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Geomaterials such as vuggy carbonates are known to exhibit multiple spatial scales. A
common manifestation of spatial scales is the presence of (at least) two different scales of
pores with different hydromechanical properties. Moreover, these pore-networks are con-
nected through fissures and conduits. Although some models are available in the litera-
ture to describe flows in such media, they lack a strong theoretical basis. This paper aims
to fill this gap in knowledge by providing the theoretical foundation for the flow of incom-
pressible single-phase fluids in rigid porous media that exhibit double porosity/perme-
ability. We first obtain a mathematical model by combining the theory of interacting
continua and the maximization of rate of dissipation (MRD) hypothesis, and thereby pro-
vide a firm thermodynamic underpinning. The governing equations of the model are a
system of elliptic partial differential equations (PDEs) under a steady-state response and
a system of parabolic PDEs under a transient response. We then present, along with
mathematical proofs, several important mathematical properties that the solutions to the
model satisfy. We also present several canonical problems with analytical solutions
which are used to gain insights into the velocity and pressure profiles, and the mass
transfer across the two pore-networks. In particular, we highlight how the solutions
under the double porosity/permeability differ from the corresponding ones under Darcy
equations. [DOI: 10.1115/1.4040116]

1 Introduction and Motivation

Most models of flow in porous media make the simplifying
assumption that the domain consists of a system of similar-sized
pores connected by a single pore-network. In reality, many geo-
materials such as aggregated soils or fissured rocks exhibit two or
more dominant pore-scales connected by multiple pore-networks
[1–7] that display significantly different hydromechanical proper-
ties such as disparate permeabilities and different orders of vol-
ume fractions. As an example, let us consider a pile consisting of
large clay pieces. In such a medium, clay pieces form the macro-
network with the voids between them being considered as the
macropores while the existing system of fissures and cracks form
the micropores. It is worth mentioning that in such a system, the
degradation of macropores over time leads to an increase in the
amount of micropores. Moreover, due to recent advances in 3D
printing and additive manufacturing, it is also possible to obtain
synthetic media with two distinct pore-networks. For example, in
Fig. 1, the pores between the spheres construct the macronetwork,
while the micronetwork has been generated by drilling cylindrical
holes in the spheres.

Porous materials with two dominant pore-networks have been
studied in the literature under the subject of either the dual-
porosity or dual-permeability. (A recent work [6] even documents
prior works along with a comprehensive treatment of porous
materials with multiple pore-networks.) However, there is a subtle
difference in the phenomena the two words describe, and there-
fore, it is necessary to clarify what we mean by dual-porosity and
dual-permeability models. Note that, “dual” and “double” have

been used equivalently in the literature, as will be done in this
paper.

The main assumption in a dual-porosity model is that the per-
meability of the macropores is much greater than the permeability
of the micropores, while the porosity of the former is much
smaller than the porosity of the latter. In other words, fluid is
mostly trapped within the micropores, while macropores form the
major fluid pathways due to their higher permeability. Hence, the
liquid phase is divided into mobile and immobile regions with the
possibility of fluid exchange between them [8–10]. In the most
general case, many rocks contain an independent system of frac-
tures superimposed on the porous matrix and are commonly
known as an intermediate porous medium. Such media are typi-
cally idealized using the dual-porosity model which is of high
interest in petroleum reservoirs. Samples of such rocks are lime-
stones or dolomites. However, other sedimentary rocks such as
cherty shale or siltstone also exhibit the same characteristics [11].
Carbonate rocks have been known to exhibit macropores in form
of fractures and joints for a long time, and the importance of such
porosities in the sandstones was emphasized on by Hayes [12] and
Schmidt and Mcdonald [13]. Moreover, studies have revealed that
natural soils, especially the compacted ones, have two levels of
structure, leading to the appearance of two main classes of the
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Fig. 1 Conceptualization of a synthetic medium with two pore-
scales

Journal of Applied Mechanics AUGUST 2018, Vol. 85 / 081009-1Copyright VC 2018 by ASME

Downloaded From: https://appliedmechanics.asmedigitalcollection.asme.org/ on 06/25/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use



pores (macro- and micropores) corresponding to the two levels of
soil structure [14]. Soils exhibiting such a division of pores can
also be idealized using the concept of dual-porosity. The first
dual-porosity model is commonly attributed to Barenblatt et al.
and addressed the flow through a fractured porous medium [15].
In this paper, a term has been introduced based on the dimensional
analysis arguments to account for the mass transfer across the two
pore-scales (i.e., matrix pores and fissures). Warren and Root [11]
later introduced two parameters for characterizing dual-porosity
media; one measures the fluid capacitance in the macropores, and
the other accounts for the interporosity flow. Dykhuizen [16] pro-
posed a new nonlinear coupling term for double porosity based on
the models proposed by Barenblatt et al. [15] and Warren and
Root [11]. This dual-porosity model, unlike the previous ones,
accounts for the diffusion across pore-networks and is valid even
for unsteady conditions.

In contrast to dual-porosity models, the term dual-permeability
pertains to the case where the fluid flows through both micropores
and macropores, and there can be mass transfer across the pore-
networks [17,18]. Different approaches have been used to
describe flow and transport using dual-permeability models. In
some cases, the flow in both micropores and macropores has been
described using similar governing equations, while in others, dif-
ferent formulations have been considered in the two pore-
networks [9]. However, most of the works on dual-permeability
have considered the macronetwork to be fractures with much
higher permeability than the micronetwork.

Herein, we generalize by assuming that there are two pore-
networks with their own porosity and permeability, and there is a
mass transfer across the pore-networks. The macronetwork can be
a network of fractures, or can be another pore-network. It is possi-
ble to identify the presence of multiple pore sizes using experi-
mental techniques such as the Brunauer–Emmett–Teller method
[19]. Moreover, the multiple pore-networks can be characterized
using modern techniques like l-CT [20]. We shall refer to the
aforementioned general treatment as the double porosity/perme-
ability model. Figure 2 represents the fractured porous medium
idealized by dual-porosity model as well as a porous medium with
two pore-networks idealized by a double porosity/permeability
model. The vertical and horizontal arrows represent the fluid path-
ways and the mass transfer within the domain. In the fractured
porous medium idealized by dual-porosity model, mass transfer
can occur between matrix pores and the fractures, and the fluid
mostly passes through the fissures due to their higher permeabil-
ity. In the porous medium with two pore-networks, mass is trans-
ferred across the two pore-networks but in this case, both
micropores and macropores provide the pathways for pore fluid.

Although various models have been developed for double
porosity/permeability over the years, many of them are applicable
to simple settings and are valid only under stringent conditions.
Some mathematically oriented works derived dual-porosity mod-
els using the theory of mathematical homogenization (e.g., see
Refs. [21–23]). However, these papers did not address the relevant
thermomechanical underpinning, and did not provide a coherent
framework that makes it possible to obtain generalizations of
those models in such a way that the thermomechanics principles
are satisfied. Homogenization is a mathematical tool for up-
scaling differential equations. In homogenization theory, a com-
plex, rapidly varying medium is represented by a slowly varying
medium in which the fine-scale structure is averaged out properly,
and a “homogenized” or “effective” system of equations is
obtained at the macroscopic level [24]. In other words, the prob-
lem at hand is embedded in a set of problems which are parame-
trized by a scaling parameter [25]. Most importantly, the
presentations of most of the prior works on double porosity/
permeability seem rather ad hoc, especially with respect to the
treatment of mass transfer across the pore-networks. A notable
exception is Ref. [5], which is discussed later. The ad hoc treat-
ment of mass transfer is one of the main hurdles researchers are
faced with while generalizing the mathematical model to more

complicated situations like multiphase flows and considering the
effect of deformation of the porous solid along with flow in mul-
tiple pore-networks. Herein, we put the double porosity/perme-
ability model under a firm footing with strong thermodynamic
and mathematical underpinnings. In particular, we give a firm
basis for the mass transfer across the pore-networks, and a math-
ematical framework amenable to further generalizations of the
model.

The basic philosophy in our modeling approach can be stated as
follows: (a) there exist (at least) two different pore-networks; (b)
each pore-network is assumed to be a continuum, and transport of
mass and chemical species can occur within each pore-network;
(c) mass can be transferred between the pore-networks. The
parameters and quantities in the model represent values that are
averaged over a representative volume element whose existence is
either tacitly or explicitly assumed in most of the double porosity/
permeability models. For simplicity, we will model the flow in
both networks using similar governing equations (i.e., Darcy-type
equations), but one can use different descriptions of flows in dif-
ferent pore-networks.

An important paper toward the theoretical development of dou-
ble porosity models is by Borja and Koliji [5], which, similar to
our paper, employed the theory of interacting continua. However,
our paper and Ref. [5] are complementary at many levels, and
there are important differences in these two approaches, as dis-
cussed below:

(i) Deformation of the porous solid: Borja and Koliji have
considered deformation of the solid, and specifically, they
have assumed the porous solid to be elastoplastic. On the
other hand, we have assumed the porous solid to be rigid.

Fig. 2 Porous media and their idealizations: top part of the fig-
ure displays the idealization of a fractured porous medium
using the dual-porosity model and the bottom part shows the
idealization of a porous medium with two distinct pore-
networks using the double porosity/permeability model. The
arrows represent the fluid pathways and the mass transfer
within the domain.
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(ii) Dissipation: The theoretical framework in Ref. [5] utilizes
the maximum plastic dissipation hypothesis (which is a
popular approach to derive plasticity models; for example,
see Refs. [26] and [27]). On the other hand, we have
employed the maximization of rate of dissipation (MRD)
hypothesis.
In Ref. [5], constitutive equations (e.g., hardening rule) are
derived by taking into account the dissipation due to plas-
tic deformation in the porous solid.
On the other hand, our constitutive equations are derived
by considering the internal dissipation due to fluid flow in
each pore-network and in the connectors. In this process,
the governing equation for mass transfer across the pore-
networks directly stems from the MRD hypothesis, which
is one of the highlights of our paper.

(iii) Effective stress principle: By appealing to the maximum
plastic dissipation, Borja and Koliji obtain the effective
stress for the porous solid with double porosity; which is
an important theoretical advancement toward the modeling
of deformable porous media. Since we have assumed the
porous solid to be rigid, a discussion on stresses in the
porous solid does not arise.

(iv) Compressibility versus incompressibility: Borja and Koliji
have assumed the fluid to be compressible. On the other
hand, we have assumed the fluid to be incompressible.
Their approach is best suited for modeling migration of
gases from micropore network to macropore network. Our
model is more suitable for modeling flow of liquids in
porous media with two distinct pore-networks.

(v) Interpretation of pressure: Due to the above difference (in
terms of (in)compressibility) the interpretation of pressure
in these two works is different. In our paper, the pressure
in a pore-network is a Lagrange multiplier to enforce the
incompressibility of the fluid in that pore-network. In their
work, the pressure is a thermodynamic pressure, and
hence, one needs to specify the so-called equation of state
(which is a constitutive specification).

The rest of this paper is organized as follows. Section 2 outlines
the governing equations for a double porosity/permeability model.
Section 3 presents a mathematical framework for deriving porous
media models by appealing to the theory of interacting continua
and the maximization of rate of dissipation hypothesis, and
obtains the double porosity/permeability model as a special case.
Several mathematical properties of this model are derived in Sec.
4. An analytical solution procedure is presented in Sec. 5. Several
canonical problems along with their analytical solutions are given
in Sec. 6. Finally, conclusions are drawn in Sec. 7.

Throughout this paper, repeated indices do not imply
summation.

2 Mathematical Model

Consider a bounded domain X ! Rnd, where “nd” denotes the
number of spatial dimensions. The boundary @X is assumed to be
piecewise smooth. Mathematically, @X :¼ clðXÞ % X, where cl(&)
denotes the set closure [28]. A spatial point in X is denoted by x.
The gradient and divergence operators with respect to x are,
respectively, denoted by grad[&] and div[&]. The unit outward nor-
mal to the boundary is denoted by n̂ðxÞ.

We are interested in studying the flow of an incompressible
single-phase fluid in a rigid porous medium that consists of two
distinct pore-networks. These pore-networks are connected by
conduits and/or fissures, and hence, there can be mass transfer
across the pore-networks. We shall refer to these two pore-
networks as macropore and micropore networks, and identify
them using subscripts 1 and 2, respectively. The permeability ten-
sors for these pore-networks are denoted by K1(x) and K2(x),
which are assumed to be anisotropic and spatially inhomogeneous
second-order tensors. The porosities in these pore-networks are

denoted by /1(x) and /2(x). Strictly speaking, these two parame-
ters should be referred to as volume fractions. The true density
and the coefficient of viscosity of the fluid are denoted by c and l,
respectively. The bulk densities in the macropores and micropores
are, respectively, denoted by q1(x) and q2(x). That is,

q1ðxÞ ¼ /1ðxÞc and q2ðxÞ ¼ /2ðxÞc (1)

The pressure scalar fields in the macropore and micropore net-
works are, respectively, denoted by p1(x) and p2(x). The true (or
seepage) velocity vector fields in the two pore-networks are
denoted by v1(x) and v2(x), which denote the rate of discharge of
fluid per unit cross-sectional area of pores [29]. The discharge
(or Darcy) velocities, u1(x) and u2(x) (which denote the discharge
of fluid per unit of the total cross-sectional area) are related to the
true velocities as follows:

u1ðxÞ ¼ /1ðxÞv1ðxÞ and u2ðxÞ ¼ /2ðxÞv2ðxÞ (2)

Equation (2) further implies that the true velocity vi(x) is always
greater than the discharge velocity ui(x).

For the macropore network, we shall decompose the boundary
into two parts: Cv

1 and Cp
1. Cv

1 denotes the part of the boundary on
which the normal component of the velocity in the macropore net-
work is prescribed. Cp

1 is that part of the boundary on which the
pressure in the macropore network is prescribed. Likewise, for the
micropore network, the boundary is decomposed into two parts:
Cv

2 and Cp
2. For mathematical well-posedness, we assume that

Cv
1 [ Cp

1 ¼ @X and Cv
1 \ Cp

1 ¼1
Cv

2 [ Cp
2 ¼ @X and Cv

2 \ Cp
2 ¼1

(3)

The governing equations in terms of the true velocities can be
written as follows:

l/2
1K%1

1 v1ðxÞ þ /1grad½p1) ¼ q1bðxÞ in X (4a)

l/2
2K%1

2 v2ðxÞ þ /2grad½p2) ¼ q2bðxÞ in X (4b)

div½/1v1) ¼ þvðxÞ in X (4c)

div½/2v2) ¼ %vðxÞ in X (4d)

v1ðxÞ & n̂ðxÞ ¼ vn1ðxÞ on Cv
1 (4e)

v2ðxÞ & n̂ðxÞ ¼ vn2ðxÞ on Cv
2 (4f )

p1ðxÞ ¼ p01ðxÞ on Cp
1 (4g)

p2ðxÞ ¼ p02ðxÞ on Cp
2 (4h)

where b(x) is the specific body force. vn1(x) is the prescribed nor-
mal component of the velocity on the boundary in the macropores,
and vn2(x) is the prescribed normal component of the velocity on
the boundary in the micropores. p01(x) is the prescribed pressure
on the boundary in the macropores, and p02(x) is the prescribed
pressure on the boundary in the micropores. v(x) is the rate of vol-
ume of the fluid that is exchanged between the two pore-networks
per unit volume of the porous medium. In the rest of the paper,
v(x) is simply referred to as the mass transfer. Herein, the mass
transfer is modeled as follows:

v xð Þ ¼ %
b
l

p1 xð Þ % p2 xð Þð Þ (5)

where b is a dimensionless characteristic of the porous medium.
The above expression for the mass transfer can be traced back to
Barenblatt et al. [15], which was derived based on a dimensional
analysis argument. Some works in the literature refer to such an
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expression for the interporosity flow as the “Barenblatt-Zheltov”
model, for example, see Ref. [30]. Tables are provided in the liter-
ature for b (e.g., see Ref. [15]). Also, with the modern techniques
like micro-CT, one can estimate b using multiscale methods by
considering the actual pore-networks. This is an active area of
research. To provide a physical insight into b, consider that the
two pore-networks are connected by conduits with radius R and
length L. Then, b¼R2/(8L2). If the two pore-networks are con-
nected by fissures, which can be idealized as parallel plates with
length L and separated by a width of h, then b¼ h2/(12L2). These
expressions are obtained by assuming Poiseuille flow in conduits
and Couette flow in fissures. In reality, the two pore-networks can
be connected by both conduits and fissures, and these connectors
can even be tortuous.

Equation (5) represents a linear mass transfer model and is one
of the simplest models available in the literature. Under this
model, it is assumed that the fluid can be exchanged between the
two pore-networks if there exists a sufficiently smooth change of
pressure between the networks. Although such an interporosity
flow equation seems simple, it has been proven to maintain the
essential features of flow through the naturally fractured reservoirs
[30]. Alternatively, multirate mass transfer (MRMT) models have
been proposed and studied in the literature; for example, see Refs.
[10] and [31]. MRMT models employ a Fickian-type transport
model (as opposed to a flow model) for the mass transfer from the
micropore network to the macropore network. Thus, the resulting
problem under a MRMT model will be a coupled flow-transport,
as opposed to pure flow problem under the linear mass transfer
model. Due to a transport model for interpore mass transfer,
MRMT models are particularly useful to study the migration of
gases in porous media with multiple pore-networks. On the other
hand, the linear mass transfer model will be quite useful to study
the flow of liquids in such porous media.

A comparison (in terms of theoretical implications and predic-
tive capabilities) of the linear mass transfer model employed in
this paper and MRMT models is worthy of a systematic scientific
inquiry. But such a study is beyond the scope of this paper.

An alternate form of the governing equations, which is particu-
larly convenient for numerical formulations, is written as follows
in terms of discharge velocities:

lK%1
1 u1ðxÞ þ grad½p1) ¼ cbðxÞ in X (6a)

lK%1
2 u2ðxÞ þ grad½p2) ¼ cbðxÞ in X (6b)

div½u1) ¼ þvðxÞ in X (6c)

div½u2) ¼ %vðxÞ in X (6d)

u1ðxÞ & n̂ðxÞ ¼ /1vn1ðxÞ ¼: un1ðxÞ on Cv
1 (6e)

u2ðxÞ & n̂ðxÞ ¼ /2vn2ðxÞ ¼: un2ðxÞ on Cv
2 (6f )

p1ðxÞ ¼ p01ðxÞ on Cp
1 (6g)

p2ðxÞ ¼ p02ðxÞ on Cp
2 (6h)

The above governing equations, which are for a steady-state
response, form a system of elliptic partial differential equations
(PDEs). It needs to be emphasized that many of the mathematical
properties presented later in this paper depend on the linearity of
the mass transfer model (i.e., Eq. (5)).

3 Proposed Approach to Develop Double Porosity/
Permeability Models

Several porous media models have been developed using the
theory of interacting continua for flow, reactive-transport, and/or

deformation of multiple constituents in a single pore-network or
multiple ones by treating each component to be either a fluid, a
solid or a chemical species. These works include [5,32–35], just
to name a few. The maximization of rate of dissipation hypothe-
sis, which is also referred to as the orthogonality principle and is
similar in spirit to the maximization of entropy production, has
been first proposed by Ziegler to derive the constitutive relations
[36]. An attractive feature of this hypothesis is that prescription of
two physically meaningful functionals (Helmholtz potential and
dissipation functional) provides the constitutive relations even for
a phenomenon which involves a multitude of interacting processes
[37]. Subsequently, this hypothesis has been successfully
employed to develop constitutive models for a wide variety of
physical phenomena, which include inelasticity [38], anisotropic
fluids [39], degradation of materials [40], and diffusion in visco-
elastic polymers [41]. However, the combination of this hypothe-
sis with the theory of interacting continua has not been previously
utilized to derive constitutive relations for porous media with mul-
tiple pore-networks.

Thus, one of the goals of this paper is to combine the theory of
interacting continua and the maximization of rate of dissipation
hypothesis for obtaining a coherent framework to derive models
of flow in porous media with multiple pore-networks. Specifically,
we consider the flow of an incompressible single-phase fluid in a
rigid porous domain.

3.1 Theory of Interacting Continua: A General Setting.
The porous medium is treated as a mixture of N constituents. We
use the word “constituent” to refer to the porous solid or a pore-
network. This usage is slightly different from the usual mixture
theory models. In a typical mixture theory model, a constituent
refers to a different physical/chemical component or a different
phase.

We denote the bulk density, specific body force, partial Cauchy
stress, specific internal energy, specific Helmholtz potential, tem-
perature, heat flux vector, and specific entropy of the i-th constitu-
ent by qi, bi, Ti, Ui, Ai, hi, qi, and gi; respectively.

3.1.1 Kinematics. We denote the time by t. Under the theory
of interacting continua, a mixture is treated as a superposition of
multiple continua each following its own motion. At a given
instance of time, each spatial point x in the mixture is occupied
simultaneously by N different particles pi (i ¼ 1;…;N ), one
from each constituent. The motion of the constituents can be writ-
ten as

x ¼ /iðpi; tÞ i ¼ 1;…;N (7)

with the corresponding velocities defined as follows:

vi ¼
@ui pi; tð Þ

@t
(8)

pi in previous equations represents the material points in the refer-
ence (undeformed) configuration which is a vector-valued
parameter.

The gradient of motion of the i-th constituent is denoted by Fi.
That is,

Fi ¼
@x

@pi

(9)

Let

Li :¼ grad½vi) (10)

and

Di :¼ sym Li½ ) ¼
1

2
grad vi½ ) þ grad vi½ )T
! "

(11)
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We introduce the following material time derivative defined on
arbitrary scalar field w and vector field w:

D ið Þw
Dt
¼ @w
@t
þ vi & grad w½ ) (12)

and

D ið Þw

Dt
¼ @w

@t
þ grad w½ )vi (13)

It is important to note that the material derivative D(i)(&)/Dt fol-
lows the motion of the i-th constituent.

3.1.2 Balance Laws. The local form of the balance of mass of
the i-th constituent can be written as follows:

@qi

@t
þ div qivi½ ) ¼ mi (14)

where mi is the rate of mass transfer into the i-th pore-network per
unit volume of the porous medium. The local form of the overall
balance of mass for the porous medium takes the following form:

XN

i¼1

mi ¼ 0 (15)

Under the theory of interacting continua, the mechanical interac-
tion between constituents is modeled using interaction terms [35].
Herein, we denote the interaction term for the i-th constituent due
to the presence of other constituents by ii. The balance of linear
momentum of the i-th constituent, by taking into account the bal-
ance of mass (i.e., Eq. (14)), takes the following form:

qi
D ið Þvi

Dt
¼ div Ti½ ) þ qibi þ ii (16)

The local form of the overall balance of linear momentum for the
porous medium takes the following form:

XN

i¼1

ii ¼ 0 (17)

We assume a stronger version of the balance of angular momen-
tum for each constituent by asserting that

Ti ¼ TT
i 8i ¼ 1;…;N (18)

The balance of energy of the i-th constituent, by taking into
account the balance of mass (i.e., Eq. (14)) and the balance of the
linear momentum (i.e., Eq. (16)), takes the following form:

qi
D ið ÞUi

Dt
¼ Ti & Li % div qi½ ) þ qiri þ es

i (19)

where es
i is energy supply to the i-th constituent due to the interac-

tion with other constituents, and ri is the (external) specific heat
supply to the i-th constituent. The local form of the overall bal-
ance of energy for the porous media takes the following form:

XN

i¼1

ðes
i þ ii & viÞ ¼ 0 (20)

The second law of thermodynamics, which is a global law, is writ-
ten as follows:

@

@t

XN

i¼1

ð

X
qig idXþ

XN

i¼1

ð

@X
qig ivi & n̂ dC * %

XN

i¼1

ð

@X

qi & n̂
h i

dC

þ
XN

i¼1

ð

X

qiri

h i
dXþ

XN

i¼1

ð

X
mig idX (21)

Recall that n̂ denotes the outward normal to the boundary. The
above inequality can be considered as an extension of the
Clausius–Duhem inequality to multiconstituent media. We
assume the local form to hold, which is stronger than the second
law of thermodynamics. The local form corresponding to the
above inequality reads

@

@t

XN

i¼1

qig i þ
XN

i¼1

div qig ivi½ ) *
XN

i¼1

%div
qi

h i

$ %
þ qiri

h i
þ mig i

& '

(22)

Using the balance of mass (i.e., Eq. (14)), the above inequality
can be simplified as follows:

XN

i¼1

qi
D ið Þg i

Dt
þ div

qi

h i

$ %
% qiri

h i

 !

* 0 (23)

By dividing both sides of Eq. (19) by hi, summing over the num-
ber of constituents, and subtracting the result from the inequality
(23), we obtain the following inequality:

XN

i¼1

qi
D ið Þg i

Dt
% 1

h i

D ið ÞUi

Dt

 !

*
XN

i¼1

1

h i
%Ti &Liþ

1

h i
qi &grad h i½ )% es

i

& '

(24)

We now replace the specific internal energy with the specific
Helmholtz potential using a Legendre transformation, which can
be mathematically written as follows:

Ui ¼ Ai þ h ig i with g i ¼ %
@Ai

@h i
(25)

We assume the functional dependence of the specific Helmholtz
potential to be Ai¼Ai(Fi, hi). Noting that

D ið ÞFi

Dt
¼ LiFi (26)

and using Eq. (20), inequality (24) can be written as follows:

XN

i¼1

1

h i
qi
@Ai

@Fi
FT

i %Ti

& '
&Li þ

XN

i¼1

1

h i

1

h i
qi & grad h i½ ) þ ii & vi

& '
+ 0

(27)

The above inequality can be converted into a convenient equality
by introducing a non-negative functional, W * 0, and the resulting
equality reads

XN

i¼1

1

h i
qi
@Ai

@Fi
FT

i %Ti

& '
&Liþ

XN

i¼1

1

h i

1

h i
qi &grad h i½ )þ ii &vi

& '
þW¼0

(28)

where W is the rate of entropy production per unit volume. The
above equation is referred to as the reduced energy-entropy equa-
tion. If all the constituents have the same temperature, hi¼ h, (i.e.,
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the mixture is in thermal equilibrium) then, the above equation
can be written as follows:

XN

i¼1

qi
@Ai

@Fi
FT

i % Ti

& '
& Li þ

XN

i¼1

1

h
qi & grad h½ ) þ ii & vi

& '
þ f ¼ 0

(29)

where the rate of dissipation per unit volume is defined as
follows:

f ¼ hW (30)

Since W * 0 and h> 0, f * 0. Equation (29) is referred to as the
reduced energy-dissipation equation for multiconstituent media.
It should be emphasized that the mixture is in thermal equilibrium
(i.e., all the constituents have the same temperature at a spatial
point) which does not mean the process is isothermal.

3.2 A Simplified Framework for Double Porosity/Perme-
ability Models. The above framework is presented in a general
setting. We now provide a simplified framework for the problem
at hand, which pertains to the modeling of creeping flows (i.e.,
flows in which convective inertial effects can be neglected) of an
incompressible fluid in rigid porous media with two pore-
networks. To this end, the following choices are made:

(i) There are two pore-networks and a rigid porous medium.
Strictly speaking, there are three constituents. Since the
porous solid is rigid, its motion will be neglected, and all
the balance laws for this constituent are assumed to be
trivially satisfied. Hence, one can take N ¼ 2.

(ii) All constituents at a spatial point have the same tempera-
ture (i.e., h i(x, t)¼ h(x, t)). However, this temperature can
vary with spatial position and time.

(iii) There is no heat transfer. That is, qi¼ 0 and ri¼ 0.
(iv) We assume that the porosities do not change with time.

This is acceptable, as the porous solid is assumed to be
rigid. That is,

@/i

@t
¼ 0 i ¼ 1; 2ð Þ (31)

(v) The fluid in each pore-network is incompressible, which,
mathematically, translates into the following equations:

D ið Þc
Dt
, @c
@t
þ vi & grad c½ ) ¼ 0 i ¼ 1; 2ð Þ (32)

Noting the above relation, Eq. (31) and the balance of the mass
for the mixture (i.e., Eq. (15)) imply that the balance of mass for
an incompressible fluid in each pore-network can be written as
follows:

div½/1v1) ¼ þv and div½/2v2) ¼ %v (33)

where v¼m1/c¼ –m2/c accounts for the mass transfer from the
macropore network to the micropore network. Note that these
incompressibility constraints remain the same in both transient
and steady-state responses.

(vi) The velocity in each pore-network and its (spatial) gradi-
ent are assumed to be small so that the term “grad[vi] vi”
can be neglected. That is, convective inertial effects can
be neglected in each pore-network. Then, the balance of
linear momentum in each pore-network for a transient
response reads

q1

@v1

@t
¼ div T1½ ) þ q1b xð Þ þ i1 (34)

and

q2

@v2

@t
¼ div T2½ ) þ q2b xð Þ þ i2 (35)

and the corresponding ones in a steady-state response reads

div½T1) þ q1bðxÞ þ i1 ¼ 0 (36)

and

div½T2) þ q2bðxÞ þ i2 ¼ 0 (37)

Note that the balance of linear momentum for the mixture (i.e.,
Eq. (17)) does not imply that the interaction terms of both the
pore-networks add up to zero. One should not forget about the
porous solid. Although we have assumed the porous solid to be
rigid and have not documented the balance laws pertaining to it, it
does have an interaction term. The sum of all the three interaction
terms (one for each pore-network and one for the porous solid)
should add up to zero, which is according to the balance of linear
momentum for the mixture.

(vii) We assume that the specific Helmholtz potentials satisfy
the frame-indifference [42]. This will imply that the ten-
sor qið@Ai=@FiÞFT

i is symmetric. The balance of angular
momentum for each constituent implies that the partial
Cauchy stress tensor, Ti, is symmetric. The symmetry of
these tensors implies that the reduced energy-dissipation
can be written as follows:

% T1 % q1

@A1

@F1
FT

1

& '
& D1 % T2 % q2

@A2

@F2
FT

2

& '
& D2

þi1 & v1 þ i2 & v2 þ f ¼ 0 (38)

We now obtain the constitutive relations for the Cauchy stresses,
the interaction terms, and the mass transfer across the pore-
networks using the maximization of rate of dissipation hypothesis.

3.2.1 Obtaining Constitutive Relations Using Maximization of
Rate of Dissipation. We handle the mass transfer across the pore-
networks using an internal variable, which will be taken as
follows: ðt

0

vðx; sÞds (39)

where s is a dummy variable. Then, the rate of the chosen internal
variable will be

d

dt

ðt

0

v x; sð Þds ¼ v x; tð Þ (40)

The mathematical statement of the maximization of rate of dissi-
pation hypothesis for multiconstituent media can be written as
follows:

maximize
D1;D2;v1;v2;v

f ¼ f̂ðD1;D2; v1; v2;vÞ (41a)

subject to % T1 % q1

@A1

@F1
FT

1

& '
& D1 % T2 % q2

@A2

@F2
FT

2

& '
& D2

þi1 & v1 þ i2 & v2 þ f ¼ 0

(41b)

/1tr½D1) þ v1 & grad½/1) ¼ þv (41c)

/2tr½D2) þ v2 & grad½/2) ¼ %v (41d)

Equation (41b) is the reduced energy-dissipation equation for a
two pore-network porous medium, and Eqs. (41c) and (41d) are,
respectively, the incompressibility constraints for the macro- and
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micro-pore-networks. Using the Lagrange multiplier method, one
can rewrite the above constrained optimization problem as the fol-
lowing unconstrained optimization problem:

extremize
D1;D2;v1;v2;v;p1 ;p2 ;k

fþ p1 /1tr D1½ ) þ v1 & grad /1½ ) % v
( )

þp2 /2tr D2½ ) þ v2 & grad /2½ ) þ v
( )

þk % T1 % q1

@A1

@F1
FT

1

& '
& D1i1 & v1

&

% T2 % q2

@A2

@F2
FT

2

& '
& D2 þ i2 & v2 þ f

'

(42)

where k is the Lagrange multiplier corresponding to the reduced
energy dissipation equation (41b), and p1 and p2 are the Lagrange
multipliers enforcing equations (41c) and (41d), respectively. The
first-order optimality conditions of the above optimization prob-
lem yield

T1 ¼ %/1p1Iþ q1

@A1

@F1
FT

1 þ
k þ 1

k

& '
@f
@D1

(43a)

T2 ¼ %/2p2Iþ q2

@A2

@F2
FT

2 þ
k þ 1

k

& '
@f
@D2

(43b)

i1 ¼ grad /1½ )p1 %
k þ 1

k

& '
@f
@v1

(43c)

i2 ¼ grad /2½ )p2 %
k þ 1

k

& '
@f
@v2

(43d)

@f
@v
¼ % p1 % p2ð Þ (43e)

where I denotes the second-order identity tensor. Of course, one
needs to augment the aforementioned optimality conditions with
the constraints given by Eqs. (41b)–(41d). Equations (43a)–(43e)
provide general constitutive relations. One can obtain a specific
constitutive model by specifying A1, A2, and f functionals, and
their prescription is a constitutive specification. Moreover, if f is a
homogeneous functional of order two with respect to its argu-
ments, it can be shown that k¼%2.

3.2.2 A Specific Double Porosity/Permeability Model. One
can obtain the double porosity/permeability model (as given in
Sec. 2) by making the following choices and assumptions:

(i) The specific Helmholtz potentials for the two fluid constit-
uents are taken as follows:

A1 ¼ 0 and A2 ¼ 0 (44)

That is, the two fluid constituents are purely viscous, which is the
case even for the Stokes fluid and the fluid under the Darcy model.
In the jargon of thermodynamics, the zero (specific) Helmholtz
potential of a constituent means that one cannot extract useful
work from the internal energy of the constituent [43].

(ii) The rate of dissipation production is taken as follows:

f ¼ l/2
1v1 &K%1

1 v1 þ l/2
2v2 &K%1

2 v2 þ fMTðvÞ (45)

where the first and second terms on the right-hand side of the
equation, respectively, represent the rate of dissipation in the mac-
ropore and micropore networks, and fMT accounts for the dissipa-
tion due to mass transfer across the two pore-networks.

(iii) Assuming that the connectors are conduits or fissures, fMT

can be taken as follows:

fMT vð Þ ¼
l
b

v2 (46)

where b is a dimensionless characteristic parameter of the porous
medium, as mentioned in Sec. 2. The logic behind the functional
form in Eq. (46) will be evident by looking at the rate of dissipa-
tion in a Couette flow (i.e., flow in fissures) or a Poiseuille flow
(i.e., flow in conduits); for example, see Ref. [44]. Noting the
above choice for fMT, it is easy to verify that the functional f
given by Eq. (45) is a homogeneous functional of order two of its
arguments.

By substituting the above constitutive specifications into
Eqs. (43a)–(43e), one obtains the following constitutive relations:

T1 ¼ %/1p1I; T2 ¼ %/2p2I; i1 ¼ l/2
1K%1

1 v1

i2 ¼ l/2
2K%1

2 v2; v¼ %ðp1 % p2Þ
(47)

The above constitutive relations along with the balance of mass
and the balance of linear momentum give rise to the following
equations in a steady-state setting:

l/2
1K%1

1 v1 þ /1grad½p1) ¼ q1bðxÞ (48a)

l/2
2K%1

2 v2 þ /2grad½p2) ¼ q2bðxÞ (48b)

div½/1v1) ¼ þv (48c)

div½/2v2) ¼ %v (48d)

v¼ % b
l

p1 % p2ð Þ (48e)

which are the governing equations under the double porosity/per-
meability model presented in Sec. 2.

In a transient setting, Eqs. (48a) and (48b), will be replaced by
the following:

q1

@v1

@t
þ l/2

1K%1
1 v1 þ /1grad p1½ ) ¼ q1b x; tð Þ (49a)

q2

@v2

@t
þ l/2

2K%1
2 v2 þ /2grad p2½ ) ¼ q2b x; tð Þ (49b)

Equations (48c)–(48e) remain the same even in a transient setting.
However, we need to prescribe the initial conditions for the veloc-
ity in each pore-network for the transient case. The governing
equations for a transient response form a system of parabolic par-
tial differential equations.

3.3 An Illustrative Generalization: An Extension of the
Brinkman Model. The above framework offers an attractive set-
ting for deriving porous media models in a consistent manner. In
particular, it is possible to obtain generalizations of the double
porosity/permeability model and include other physical processes.
We now illustrate how to generalize the Brinkman model [45] to
incorporate double pore-networks and the mass transfer across the
pore-networks. To this end, we make the following choices for the
specific Helmholtz potentials and the dissipation functional:

A1 ¼ A2 ¼ 0 (50a)

f ¼ l/2
1v1 &K%1

1 v1 þ l/1D1 & D1 þ l/2
2v2 &K%1

2 v2

þl/2D2 & D2 þ fMT (50b)

fMT ¼
l
b

v2 (50c)

A physical justification of the above choice for f is as follows: the
first term models the dissipation due to friction at the interface of
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the porous solid and the fluid in the macropore network [46]. The
second term corresponds to the dissipation due to friction in the
internal layers of the fluid in the macropore network. The third
and fourth terms model the corresponding phenomena in the
micropore network. The fifth term models the dissipation due to
mass transfer in the connectors. The above choices give rise to the
following constitutive relations:

T1 ¼ %/1p1Iþ 2l/1D1; i1 ¼ l/2
1K%1

1 v1

T2 ¼ %/2p2Iþ 2l/2D2; i2 ¼ l/2
2K%1

2 v2

(51)

The balance of linear momentum for the two pore-networks
becomes

l/2
1K%1

1 v1 þ grad½/1p1) % div½2l/1D1) ¼ q1bðxÞ (52a)

l/2
2K%1

2 v2 þ grad½/2p2) % div½2l/2D2) ¼ q2bðxÞ (52b)

The equations for the balance of mass for the two pore-networks
and the rate of mass transfer across the pore-networks (i.e., Eqs.
(48c), (48d), and (48e)) remain the same. These governing equa-
tions provide a consistent generalization of the classical Brinkman
model and the double porosity/permeability model.

4 Mathematical Properties

In this section, we shall establish various mathematical proper-
ties that are satisfied by the solutions to the double porosity/
permeability model. The mathematical proofs to these properties
are provided in the supplementary material which is available
under “Supplemental Data” tab for this paper on the ASME
Digital Collection. These results are of very high theoretical sig-
nificance. In addition, they can serve as valuable mechanics-based
a posteriori measures of the accuracy of numerical solutions of
the governing equations. The latter aspect is illustrated in a subse-
quent paper [47]. We now introduce the required mathematical
machinery.

The body force is said to be a conservative vector field if there
exists a scalar field w such that

cbðxÞ ¼ %grad½w)

We shall assume a pair of vector fields ð~v1; ~v2Þ to be kinematically
admissible if the following conditions are met:

div½/1 ~v1) þ div½/2 ~v2) ¼ 0 (53a)

~v1ðxÞ & n̂ðxÞ ¼ vn1ðxÞ (53b)

~v2ðxÞ & n̂ðxÞ ¼ vn2ðxÞ (53c)

Note that a kinematically admissible pair need not satisfy the gov-
erning equations for the balance of linear momentum for each
pore-network (i.e., Eqs. (4a) and (4b)), or the pressure boundary
conditions (i.e., Eqs. (4g) and (4h)). Moreover, it is important to
note that the kinematically admissible pair need not satisfy the
mass balance equations individually (i.e., Eqs. (4c) and (4d)). We
shall assume (v1(x), v2(x)) to be the pair of true velocity fields if
they satisfy all the governing equations under the double porosity/
permeability model (i.e., Eqs. (4a)–(4h)). For convenience, we
shall denote

a1 ¼ l/2
1K%1

1 and a2 ¼ l/2
2K%1

2 (54)

Recently, it has been shown that the solutions to the classical
Darcy equations satisfy a minimum principle with respect to the
mechanical dissipation [48]. Herein, we shall extend this result to
the double porosity/permeability model.

THEOREM 1 (Minimum dissipation theorem). Assume that veloc-
ity boundary conditions are enforced on the entire boundary (i.e.,

Cv
1 ¼ Cv

2 ¼ @X). Moreover, cb(x) is assumed to be a conservative
vector field. The dissipation functional is defined as follows:

U v1; v2½ ) :¼
X2

i¼1

ð

X
aivi & vidXþ 1

2

ð

X

l
b

div /ivi½ )div /ivi½ )dX
& '

(55)

Then, every kinematically admissible pair ð~v1ðxÞ; ~v2ðxÞÞ satisfies

U½v1; v2) + U½~v1; ~v2) (56)

where (v1(x), v2(x)) denotes the pair of true velocity vector fields.
To put it differently, the pair of true velocity vector fields admits
the minimum total dissipation among all the possible pairs of kin-
ematically admissible vector fields.

It should be noted that the minimum dissipation theorem is not
at odds with the maximization of the rate of dissipation hypothe-
sis, which we discussed in Sec. 3.2.1. The minimum dissipation
theorem seeks the minimum among the set of kinematically
admissible vector fields. On the other hand, the maximization of
rate of dissipation hypothesis maximizes the rate of dissipation
among the set of all the fields that satisfy the first and second laws
of thermodynamics.

THEOREM 2 (Uniqueness). The solution under the double poros-
ity/permeability model is unique.

Unlike the minimum dissipation theorem, the uniqueness theo-
rem does not require the velocity boundary conditions to be pre-
scribed on the entire boundary. That is, the uniqueness has been
established under the general boundary conditions provided by
Eqs. (4e)–(4h).

Next, we prove a reciprocal relation for double porosity/perme-
ability model. Reciprocal relations are popular in several branches
of mechanics. For example, Betti’s reciprocal relation is a classi-
cal result in elasticity [49]. Its utility to solve a class of seemingly
difficult boundary value problems in linear elasticity is well-
documented in the literature; for example, see Refs. [49] and [50].
Recently, reciprocal relations have been obtained for Darcy and
Darcy–Brinkman equations in Ref. [48]. It should, however, be
noted that the kinematically admissible fields in the aforemen-
tioned cases (i.e., elasticity, Darcy and Darcy–Brinkman equa-
tions) are different from that of the double porosity/permeability
model.

THEOREM 3 (Reciprocal relation). Let ðv01; p01; v02; p02Þ and
ðv-1; p-1; v-2; p-2Þ be, respectively, the solutions under the prescribed
data-sets ðb0; v0n1; p

0
01; v

0
n2; p

0
02Þ and ðb-; v-n1; p

-
01; v

-
n2; p

-
02Þ. The

domain, X, and the boundaries, Cv
1; Cp

1; Cv
2, and Cp

2, are the same
for both prescribed data-sets. The pair of solutions and the pair of
prescribed data-sets satisfy the following reciprocal relation:

ð

X
/1ðxÞcb0ðxÞ & v-1ðxÞ dX%

ð

Cp
1

/1ðxÞp001ðxÞv
-
1ðxÞ & n̂ðxÞ dC

%
ð

Cv
1

/1ðxÞp01ðxÞv
-
n1ðxÞ dCþ

ð

X
/2ðxÞcb0ðxÞ & v-2ðxÞ dX

%
ð

Cp
2

/2ðxÞp002ðxÞv
-
2ðxÞ & n̂ðxÞ dC%

ð

Cv
2

/2ðxÞp02ðxÞv
-
n2ðxÞ dC

¼
ð

X
/1ðxÞcb-ðxÞ & v01ðxÞ dX%

ð

Cp
1

/1ðxÞp-01ðxÞv
0
1ðxÞ & n̂ðxÞ dC

%
ð

Cv
1

/1ðxÞp-1ðxÞv
0
n1ðxÞ dCþ

ð

X
/2ðxÞcb-ðxÞ & v02ðxÞ dX

%
ð

Cp
2

/2ðxÞp-02ðxÞv
0
2ðxÞ & n̂ðxÞ dC%

ð

Cv
2

/2ðxÞp-2ðxÞv
0
n2ðxÞ dC

(57)
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4.1 Maximum Principle. Maximum principle is one of the
basic qualitative properties of second-order elliptic partial differ-
ential equations. It can be shown that the pressure under Darcy
equations satisfies a maximum principle, which is valid even for
heterogeneous and anisotropic permeabilities. To wit, assuming
that the pressure boundary conditions are prescribed on the entire
boundary, Darcy equations can be rewritten as follows:

%div
1

l
K xð Þgrad pþ w½ )

$ %
¼ 0 in X (58a)

pðxÞ ¼ p0ðxÞ on @X (58b)

The above boundary value problem is a second-order elliptic par-
tial differential equation with Dirichlet boundary conditions pre-
scribed on the entire boundary. From the theory of partial
differential equations [51], the pressure satisfies:

min
x2@X
½p0ðxÞ) + pðxÞ + max

x2@X
½p0ðxÞÞ) 8x 2 !X (59)

That is, the maximum and minimum pressures occur on the
boundary.

On the contrary, the macro- and micropressures under the dou-
ble porosity/permeability model do not individually enjoy such a
maximum principle. One can, however, establish a maximum
principle for the difference in pressures in the macropore and
micropore networks under some restrictions on the nature of per-
meabilities and boundary conditions.

THEOREM 4 (Maximum principle). Assume that the permeabil-
ities are isotropic and homogeneous. That is, K1(x)¼ k1I and
K2(x)¼ k2I, where I is the second-order identity tensor. The entire
boundary is prescribed with pressure boundary conditions. That
is, Cp

1 ¼ Cp
2 ¼ @X. The domain X is bounded, and the boundary is

smooth. Then, the pressure difference in the macropore and
micropore networks, p1(x) – p2(x), everywhere satisfies

min½0; min
x2@X
½p01ðxÞ % p02ðxÞ)) + p1ðxÞ % p2ðxÞ

+ max½0;max
x2@X
½p01ðxÞ % p02ðxÞ))

(60)

The maximum principle for the double porosity/permeability
model basically implies that the pressure difference in the micro-
pore and macropore networks everywhere in the domain lies
between the corresponding non-negative maximum and the non-
positive minimum values on the boundary on which pressures are
prescribed.

The main differences between the maximum principles of
Darcy equations and the double porosity/permeability model can
be summarized as follows:

(i) The maximum principle for the double porosity/perme-
ability model holds for isotropic and homogeneous perme-
abilities. There are no such restrictions for Darcy
equations.

(ii) The body force is assumed to be conservative under the
maximum principle for Darcy equations. Such a restriction
is not needed for the maximum principle for the double
porosity/permeability model.

(iii) The maximum principle for Darcy equations is in terms of
the pressure. On the other hand, the maximum principle
for the double porosity/permeability model is with respect
to the difference in pressures in the macropore and micro-
pore networks.

(iv) In the case of Darcy equations, the maximum and mini-
mum occur on the boundary. In the case of double poros-
ity/permeability model, the non-negative maximum and
the non-positive minimum occur on the boundary.

4.2 Recovery of the Classical Darcy Equations. The solu-
tions (i.e., the pressure and velocity profiles) under the double
porosity/permeability model are, in general, more complicated,
and qualitatively and quantitatively different from the correspond-
ing ones under the classical Darcy equations. However, there are
three scenarios under which the solutions under the double poros-
ity/permeability model can be described using the Darcy equa-
tions. That is, we need to show that there is no mass transfer
across the two pore-networks under these scenarios. We now dis-
cuss these three scenarios, of which two are trivial.

The first scenario is when /2(x)¼ 0. Physically, this scenario
corresponds to the case where there is no micropore network in
the porous medium. To see mathematically that Eqs. (4a)–(4d)
reduce to the classical Darcy equations, one can appeal to Eq. (4d)
and conclude that there is no mass transfer across the pore-
networks (i.e., v(x)¼ 0) in the entire domain. Under this condi-
tion, equations for the macropore network (i.e., Eqs. (4a) and
(4c)) will reduce to the classical Darcy equations.

The second scenario is when K2(x)¼ 0. Physically, this sce-
nario corresponds to the case in which the micropores are not
interconnected. To show mathematically that one recovers the
classical Darcy equations under K2(x)¼ 0, one can start with Eq.
(6b) and conclude that u2¼ 0. Equation (6d) will then imply that
v(x)¼ 0 in the entire domain. Similar to the first scenario, the gov-
erning equations for the macropore network will reduce to the
Darcy equations.

The third scenario pertains to the case wherein K1(x)¼K2(x),
and the boundary conditions for the macropore and micropore net-
works are the same. That is, Cp

1 ¼ Cp
2; Cv

1 ¼ Cv
2; p01ðxÞ ¼ p02ðxÞ,

and vn1(x)¼ vn2(x). Note that it is not necessary for /1(x) to be
equal to /2(x). Under these conditions, flow in the porous medium
can be modeled using the classical Darcy equations with porosity
equal to /(x)¼/1(x)þ/2(x). To see that the mass transfer across
the pore networks is zero, one can proceed as follows. For conven-
ience, assume K1(x)¼K2(x)¼K(x). Then, the aforementioned
conditions give rise to the following boundary value problem:

lK%1ðu1 % u2Þ þ grad½p1 % p2) ¼ 0 in X (61a)

div u1 % u2½ ) ¼ %
2b
l

p1 % p2ð Þ in X (61b)

ðu1ðxÞ % u2ðxÞÞ & n̂ðxÞ ¼ 0 on Cv ¼ Cv
1 ¼ Cv

2 (61c)

p1ðxÞ % p2ðxÞ ¼ 0 on Cp ¼ Cp
1 ¼ Cp

2 (61d)

Clearly, the pair p1(x) – p2(x)¼ 0 and u1(x) – u2(x)¼ 0 is a solu-
tion to the above boundary value problem (61a)–(61d). By the
uniqueness theorem 2, this is the only solution to the above
boundary value problem. Since p1(x)¼ p2(x), the mass transfer
across the pore-networks is zero.

In all the above three scenarios, it is important to note that there
will be no contribution to the dissipation from the connectors (i.e.,
conduits/fissures), as there is no flow in the connectors.

5 Analytical Solution Based on Green’s Function
Approach

In this section, we present an analytical solution procedure for a
general boundary value problem arising from the double porosity/
permeability model. We provide a formal mathematical derivation
based on the Green’s function approach.

We start by rewriting the governing Eqs. (6a)–(6h). By elimi-
nating u1(x) from these equations, we obtain the following bound-
ary value problem for the macropore network:

div
1

l
K1 xð Þ cb xð Þ % grad p1½ )

( )$ %
¼ v xð Þ in X (62a)
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1

l
n̂ xð Þ &K1 xð Þ cb xð Þ % grad p1½ )

( )
¼ un1 xð Þ on Cv

1 (62b)

p1ðxÞ ¼ p01ðxÞ on Cp
1 (62c)

By multiplying Eq. (62a) with G1, integrating over the domain,
employing the Green’s identity, and noting the boundary condi-
tions (i.e., Eqs. (62b) and (62c)), we obtain

%
ð

X
div

1

l
K1grad G1½ )

$ %
p1dX

þ
ð

Cp
1

1

l
G1n̂ &K1 cb% grad p1½ )

( )
dC

þ
ð

Cv
1

1

l
n̂ &K1grad G1½ )p1dC ¼

ð

X
G1vdX

þ
ð

X

1

l
grad G1½ ) &K1cb dX

%
ð

Cv
1

G1un1dC%
ð

Cp
1

1

l
n̂ &K1grad G1½ )p01dC

(63)

This suggests to construct the Green’s function G1(x, y) to be the
solution of the following boundary value problem:

%div
1

l
K1 xð Þgrad G1 x; yð Þ

* +
$ %

¼ d x% yð Þ in X (64a)

% 1

l
n̂ xð Þ &K1 xð Þgrad G1 x; yð Þ

* +
¼ 0 on Cv

1 (64b)

G1ðx; yÞ ¼ 0 on Cp
1 (64c)

where d(x – y) denotes the Dirac-delta distribution [52]. Then the
macro-pressure p1(x) can be written in terms of mass transfer
between the pore-networks v(x) as follows:

p1 xð Þ ¼
ð

X
G1 x; yð Þv yð ÞdXy

þ
ð

X

1

l
grady G1 x; yð Þ

* +
&K1 yð Þcb yð Þ dXy

%
ð

Cv
1

G1 x; yð Þun1 yð Þ dCy

%
ð

Cp
1

1

l
n̂ yð Þ &K1 yð Þgrady G1 x; yð Þ

* +
p01 yð ÞdCy

(65)

where dXy and dCy, respectively, denote the volume element and
the surface area element with respect to y-coordinates, and the
gradient with respect to y-coordinates is denoted by grady[&].

By carrying out a similar procedure for the micropore network,
the Green’s function G2(x, y) is taken to be the solution of the fol-
lowing boundary value problem:

%div
1

l
K2 xð Þgrad G2 x; yð Þ

* +
$ %

¼ d x% yð Þ in X (66a)

% 1

l
n̂ xð Þ &K2 xð Þgrad G2 x; yð Þ

* +
¼ 0 on Cv

2 (66b)

G2ðx; yÞ ¼ 0 on Cp
2

The micropressure p2(x) can then be written in terms of v(x) as
follows:

p2 xð Þ ¼ %
ð

X
G2 x; yð Þv yð ÞdXy

þ
ð

X

1

l
grady G2 x; yð Þ

* +
&K2 yð Þcb yð Þ dXy

%
ð

Cv
2

G2 x; yð Þun2 yð Þ dCy

%
ð

Cp
2

1

l
n̂ yð Þ &K2 yð Þgrady G2 x; yð Þ

* +
p02 yð ÞdCy

(67)

Note that G1(x, y) and G2(x, y) are Green’s functions for scalar
diffusion equations. Since the permeabilities, K1(x) and K2(x),
are symmetric tensors, it is easy to establish that the Green’s func-
tions, G1(x, y) and G2(x, y), are symmetric. That is,

G1ðx; yÞ ¼ G1ðy; xÞ and G2ðx; yÞ ¼ G2ðy; xÞ 8x; y (68)

Equations (65) and (67) give rise to the following integral equa-
tion for the mass transfer between the pore-networks:

l
b

v xð Þ þ
ð

X
G1 x; yð Þ þ G2 x; yð Þ
( )

v yð Þ dXy ¼ h xð Þ (69)

where

h xð Þ : ¼
ð

X

1

l
K2 yð Þgrady G2 x; yð Þ

* +(

%K1 yð Þgrady G1 x; yð Þ
* +"

& cb yð ÞdXy

þ
ð

Cv
1

G1 x; yð Þun1 yð ÞdCy

þ
ð

Cp
1

1

l
n̂ yð Þ &K1 yð Þgrady G1 x; yð Þ

* +
p01 yð ÞdCy

%
ð

Cv
2

G2 x; yð Þun2 yð ÞdCy

%
ð

Cp
2

1

l
n̂ yð Þ &K2 yð Þgrady G2 x; yð Þ

* +
p02 yð ÞdCy

(70)

Equation (69) is a nonhomogeneous Fredholm integral equation
of second type with symmetric kernel [53]. The symmetry of the
kernel stems from the fact that the Green’s functions, G1(x, y) and
G2(x, y), are symmetric.

The overall analytical solution procedure can be compactly
written as follows:

(i) Construct the Green’s functions, G1(x, y) and G2(x, y),
that are, respectively, the solutions of the boundary value
problems given by Eqs. (64) and (66).

(ii) Using G1(x, y) and G2(x, y), solve the integral Eq. (69) to
obtain the mass transfer between the pore-networks v(x).

(iii) Using the solution for v(x), compute the pressures, p1(x)
and p2(x), using Eqs. (65) and (67), respectively.

(iv) Once the pressures, p1(x) and p2(x), are known, the dis-
charge velocities, u1(x) and u2(x), can be computed using
Eqs. (6a) and (6b).

The solution procedure presented above is quite general, as it
can be applied even to those problems with anisotropic and heter-
ogeneous medium properties. The procedure is built upon obtain-
ing Green’s functions for scalar diffusion equations and solving a
linear scalar Fredholm integral equation of second type. There are
numerous existing works that provide Green’s functions for scalar
diffusion equations (e.g., see Ref. [54]). A good deal of work
exists on Fredholm integral equations in terms of mathematical
theory, analytical solutions, and numerical techniques. For
instance, see Refs. [53], [55], and [56].
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The boundary value problems corresponding to the Green’s
functions assumed Cp

1 and Cp
2 to be nonempty. That is, it is

assumed that there is a (nonempty) portion of the boundary on
which Dirichlet boundary conditions are prescribed. One needs to
modify the procedure if velocity boundary conditions are pre-
scribed on the entire boundary for a pore-network, which gives
rise to a boundary value problem with Neumann boundary condi-
tions for the construction of the Green’s function for that particu-
lar pore-network. However, one can find in the literature
procedures to construct modified Green’s functions for diffusion-
type equations with Neumann boundary conditions (e.g., see Ref.
[54]). This aspect will be illustrated in the next section.

6 Canonical Boundary Value Problems

We now present various boundary value problems to highlight
the differences between the bulk response (e.g., single pore-
network modeled using Darcy equations) and the one obtained by
incorporating the double porosity/permeability model. These
problems are specifically designed to be simple, as the primary
aim is to illustrate that a number of features and characteristics
will be lost in the bulk response. We believe that these findings
will be valuable to the subsurface modeling community.

6.1 One-Dimensional Problem #1. Consider a one-
dimensional domain of length L. For the macropore network, pres-
sures pL

1 and pR
1 are prescribed on the left and right ends of the

domain, respectively. Similarly, pressures of pL
2 and pR

2 are,
respectively, prescribed on the left and right ends of the domain
for the micro-pore network. The purpose of this boundary value
problem is fourfold:

(i) The problem will be used to illustrate the various steps in
the analytical solution procedure that was presented in
Sec. 5.

(ii) It will be shown that the integral Eq. (69) can provide the
appropriate and consistent boundary conditions for the
mass transfer across the pore-networks in terms of the pre-
scribed velocity and pressure boundary conditions.

(iii) It will be shown that the maximum and minimum pres-
sures need not occur on the boundary under the double
porosity/permeability model for a boundary value problem
with pressures prescribed on the entire boundary. On the
contrary, the maximum and minimum pressures occur on
the boundary under Darcy equations for a pressure-
prescribed boundary value problem.

(iv) The maximum principle proposed in Theorem 4 will be
verified for this problem.

6.1.1 Nondimensionalization. We take the length of the
domain L (L), pL

1 % pR
1 ðML%1T%2Þ, and b/l (M%1LT) as the refer-

ence quantities. The time and the mass scales are taken as

ððl=bÞ=ðpL
1 % pR

1 ÞÞ ðTÞ and ððLðl=bÞ2Þ=ððpL
1 % pR

1 ÞÞÞ ðMÞ, respec-
tively. We also take the datum for the pressure to be pR

1 . These ref-
erence quantities give rise to the following nondimensional
quantities, which are denoted by a superposed bar

!x ¼ x

L
; !p1 ¼

p1 % pR
1

pL
1 % pR

1

; !p2 ¼
p2 % pR

1

pL
1 % pR

1

; !k1 ¼
k1

L2

!k2 ¼
k2

L2
; !l ¼ l

lref

; !u1 ¼
u1

uref
; !u2 ¼

u2

uref

(71)

where

lref :¼ l
b
; uref :¼ bL

l
pL

1 % pR
1

( )
(72)

The nondimensional form of the governing equations can be writ-
ten as follows:

!l
!k1

!u1 þ
d!p1

d!x
¼ 0;

d!u1

d!x
¼ % !p1 % !p2ð Þ in 0; 1ð Þ (73a)

!l
!k2

!u2 þ
d!p2

d!x
¼ 0;

d!u2

d!x
¼ þ !p1 % !p2ð Þ in 0; 1ð Þ (73b)

!p1ð!x ¼ 0Þ ¼ 1; !p1ð!x ¼ 1Þ ¼ 0 (73c)

!p2ð!x ¼ 0Þ ¼ !pL
2 ; !p2ð!x ¼ 1Þ ¼ !pR

2 (73d)

The mass transfer across the two pore-networks takes the follow-
ing form:

!vð!xÞ ¼ !p2ð!xÞ % !p1ð!xÞ (74)

In this boundary value problem, !k1 and !k2 are assumed to be inde-
pendent of !x. For simplicity, we drop the over-lines, as all the
quantities below will be nondimensional.

6.1.2 Analytical Solution. For convenience, let us introduce
the following parameter:

g :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l k1 þ k2ð Þ

k1k2

s

(75)

Note that g is inversely proportional to the square root of the har-
monic average of the permeabilities in the macropore and micro-
pore networks. The Green’s functions G1(x, y) and G2(x, y) will be

k1

l
G1 x; yð Þ ¼

k2

l
G2 x; yð Þ ¼

x% xy x + y
y% xy x > y

-
(76)

The integral equation for the mass transfer becomes

vðxÞ %
ð1

0

g2xyvðyÞdyþ
ðx

0

g2yvðyÞ dyþ
ð1

x
g2xvðyÞ dy ¼ hðxÞ

(77)

Using the Leibniz integral rule and noting that h00ðxÞ ¼ 0, the
above equation implies that

d2v
dx2
¼ g2v (78)

The boundary conditions for the mass transfer v(x) in terms of the
prescribed pressure boundary conditions take the following form:

vðx ¼ 0Þ ¼ hðx ¼ 0þÞ ¼ pL
2 % 1 (79a)

vðx ¼ 1Þ ¼ hðx ¼ 1%Þ ¼ pR
2 (79b)

The solution of the boundary value problem given by Eqs. (78)
and (79a)–(79b), which will also be the solution of the integral
Eq. (77), takes the following form:

vðxÞ ¼ C1 exp ½gx) þ C2 exp ½%gx) (80)

where

C1 ¼
pR

2 þ 1% pL
2

( )
exp %g½ )

exp g½ ) % exp %g½ )
and

C2 ¼ %
pR

2 þ 1% pL
2

( )
exp g½ )

exp g½ ) % exp %g½ )

(81)

The solution for the pressures in the macropore and micropore
networks can be written as follows:
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p1 xð Þ ¼ 1% x|fflffl{zfflffl}
Darcy solution

% l
k1g2

1% pL
2

( )
1% xð Þ % pR

2 xþ C1 exp gx½ ) þ C2 exp %gx½ )
n o

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
deviation due to mass transfer

(82a)

p2 xð Þ ¼ pL
2 1% xð Þ þ pR

2 x|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
Darcy solution

þ l
k2g2

1% pL
2

( )
1% xð Þ % pR

2 xþ C1 exp gx½ ) þ C2 exp %gx½ )
n o

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
deviation due to mass transfer

(82b)

The solution for the discharge velocities in the pore-networks can
be written as follows:

u1 xð Þ ¼
k1

l|{z}
Darcy solution

þ 1

g2
pL

2 % pR
2 % 1

( )
þ 1

g
C1 exp gx½ ) % C2 exp %gx½ )
( )

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
deviation due to mass transfer

(83a)

u2 xð Þ ¼
k2

l
pL

2 % pR
2

( )

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Darcy solution

% 1

g2
pL

2 % pR
2 % 1

( )
% 1

g
C1 exp gx½ ) % C2 exp %gx½ )
( )

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
deviation due to mass transfer

(83b)

The deviation of the solution under the double porosity/permeabil-
ity model from the corresponding one under Darcy equations is
indicated in the above expressions for the analytical solution. One
fact that is clear from the analytical solution is that the nature of
the solution (i.e., the pressure and velocity profiles) depends on
the parameter g.

Figure 3 illustrates that the maximum and minimum pressures
for macropore and micropore networks need not occur on the
boundary. On the other hand, as mentioned earlier, the maximum
and minimum pressures occur on the boundary under Darcy equa-
tions for a boundary value problem with pressures prescribed on
the entire boundary. Figure 4 numerically verifies the maximum
principle proposed in Theorem 4 for the double porosity/perme-
ability model. As one can see from this figure, the non-negative
maximum and the nonpositive minimum of the pressure differ-
ence, p1(x) – p2(x), occur on the boundary under the double poros-
ity/permeability model.

6.2 One-Dimensional Problem #2. In this problem, pressure
boundary conditions are applied to the macropore network, and
no-flux (i.e., zero normal velocity) boundary conditions are
enforced on the micropore network. This problem highlights the
following important points:

(i) One can have discharge (i.e., nonzero velocity) in the
micropore network even if the micropore network does not
extend to the boundary (i.e., there is no discharge on the
boundary of the micropore network). This implies that, for
complicated porous media, it is essential to know the inter-
nal pore-structure (e.g., using l-CT [20]). It is not suffi-
cient to know the surface pore-structure on the boundary.

(ii) One can find the solution uniquely for all the fields (i.e.,
pressures, velocities, and mass transfer) even if the

velocity boundary conditions are prescribed on the entire
boundary for one of the pore-networks. On the other hand,
one cannot find the pressure uniquely under Darcy equa-
tions if the velocity boundary conditions are prescribed on
the entire boundary.

(iii) This problem will be utilized to illustrate the construction
of modified Green’s function for problems involving
velocity boundary conditions for either macropore or
micropore network.

We shall employ the same reference quantities, as defined in
problem #1. The nondimensional form of the governing equations
for this boundary value problem can be written as follows:

l
k1

u1 þ
dp1

dx
¼ 0;

du1

dx
¼ % p1 % p2ð Þ in 0; 1ð Þ (84a)

l
k2

u2 þ
dp2

dx
¼ 0;

du2

dx
¼ þ p1 % p2ð Þ in 0; 1ð Þ (84b)

p1ðx ¼ 0Þ ¼ 1; p1ðx ¼ 1Þ ¼ 0 (84c)

u2ðx ¼ 0Þ ¼ 0; u2ðx ¼ 1Þ ¼ 0 (84d)

The expression for the mass transfer across the pore-networks is
the same as before.

6.2.1 Analytical Solution. The Green’s function G1(x, y) will
be

G1 x; yð Þ ¼
l
k1

x% xy x + y
y% xy x > y

-
(85)

Fig. 3 One-dimensional problem #1: variation of micropres-
sure and macropressure in the one-dimensional (1D) domain.
For comparison, the analytical solution under Darcy equations
is also plotted. The maximum and minimum pressures in the
pore-networks need not occur on the boundary in the case of
double porosity/permeability model. The parameter g is defined
in equation (75): (a) pR

2 <pL
2 <1 and (b) 1<pR

2 <pL
2 .
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Since the boundary value problem for the micropore network has
Neumann boundary conditions on the entire boundary, one needs
to modify the procedure for finding the Green’s function. Follow-
ing the technique provided in Ref. [54], the Green’s function
G2(x, y) is constructed in such a way that it satisfies the following
boundary value problem

% l
k2

d2G2

dx2
¼ d x% yð Þ % 1 in 0; 1ð Þ

l
k2

dG2

dx

////
x¼0

¼ 0

l
k2

dG2

dx

////
x¼1

¼ 0

(86)

The Green’s function G2(x, y) takes the following form:

G2 x; yð Þ ¼
l
k2

x2

2
% yþ C0 for x + y

x2

2
% xþ C0 for x > y

8
>><

>>:
(87)

where C0 is a constant which needs to be determined. It should be
noted that C0 is independent of x, but could depend on y. The inte-
gral equation for the mass transfer becomes

v xð Þ þ
ð1

0

p2 yð Þdy% 1

k1

ð1

0

xyv yð Þdyþ 1

k2

ð1

0

C0 þ x2=2
( )

v yð Þdy

þ
ðx

0

y

k1
% x

k2

& '
v yð Þdyþ

ð1

x

x

k1
% y

k2

& '
v yð Þ dy ¼ h xð Þ

(88)

Using the Leibniz integration rule, the integral Eq. (88) can be
shown to be equivalent to the following differential equation:

d2v
dx2
þ 1

k2

ð1

0

v yð Þdy ¼ g2v xð Þ (89)

where the parameter g is defined in Eq. (75). The solution for the
above differential equation takes the following form:

vðxÞ ¼ D1 exp ½gx) þ D2 exp ½%gx) (90)

The boundary conditions give rise to

D1 ¼
k1 þ k2

k1g exp g½ ) þ 1
( )

þ 2k2 exp g½ ) % 1
( )

D2 ¼ %exp g½ )D1 (91)

The analytical solution can be compactly written as follows:

p1 xð Þ ¼ 1% x% 1% 2x

2þ coth g=2½ ) k1g
k2

% l
k1

1

g2
D1 exp gx½ ) þ D2 exp %gx½ )
( )

(92a)

p2 xð Þ ¼ 1% x% 1% 2x

2þ coth g=2½ ) k1g
k2

þ l
k2

1

g2
D1 exp gx½ ) þ D2 exp %gx½ )
( )

(92b)

u1 xð Þ ¼
k1

l
% k1

l
2

2þ coth g=2½ ) k1g
k2

þ 1

g
D1 exp gx½ ) % D2 exp %gx½ )
( )

(92c)

u2 xð Þ ¼
k2

l
% k2

l
2

2þ coth g=2½ ) k1g
k2

% 1

g
D1 exp gx½ ) % D2 exp %gx½ )
( )

(92d)

Note that one cannot find p2(x) uniquely under Darcy equations,
as the boundary conditions for the micropore network are all
velocity boundary conditions. All one can say about the solution
for p2(x) under Darcy equations is that it is an arbitrary constant.
On the other hand, one can find uniquely the solution for p2(x)
under the double porosity/permeability model.

6.2.2 Comparison With Darcy Equations. If only the macro-
pore network is present, the boundary conditions of the macropore
network imply that the pressure and the velocity take the follow-
ing forms:

u1 xð Þ ¼
k1

l
and p1 xð Þ ¼ 1% x (93)

If only the micropore network is present, the boundary conditions
of the micropore network imply that

uðxÞ ¼ 0 and pðxÞ ¼ an arbitrary constant (94)

If the standard permeability test is performed on a porous medium
(which has both pore-networks), the resulting permeability can be
expressed as follows:

Fig. 4 One-dimensional problem #1: This figure numerically
verifies the maximum principle given by Theorem 4. According
to the maximum principle, p1(x) –p2(x) in the entire domain lies
between the non-negative maximum and nonpositive minimum
values on the boundary. Note that the medium properties
are isotropic and homogeneous: (a) 0 5 pR

1 <0:3 5 pR
2 <pL

2
5 0:9<pL

1 5 1 and (b) 0 5 pR
1 <0:9 5 pR

2 <pL
1 5 1<pL

2 5 1:5.
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keff ¼ lu1 0ð Þ ¼ k1 þ k2

2tanh g=2½ ) k2

k1g
þ 1

(95)

Remark 6.1. In order to provide an insight into the above-
mentioned effective permeability, it is necessary to outline the
standard permeability test. A cylindrical porous sample of length
L is subjected to a pressure p on one end, and the other end is sub-
jected to the atmospheric pressure, patm. The lateral side of the
porous cylinder is sealed (i.e., there is no fluid discharge from the
lateral side). The pressure along the length of the cylinder is
assumed to be linear, which means that the flow is assumed to be
uniform along the length. By measuring the rate of discharge of
the fluid, Q, and calculating the area of the cross section, A, the
permeability is given by the following formula:

k

l
p% patm

L

& '
¼ Q

A
(96)

Clearly, Q/A¼ u(L), which is the velocity of fluid at the end where
the rate of discharge is measured. Since, the velocity is uniform,
we have

Q=A ¼ uðLÞ ¼ uð0Þ (97)

Based on the nondimensionalization employed in this problem
(i.e., see Eq. (84) and the discussion preceding this equation), we
have (p – patm)/L¼ 1. Hence, the permeability based on the Darcy
model will be k¼ lu(0).

To translate this result to the porous medium with two pore-
networks, we note that there is no (net) discharge from the micro-
pore network in this problem (i.e., the velocity in the micropore
network is zero at both the ends of the specimen). [However, there
could be nonzero velocity in the micropore network within the
porous sample.] This implies that the fluid discharge from the
porous sample is entirely due to the velocity in the macropore net-
work (i.e., u(0)¼ u1(0)).

Equation (95) implies that one can relate the experimental value
of the effective permeability to the permeabilities of macro- and
micropore networks. This clearly shows the need to know the
internal pore-structure for an accurate modeling of porous media.

Figure 5 shows the variation of velocity in micropore network
and the mass transfer across the pore-networks for various values
of g and for two different cases k1< k2 and k1> k2. It is observed
that although there is no supply of fluid on the boundaries of the
micropore network, there will still be discharge (i.e., nonzero
velocity) within the micropore network. This reveals that the
internal pore-structure is an important factor characterizing the
flow in a complicated porous medium. One can analyze the inter-
nal pore-structure using modern techniques such as l-CT. In other
words, the surface pore-structure cannot solely specify the flow
within the domain. Moreover, whether the permeability of the
macropores is larger or smaller than the permeability of the micro-
pores, we will still have flow in the micropore network.

Figure 6 compares the velocities under the double porosity/per-
meability model and the Darcy equations. Here, the permeability
used in the Darcy equations is the effective permeability intro-
duced in Eq. (95). Macro- and microvelocities and their summa-
tion (i.e., u1þ u2) under the double porosity/permeability model
as well as the velocity under the Darcy equations are displayed.
As can be seen for both cases k1> k2 and k1< k2, under the Darcy
equations the velocity throughout the domain for this one-
dimensional boundary value problem is a horizontal line where
the constant value is equal to the summation of the macro- and
microvelocities under the double porosity/permeability model.
This implies that the effective permeability k¼ keff, which is
obtained by the classical Darcy experiment, cannot completely
capture the complex internal pore-structure of the porous medium.
This is due to the fact that the experimental value obtained for keff

does not account for the case of multiple pore-networks within the
domain. It just assumes a single pore-network, and the effective
permeability is calculated based on the surface pore-structure of
the specimen.

Fig. 5 One-dimensional problem #2: Variation of the microve-
locity and mass transfer for various g values for the cases
k1 < k2 and k1 > k2. Although there is no supply of fluid on the
boundaries of the micropore network, there is still a discharge
(i.e., nonzero velocity) in the micropore network, and there is a
mass transfer across the pore-networks: (a) microvelocity for
k1 < k2, (b) microvelocity for k1 > k2, (c) mass transfer for k1 < k2,
and (d) mass transfer for k1 > k2.
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6.3 Two-Dimensional Boundary Value Problem. This
problem pertains to the flow of water in candle filters, which are
widely used for purifying drinking water [57]. Consider a circular
disk of inner radius ri¼ a and outer radius of ro¼ 1. The inner sur-
face of the cylinder is subjected to a pressure, and the outer sur-
face of the cylinder is exposed to the atmosphere. For the
micropore network, there is no discharge from the inner and outer
surfaces of the cylinder. Figure 7 provides a pictorial description
of the problem.

We shall employ cylindrical polar coordinates. Noting the
underlying symmetry in the problem, the variables, u1, u2, p1, and
p2, are assumed to be functions of r only. The governing equations
can be written as follows:

l
k1

u1 þ
dp1

dr
¼ 0;

1

r

d ru1ð Þ
dr
þ p1 % p2ð Þ ¼ 0 8r 2 a; 1ð Þ (98a)

l
k2

u2 þ
dp2

dr
¼ 0;

1

r

d ru2ð Þ
dr
% p1 % p2ð Þ ¼ 0 8r 2 a; 1ð Þ (98b)

p1ðr ¼ aÞ ¼ 1; p1ðr ¼ 1Þ ¼ 0 (98c)

u2ðr ¼ aÞ ¼ 0; u2ðr ¼ 1Þ ¼ 0 (98d)

This implies that the mass transfer v(r) satisfies the following dif-
ferential equation:

v00 þ 1

r
v0 % g2v¼ 0 (99)

which is a (homogeneous) modified Bessel ordinary differential
equation [58]. A general solution to the above ordinary differen-
tial equation can be written as follows:

vðrÞ ¼ p2ðrÞ % p1ðrÞ ¼ C3I0ðgrÞ þ C4K0ðgrÞ (100)

where I0(z) and K0(z) are, respectively, zeroth-order modified Bes-
sel functions of first and second kinds. Noting that I00ðzÞ ¼ I1ðzÞ
and K00ðzÞ ¼ %K1ðzÞ, the analytical solution can be written as
follows:

p1 rð Þ ¼
ln r½ )
ln a½ )

C1 þ C2 %
a1

g2
C3I0 grð Þ þ C4K0 grð Þ
( )

(101a)

p2 rð Þ ¼
ln r½ )
ln a½ )

C1 þ C2 þ
a2

g2
C3I0 grð Þ þ C4K0 grð Þ
( )

(101b)

u1 rð Þ ¼ %
k1

l
C1

rln a½ )
þ 1

g
C3I1 grð Þ % C4K1 grð Þ
( )

(101c)

u2 rð Þ ¼ %
k2

l
C1

rln a½ )
% 1

g
C3I1 grð Þ % C4K1 grð Þ
( )

(101d)

The boundary conditions give rise to the following coefficients:

C1 ¼ dg2aln½a)ðI1ðagÞK1ðgÞ % I1ðgÞK1ðagÞÞa2 (102a)

Fig. 6 One-dimensional problem #2: This figure compares the
velocities under double porosity/permeability model and Darcy
model for the cases k1 > k2 and k1 < k2. Macro- and microveloc-
ities and their summation under the double porosity/permeabil-
ity model as well as the velocity under the Darcy model with
k5 keff are displayed. As can be seen, keff obtained by the clas-
sical Darcy experiment cannot capture the complex internal
pore-structure: (a) case 1: k1 5 1.0 and k2 5 0.1 and (b) case 2:
k1 5 0.1 and k2 5 1.0.

Fig. 7 The top figure provides a pictorial description of the
boundary value problem. There is no discharge on the inner
and outer surfaces of the micropore network. For the macro-
pore network, the inner surface is subjected to a pressure of
unity, and the outer surface is subjected to a pressure of zero.
The bottom figure illustrates that the macropressure under the
double porosity/permeability model is qualitatively different
from the pressure under Darcy equations.
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C2 ¼ dð%1þ agI1ðagÞK0ðgÞ þ agI0ðgÞK1ðagÞÞa1 (102b)

C3 ¼ dg3ðaK1ðagÞ % K1ðgÞÞ (102c)

C4 ¼ dg3ðaI1ðagÞ % I1ðgÞÞ (102d)

where

d%1 ¼ f%2þ agI1ðagÞK0ðgÞ þ gI1ðgÞK0ðagÞ
þgI0ðagÞK1ðgÞ þ agI0ðgÞK1ðagÞga1

þg2aln½a)ðI1ðagÞK1ðgÞ % I1ðgÞK1ðagÞÞa2 (103)

For comparison, the pressure and the discharge velocity under
Darcy equations with constant permeability k and with boundary
conditions p(r¼ a)¼ 1 and p(r¼ 1)¼ 0 can be written as follows:

p rð Þ ¼
ln r½ )
ln a½ )

and u rð Þ ¼ %
k

l
1

rln a½ )
(104)

It is evident that the velocity and pressure profiles under the dou-
ble porosity/permeability model are much more complicated than
the corresponding profiles under Darcy equations. Figure 7 illus-
trates the qualitative difference between the pressures under the
double porosity/permeability model and Darcy equations. The
graph of the pressures under Darcy equations is always convex,
while the graph of the macropressure under the double porosity/
permeability model has both convex and concave parts. It should
also be noted that, although there is no discharge from the micro-
pore network on the boundary, there is discharge in the micropore
network within the domain.

7 Conclusions

In this paper, several contributions have been made to the mod-
eling of incompressible single-phase fluid flow in rigid porous
media with double porosity/permeability. First, a thermodynamic
basis for models studying flow in porous media exhibiting double
porosity/permeability has been provided using the maximization
of rate of dissipation hypothesis. This model nicely allows for fur-
ther generalizations of the existing models. The mass transfer
across the macropore and micropore networks has been obtained
in a systematic manner by treating it as an internal variable and
maximizing a prescribed (physical) dissipation functional. The
resulting mathematical model gives rise to a system of elliptic par-
tial differential equations in the case of a steady-state response
and a system of parabolic partial differential equations in the case
of a transient response. Second, various mathematical properties
that the solutions under the double porosity/permeability model
satisfy have been presented along with their proofs. Third, a maxi-
mum principle has been established for the double porosity/per-
meability model. The main differences between the maximum
principles of Darcy equations and the double porosity/permeabil-
ity model have been discussed. Fourth, an analytical solution pro-
cedure based on the Green’s function method has been presented
for a general boundary value problem under the double porosity/
permeability model. Last but not least, using the analytical solu-
tions of some canonical problems, the salient features of the pres-
sures and velocities in the macropore and micropore networks
under the double porosity/permeability model have been high-
lighted. Some of the significant findings of the paper can be sum-
marized as follows:

(C1) In general, the pressure and velocity profiles under the dou-
ble porosity/permeability model are qualitatively and quan-
titatively different from the corresponding ones under the
classical Darcy equations (e.g., see the maximum principle
discussed in Sec. 4.1 and illustrated in Figs. 3 and 4, and
the canonical problems outlined in Sec. 4 and the

associated results provided in Figs. 6 and 7). These differ-
ences can be attributed to the complex nature of a porous
medium that exhibits double porosity/permeability. How-
ever, there are situations under which the solutions under
the double porosity/permeability model can be adequately
described by Darcy equations (see Sec. 4.2).

(C2) The maximum and minimum pressures need not occur on
the boundary under the double porosity/permeability
model. This is in contrast with the case of Darcy equations
under which the maximum and minimum pressures occur
on the boundary for a pressure-prescribed boundary value
problem.

(C3) There will be discharge in the micropore network even if
there is no fluid supply on the boundaries of the micropore
network. Therefore, it can be concluded that the surface
pore-structure is not the only factor in characterizing the
flow through a complex porous medium which highlights
the need to use modern techniques (e.g., l-CT) for studying
the internal pore-structure.

(C4) There will be mass transfer across the two pore-networks
whether the permeability of the macropore network is
greater than the permeability of the micropore network or
vice-versa. This means that the path that the fluid takes is
not necessarily through the network with higher
permeability.

The proposed theoretical framework can be extended to the
study of the flow of multiphase fluids in a porous medium with
double porosity/permeability. A systematic study comparing the
linear mass transfer model and multirate mass transfer models is a
worthy scientific endeavor. Another research endeavor can be
toward extending the proposed framework to coupling the defor-
mation of the porous solid with the flow in a porous medium with
double porosity/permeability.

Nomenclature

Symbols.

Ai ¼ specific Helmholtz potential
b(x) ¼ the specific body force
cl(&) ¼ set closure

Di ¼ symmetric part of gradient of velocity
ðDðiÞð&Þ=DtÞ ¼ material time derivative

Fi ¼ gradient of motion tensor
ii ¼ interaction term
ki ¼ scalar permeability

Ki ¼ permeability tensor
Li ¼ gradient of velocity tensor
mi ¼ rate of mass transfer (due to chemical reactions,

phase change, etc.)
n̂ðxÞ ¼ unit outward normal to the boundary

pi ¼ material (reference) coordinate
pi(x) ¼ pressure scalar field

p0i ¼ prescribed pressure
qi(x) ¼ heat flux

ri ¼ (external) specific heat supply
Ti ¼ partial Cauchy stress tensor

ui(x) ¼ discharge (or Darcy) velocity vector field
uni ¼ prescribed normal component of Darcy velocity
Ui ¼ specific internal energy

vi(x) ¼ true (or seepage) velocity vector field
vni ¼ prescribed normal component of true velocity

~viðxÞ ¼ kinematically admissible velocity vector field
x ¼ spatial coordinate
ai ¼ drag coefficient
b ¼ dimensionless characteristic of the porous medium
c ¼ true density of fluid

Cp
i ¼ pressure boundary

Cv
i ¼ velocity boundary

es
i ¼ energy supply
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f ¼ rate of dissipation per unit volume
fMT ¼ dissipation due to mass transfer

g i ¼ specific entropy
h i ¼ temperature
l ¼ coefficient of viscosity of fluid
qi ¼ bulk density

/i(x) ¼ porosity (volume fractions)
U ¼ dissipation functional

v(x) ¼ mass transfer across the two pore-networks
W ¼ rate of entropy production per unit volume
X ¼ bounded domain
@X ¼ piecewise smooth boundary

Subscripts

1 ¼ macropore network
2 ¼ micropore network
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