have the exact solution for

the PD nonlocal problem, we compare the two

numerical non-local solutions with the classical

LEFM solution of the Griffith problem. The material

density is 2500 kg/m3, and Young modulus is 70 GPa.

In this example only the cylindrical micromodulus

function is considered. Different behaviors result from

the simulations (non-local effects arise with different

Fig. 23 Details of the 1D near-tip stress ryy obtained considering a cylindrical micromodulus function with a fixed value of horizon d
while increasing the value of m (i.e. m-convergence)

Fig. 24 Square lamina containing an initial center crack, under tension (Griffith problem): (sx) layout of the problem; (dx) undeformed

and deformed configuration calculated with the PD code corresponding to the model made of 14,400 particles

4 Since from the previous section we know that setting m ¼ 12

leads to a good approximation of the non-local solution for a

Footnote 4 continued

specific horizon values d, we adopt such value in the simula-

tions. In this way the smaller is the horizon d, the smaller is the

grid spacing.
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intensity), depending on the specific horizon-crack

length ratio considered. The effect of increasing d=l
keeping m ¼ 12 fixed is twofold: the maximum stress

near the tip is reduced and the crack surface profile

becomes more blunt (see Figs. 25, 26, 27). These

procedures could be applied in future works for

modelling the size effect in non-woven felts, paper,

fiber composites, textiles and their alike, i.e. random

fiber networks. In fact, such materials are heteroge-

neous on multiple scales [47] and especially in regions

of high-strain gradient show a strong non-local

behavior. When a macroscopic crack is present, fibers

introduce long-range microstructural effects and dis-

tribute stresses near the crack-front, thus reducing the

probability of failure immediately ahead of the crack

since forces are transferred to remote regions [31].

Moreover a characteristic length (i.e. the average fiber

length as demonstrated by [30]) could be related to the

PD horizon d and to a specific micromodulus function

calibrated on experimental results (see Fig. 28).

Fig. 25 LEFM solution: (sx) vertical displacement uy map and

(dx) ryy stress field of the square lamina. The LEFM solution

(i.e. Local solution) is approximated numerically (maximum

error ’ 0:01%) adopting d ¼ 0:0125a and m ¼ 3 in a model

made of 230,400 particles

Fig. 26 Non-local stress field computed with the Peridynamic solver: (sx) PD non-local solution 1 (d ¼ 0:05a and m ¼ 12, 230,400

particles); (dx) PD non-local solution 2 (d ¼ 0:2a and m ¼ 12, 14,400 particles)
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5 Conclusions

In this study a meshfree static bond-based PD

formulation was applied to conduct an in-depth

evaluation of the numerical method’s capability to

capture the local and non-local stress and displace-

ment fields near the tip. The influence of grid spacing,

micromodulus function and horizon size on the

numerical results was investigated, and the overall

accuracy of the method in approximating the local

LEFM solution was demonstrated for both the crack

opening displacement and the near-tip ryy stress and

displacement fields. Given the specific conditions of

the problem here analyzed, the ryy map obtained using

the heuristic approach proposed seem to be in good

agreement with the analytical formula, as the horizon

size decreases. This is supported by numerous plots

and figures which clearly show the accuracy of the

proposed algorithm in computing the stress intensity

near the tip even in this case of quite complex

deformation field. Then, through an m-convergence

study (i.e choosing an appropriate value of d=Dx), the
non-local solution of the problem was investigated.

The maximum non-singular hoop stress in the near-tip

Fig. 27 Details of the 1D near-tip vertical displacements uy
corresponding to LEFM solution, PD non-local model 1

(d ¼ 0:05a and m ¼ 12, 230,400 particles, red line) and PD

non-local model 2 (d ¼ 0:2a and m ¼ 12, 14,400 particles, blue

line). The increase of the d=l ratio leads to a blunting effect of

the crack surface profile

Fig. 28 Details of the 1D near-tip stress ryy corresponding to LEFM solution, PD non-local model 1 (d ¼ 0:05a and m ¼ 12, 230,400

particles, red line) and PD non-local model 2 (d ¼ 0:2a and m ¼ 12, 14,400 particles, blue line)
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region is substantially well approximated by all the

discretization adopted, whereas the corresponding

values obtained adopting a conical weight function

result to be higher than those computed using a

cylindrical function. The distance from the crack-tip to

the point of maximum is roughly 0.25 times the

parameter d, which is associated with a characteristic

length and controls the range of nonlocal actions.

Results demonstrated that m ¼ 12 is a good compro-

mise between accuracy of the non-local peridynamic

solution for a given horizon d and computational

efficiency. Moreover a comparison between the stress

computation algorithm used in this work and a PD

stress definition strictly related to the familiar concept

of stress of elasticity was made. The two stress

definitions both lead to the asymptotic LEFM solution

as the horizon goes to zero, of course. However, being

each definition of stress characterized by distinctive

features, quite different non-local solutions, as the

horizon size increases, are obtained. Finally, the

capability of the PD solver in modelling the transition

from local to nonlocal behavior of the stress and

displacement fields near the tip accounting for size

effect has been demonstrated by benchmarking it with

a classical 2D Griffith problem. The effect of increas-

ing d/crack-length, keeping m ¼ 12 fixed is twofold:

The maximum stress near the tip is reduced and the

crack surface profile became more blunt, a well known

experimental evidence in heterogeneous materials like

random fiber networks.
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15. Cauchy A (1850) Mémoire sur les vibrations d’un double
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démie des Sciences 1:24–26

47. Shahsavari A, Picu R (2013) Size effect on mechanical

behavior of random fiber networks. Int J Solids Struct

50(20):3332–3338

48. Silling S (2000) Reformulation of elasticity theory for dis-

continuities and long-range forces. J Mech Phys Solids

48(1):175–209

49. Silling S (2014) Origin and effect of nonlocality in a com-

posite. J Mech Mater Struct 9(2):245–258

50. Silling S, Askari E (2005) A meshfree method based on the

peridynamic model of solid mechanics. Comput Struct

83(17–18):1526–1535

51. Silling S, Lehoucq R (2008) Convergence of peridynamics

to classical elasticity theory. J Elast 93(1):13–37

52. Silling S, Lehoucq R (2010) Peridynamic theory of solid

mechanics. Adv Appl Mech 44:73–168

53. Silling S, Epton M, Weckner O, Xu J, Askari E (2007)

Peridynamic states and constitutive modeling. J Elast

88(2):151–184

54. Timoshenko S (1983) History of strength of materials.

Dover, New York

55. Weckner O, Mohamed NAN (2013) Viscoelastic material

models in peridynamics. Appl Math Comput

219(11):6039–6043

56. Williams M (1957) On the stress distribution at the base of a

stationary crack. J Appl Mech Trans ASME 24:109–114

57. Zaccariotto M, Luongo F, Sarego G, Galvanetto U (2015)

Examples of applications of the peridynamic theory to the

solution of static equilibrium problems. Aeronaut J

119(1216):677–700

123

Meccanica (2018) 53:3495–3515 3515


	Bond-based peridynamic modelling of singular and nonsingular crack-tip fields
	Abstract
	Introduction
	The discrete linearized peridynamic model
	Convergence schemes, local and nonlocal behavior
	Peridynamic asymptotic local near crack-front solution
	Peridynamic nonlocal near-front solution

	Square plate with a pre-existing central crack subjected to far-field tension (the Griffith problem)
	Conclusions
	References




