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a b s t r a c t 

The mechanics of biological entities, from single molecules to the whole organ, has been 

extensively analyzed during the last decades. At the smaller scales, statistical mechanics 

has fostered successful physical models of proteins and molecules, which have been later 

incorporated within constitutive models of rubber-like materials and biological tissues. At 

the macroscopic scale, the additive decomposition of energy functions i.e., a parallel ar- 

rangement of the tissue constituent, has been recurrently used to account for the internal 

heterogeneity of soft biological materials. However, it has not yet been possible to unite 

the mechanics at the tissue level with the actual response of the tissue components. Here, 

we exemplify our approach using cardiovascular tissue where the mechanical response at 

the tissue scale is in the range of kPa whereas the elastic modulus of collagen, the main 

component of the vascular tissue, is in the range of MPa GPa. In this work we develop a 

novel theoretical framework based on a complementary strain energy function that builds- 

up on a full network model. The complementary strain energy function introduces natu- 

rally an additive decomposition of the deformation gradient for the tissue constituents, i.e 

an arrangement in series of the constituents. We demonstrate that the macroscopic re- 

sponse of the tissue can be reproduced by just introducing the underlying mechanical and 

structural features of the micro-constituents, improving in a fundamental manner previous 

attempts in the mechanical characterization of soft biological tissues. The proposed theo- 

retical framework unveils a new direction in the mechanical modeling of soft tissues and 

biological networks. 

© 2020 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

1. Introduction 

The influence of mechanics in biology spans from single proteins through cells and tissues to entire organs ( Hunter and

Borg, 2003; Iskratsch et al., 2014; Parsons et al., 2010 ), so physicists, mathematicians, and engineers have focused on its

characterization for several decades. For example, the mechanics of adhesion molecules ( Yao et al., 2014 ) determine the

dynamics of cell adhesion ( Elosegui-Artola et al., 2016; Erdmann and Schwarz, 2004; Geiger et al., 2009 ) and, therefore, of

cell motility. The mechanics of actin have fundamental implications in a large number processes in mechanobiology such
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Fig. 1. Sample of a carotid artery taken from pig (a). Histological study of porcine carotid tissue by Masson’s trichrome stain when clear pink color is 

elastin, red is muscle, and a blue/green is the collagen fibers (b). 3D reconstruction of the entanglement of collagen bundles in the arterial tissue (adapted 

from Rezakhaniha et al., 2012 ) (c). The white line represents the waviness of the collagen bundles a length L 0 at the reference configuration and a contour 

length L f . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

as cytokinesis and ring contraction ( Biron et al., 2005; Salbreux et al., 2009 ) and cancer progression ( Butcher et al., 2009 ).

Organization of the extracellular-matrix (ECM) at the tissue and organ level dictates the mechanics of the tissue in health

and diseases such as aneurysm formation ( Sakalihasan et al., 2005 ). Understanding how all these constituents arrange in

biological networks is key to both understanding their mechanical response and also for the design of biomedical materials

( Hench and Polak, 2002; Lutolf and Hubbell, 2005 ) and tissue engineering ( Griffith, 2002; Langer and Tirrell, 2004 ). 

Today, most of the mechanical models for soft tissues come from the early developments in rubber elasticity Flory (1961) .

The theory of non-linear hyperelasticity has been the starting point from which phenomenological continuum models for

anisotropic soft biological tissues have been developed at the macroscale. On the contrary, the concepts of Gaussian and

non-Gaussian statistical mechanics have been used at the microscale. The Freely Joined Chain or the Worm-like chain have

described successfully the mechanics of DNA molecules ( Bustamante et al., 2003 ) and collagen molecules ( Buehler and

Wong, 2007 ). The introduction of suitable averaging methods allowed to obtain the macroscopic constitutive law of net-

works, such as actin filaments ( Bozec and Horton, 2005; Kuhl et al., 2005; MacKintosh et al., 1995 ). In this regard, different

continuum models based on single filament statistical mechanics have been also proposed ( Alastrué et al., 2009; Arruda

and Boyce, 1993; Miehe et al., 2004; Ogden et al., 2006 ) to describe the mechanical behavior of tissues with outstanding

accuracy. However, despite using an accurate description of the microstructure, a significant mismatch in the mechanical

properties of the constituents at the microscale is observed. 

A clear example of multi-scale modeling in biological networks appears in cardiovascular tissue which is among the

most studied biological entities in mechanics. Arterial wall, the specific system we focus on in this work to exemplify our

theoretical derivation, is a highly heterogeneous material with a complex architecture made up of collagen and elastin (see

Fig. 1 ). In this regard, most models for arterial mechanics rely on the mechanical contribution of these two components.

The stiffness of the cardiovascular tissue ( Fig. 1 a) has been reported in the range of kPa (see Dobrin, 1978; Fung et al., 1979;

Holzapfel et al., 2005; Peña et al., 2015 among many others) whereas the mechanical stiffness of the micro-constituents at

the fiber and fibril scale e.g., collagen, ( Fig. 1 b) are found to be orders of magnitude higher, in the range of MPa GPa ( Eppell

et al., 2006; Shen et al., 2008; Tang et al., 2010 ). To date, no mechanical model has been able to reconcile the differences

between the mechanical properties measured at the microscale with those obtained at the tissue level. 

2. Methods 

2.1. Continuum modeling of soft tissues 

To motivate our work, we start by describing the basic kinematics and the energy function, or Strain Energy Density

Functions (SEDF) � , required to derive a macroscopic stress-strain relation as P = ∂ F �, with P the first Piola-Kirchhoff stress

tensor, and F the deformation gradient ( Marsden and Hughes, 1994 ). The deformation gradient F = ∇ X ϕ (X , t) : T Ω0 →
T Ωt , represents the linear tangent map from the tangent space T Ω0 to the time–dependent tangent space T Ωt , and P

is the thermodynamic force conjugate to F . In the classic approach, the SEDF is written in the form �T = 

∑ i 
1 �

i , with

i the number of micro-constituents of the tissue e.g., collagen and elastin. The additive decomposition adopted for the

SEDF inherently assumes that the different constituents work in parallel, meaning that the deformations are affine and that

different stress values are obtained for each constituent. Many phenomenological models ( Chuong and Fung, 1984; Holzapfel

et al., 20 0 0; Mooney, 1940 ) have been used to define the mechanical behavior of biological tissues through different SEDFs.

Other approaches make use of non-Gaussian and semi-flexible filament models to define network models, such as the early

3-chain and 8-chain models ( Arruda and Boyce, 1993 ), or the non-affine micro-sphere model ( Miehe et al., 2004 ). In this

work, we have adopted a full network model ( Treloar et al., 1979; Wu and Van Der Giessen, 1993 ) which provides an elegant

approach that has demonstrated excellent results with arterial tissue ( Alastrué et al., 2009; Sáez et al., 2016 ). 
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Fig. 2. Stress response of the phenomenological model in Eq. 4 for L = 80μm and a combination of different stress-free initial lengths. On the left, true 

stress as a function of the stretch of the fibril λ = r/r 0 . On the right, true stress as a function of r / L . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Within the full-network model, we characterize the energy function of the components at the micro-scale, ψ , and the

SEDF at the macro-scale � = 〈 ψ(λ) 〉 through an homogenization of the quantities of interest 〈 • 〉 , the energy function in

our case, over the unit sphere U 

2 as 

4 π〈 ψ(λ) 〉 = 

∫ 
U 2 

ψ(λ) d A. (1)

The integral in Eq. 1 is performed numerically as the sum along a number of integration directions on the micro-sphere r i
and weights w i such that 

∫ 
U 2 

(•) d A ≈ ∑ m 

i =1 (•) i w i . From now on, we will use m = 184 (see, e.g., Alastrué et al., 2009; Bažant

and Oh, 1986 for details). To reproduce the mechanical response of the tissue, we first obtain the stress measures deriving

〈 ψ i ( λ) 〉 with respect to the associated strain measure ( Marsden and Hughes, 1994; Miehe et al., 2004 ). Considering an

additive decomposition of the SEDF as � = �c + �e , representing the collagen and elastic components respectively. Hence,

the macroscopic Kirchhoff stress can be written as 

τ = τc + τe = 〈 (∂ λψ c + ∂ λψ e ) λ
−1 t � t 〉 (2)

where t = F · r , λi = ‖ F · r i ‖ are the stretches along r i , and ψ c and ψ e are the energy function for the collagen and elastin

components respectively. 

2.2. Continuum modeling of the micro-structure 

Next, it remains to define the mechanical behavior of each constituent and its structural organization at the microscale in

order to define the mechanical response at the macro-scale, i.e. the arterial tissue. First, we define the mechanics of single

filaments, which we identify with collagen and elastin fibrils. To define the SEDF for the different constituents, we start by

defining the extension of the filament as a function of the force acting on it as 

r = L − 6	L 0 
π2 

∑ 

k 

1 

k 2 + φ
, where φ = 

6 

π2 

P 	L 0 
r 0 c 1 

, (3)

where P is the applied stress to the filament, L is the full length of the filament at P 	→∞ , 	L 0 = L − r 0 with r 0 the resting

length of the filament for P = 0 i.e., the stress-free length, and c 1 a material parameter with units of stress identified from

experiments. 

This phenomenological extension-force relationship recalls the result of a semi-flexible network, widely used in actin

networks ( MacKintosh et al., 1995; Palmer and Boyce, 2008 ). However, in this work, this is assumed as a phenomenological

extension-force law only requiring L > r 0 . Therefore, Eq. (3) must be seen as a suitable description of the stretch-force rela-

tion for the single filament within the continuum mechanics framework. Note that, other constitutive relationships can be

adopted as long as they describe the mechanical system correctly. 

A standard way of simplifying the series in Eq. (3) is by means of the Langevin function, L = coth (χ ) − 1 /χ with χ =
π

√ 

φ ( Palmer and Boyce, 2008 ). Inverting now the Langevin function we can obtain an expression for the force as a function

of the stretch of the filament, λ = r/r 0 . Integrating along the length as ψ = 

∫ 
P (λ) dλ we can derive a form for the energy

function as ( Palmer and Boyce, 2008 ) 

ψ = c 1 

(
3 

2 

L − r 0 
L − r 0 λ

− log 
3 r 0 − 2 L − r 0 λ

3(L − r 0 λ)(L − r 0 ) 

)
− D, (4)

where D is a constant equal to the initial strain energy density from the filaments. From Eq. 4 we can derive the Kirch-

hoff stress as τ = ∂ λ�c λ−1 . We show in Fig. 2 the mechanical response of the proposed phenomenological model, which

reproduce a zero stress for λ = 1 and an asymptotically increasing stress as r/L 	→ 1. 
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2.3. Anisotropic description of the tissue 

Once defined the mechanical behavior for the single filaments, we proceed to assemble them to describe the collagen

network, considered the most determining component in terms of the mechanical response of the tissue. The main features

of the collagen network that contribute toward the mechanics of the tissue are the anisotropic entanglement of the collagen

fibers and its waviness, which can be obtained from additional experimental observations. The anisotropic arrangement of the

collagen structure can be explicitly considered by means of an orientation distribution function (ODF) ( Sáez et al., 2016 ). The

Bingham ODF ( Bingham, 1974 ), ρ( r i ; Z , Q ) has been recently proposed to describe experimental results from polarized light

microscopy ( Sáez et al., 2016 ). The Bingham distribution is defined as 

ρ(r ; Z , Q ) 
dA 

4 π
= [ F 0 0 0 (Z )] −1 exp ( tr (Z · Q 

T · r · r T · Q )) 
dA 

4 π
, (5) 

where Q ∈ Q 

3 , with A = Q · Z · Q 

t , determines the preferential orientation of the probability distribution in the surface of

the unit sphere and, consequently, in the arterial wall. Z is a diagonal matrix with eigenvalues κ1,2,3 that can be interpreted

as concentration parameters along the three orthogonal directions in space, i.e. along the circumferential, radial and axial

vessel wall directions, respectively. The difference between pairs of eigenvalues, i.e. 	κ1 , 2 , 3 = [ κ1 − κ2 , κ1 − κ3 , κ2 − κ3 ] de-

termines the shape of the distribution. Therefore, one of the 	κ1,2,3 may be set to zero without reducing the versatility of

the distribution. With two eigenvalues 	κ1,2,3 equal to zero, the von Mises ODF is recovered. Finally, the factor 

F 0 0 0 (Z ) = 

1 

4 π

∫ 
U 2 

exp ( tr (Z · r · r T )) d A . (6) 

is introduced so that 1 / (4 π) 
∫ 

ρdA = 1 . 

The inset in Fig. 4 shows an example of the Bingham ODF for the distal location of a carotid artery. The SEDF for the

tissue reads now as 〈 ρψ i ( λ) 〉 . 

2.4. Waviness description of the assembled filaments 

We introduce the waviness of assembled collagen fibrils ( Rezakhaniha et al., 2012 ) (see inset in Fig. 1 ), that are observed

in most soft tissues and has been proposed to play an important role in the tissue response. Note that this waviness differs

from the undulation of the filament mechanics in Eq. 4 in that the waviness represents a macroscopic structural feature that

describes the actual rippling of the collagen fibers within the tissue. Waviness has been usually described using a Gaussian

distribution ( Cacho et al., 2007; Zulliger and Stergiopulos, 2007 ). In this work, however, we choose to describe the crimp of

collagen fibers through a Beta probability density function for which the random variable is limited to a finite interval 

f L (P s ;α, β) = 

�(α + β) 

�(α)�(β) 
P 

α−1 (1 − P) β−1 , (7) 

where �( • ) represents the Gamma function and the shape parameters are α = 4 . 47 and β = 1 . 76 ( Rezakhaniha et al., 2012 ).

As the tissue deforms, the collagen fibrils align with the stretching direction reducing the waving of the fibers. We include

P s ∈ (0 , 1) , as defined in Rezakhaniha et al. (2012) , as a measure of the waviness of the fiber. P s = 1 indicates a totally

straight fibril bundle and as we lower its value we obtain a more crimped fiber. We take the same parameter P s as a

measure of the deformation required for a straight bundle to start to stretch. Once a bundle is completely straight, the

mechanical behavior of individual collagen fibrils, � , takes over. Therefore, we compose the stretch of a single bundle as

the deformation required to unfolded it up to P s = 1 and the deformation from the fully extended configuration of the

bundle, λT = λ · P s . Finally, we integrate the waviness of the collagen network with the mechanical behavior of the fibrils

bundle, its anisotropy and spatial distribution through the averaged SEDF in Eq. (1) to obtain 

�c = 

∫ 
U 2 

∫ 1 

0 

f L (P s ;α, β) ρ(r i ; Z , Q ) ψ(λ, P s ) d P s d A. (8)

2.5. A complementary strain energy function full-network model 

To generalize this idea within a consistent thermodynamic formulation, we take advantage of the complementary energy

density function (cSEF) (see Ogden, 1977; Reynolds and Blume, 1993 among others). Recalling the definition of the deforma-

tion gradient F , we use the polar decomposition to write F = R · U , where U is the symmetric positive definite right stretch

tensor, defined with respect to the reference configuration. The unique R is a proper orthogonal tensor, with det (R ) = 1 ,

called the rotation tensor. Following Ogden (1977) , a symmetric stress tensor τ J , which states for a symmetrized Biot or

Jauman stress tensor, is defined as 

2 τ J = PR + R 

T P 

T . (9) 

such that P : ˙ F = τ J : ˙ U . τ J can be seen as a co-rotated material stress tensor. This definition of the stress and strain con-

jugates have large implications in the constitutive modelling of hyperelastic materials such that a constitutive law can be
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written as a function P ( F ). The law must fulfill the frame indifferent conditions. However, τ( U ) is already frame indifferent.

In consequence we can also write 

2 τ(U ) = P (U ) + P 

T (U ) . (10)

Under the assumption of a SEDF per unit of volume in the deformed configuration � we can define P = ∂ F � and τ J = ∂ U � .

In view of these definitions, and given the equality P : F = τ J : U we can define now a complementary SEDF per unit volume

ˆ � such that 

� + 

ˆ � = P : F = τ J : U , (11)

where ˆ � is a function of P or τ J . It can be shown that ˆ � takes the same values whatever variables are chosen for the

definition and, therefore, possesses frame indifference inherently. Under local invertibility of τ J ( U ) we can define U = ∂ τJ 
ˆ �

and F = ∂ P ̂  � . 

Within our full-network model, the cSEDF for a single filament can be defined in a one-dimensional energetic frame-

works as 

ψ + 

ˆ ψ = P λ, (12)

where we have use the First Piola–Kirchhoff stress tensor projection P = P : [ r � t ] . 

In order to define ˆ ψ we can make use of the Legendre transformation in Eq. (12) , given an expression of the energy

function. Therefore, the methodology is applicable to any existing energy function. In our particular case, however, the

expression for ˆ ψ for a single filament was derived by integrating the stretch, λ = r/r 0 , obtained from Eq. (3) along the

stress, P , i.e., ˆ ψ = 

∫ 
λ(P) dP 

ˆ ψ = c 1 

[ 

1 

6 

π2 L 

L − r 0 
φ −

∑ 

k 

log 

(
k 2 + φ

k 2 

)] 

, (13)

where c 2 is a material parameter with units of stress, and φ is as defined in Eq. (3) . 

The total complementary SEDF, weighted by its percent amount of collagen and elastin, �c and �e , is given as 

ˆ �T = 

ˆ �c + 

ˆ �e = �c 〈 f L ρ ˆ ψ c 〉 + �e 〈 ˆ ψ e 〉 , (14)

where the averaged complementary energy function in the full-network model for the collagen and elastin network results

ˆ �c = �c 

∫ 
U 2 

∫ 1 

0 

f L (P s ;α, β) ρ(r i ; Z , Q ) ˆ ψ c ( P ) d P s d A and 

ˆ �e = �e 

∫ 
U 2 

ˆ ψ e ( P ) d A . (15)

Here, the values for the collagen and elastin fractions are �c = 65% and �e = 35% , respectively, following experimental

observations ( O’Connell et al., 2008 ). We will keep these values fixed in what follows. After deriving with respect to the

conjugate stress measure P we obtain the total as well as the collagen and elastin deformation gradient: 

F T = ∂ P ˆ �c + ∂ P ˆ �e = �c F c + �e F e (16)

We make use of the chain rule in ∂ P ˆ ψ = ∂ φ ˆ ψ ∂ P φ to define 

∂ P ˆ ψ = 

6(L − r 0 ) 

π2 r 0 

[ 

π2 L 

6(L − r 0 ) 
−

∑ 

k 

1 

k 2 + φ

] 

r � t = λr � t . (17)

The deformation gradients for the collagen and elastin phase can be described as 

F c = 〈 f L ρ λc r � t 〉 and F e = 〈 λe r � t 〉 . (18)

The additive decomposition of the complementary SEDF naturally impose an additive decomposition of the deformation

gradient into the collagen and elastin deformation gradient. Therefore, the non-affinity of the model is controlled by the

mechanical and structural parameters of each component of the network: the amount of constituents, the waviness, the

anisotropy and the stretch of each direction. For a discussion on the addition of a volumetric term for the incompressibility

constraint within the complementary SEDF, see Reynolds and Blume (1993) . 

3. Results 

The presented framework has been applied to describe the mechanical behavior of arterial tissue. We first characterize

the behavior of isolated collagen fibrils using Eq. 3 . We then proceed to describe the mechanical behavior of arterial tissue

(carotid) using the classical SEDF approach and the proposed complementary SEDF approach. 
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Fig. 3. Circles shows the mechanical response of 9 data set of isolated collagen fibril. Blue solid line is the mean of all data set and blue shadow represents 

the standard deviation. Black solid line is the solution of the model described in Eq. (4) with values L = 13.46 μm and r 0 = 3.54μm and c 1 = 410.43 kPa. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.1. Mechanical response of collagen fibrils 

We use the energy function in Eq. (4) to describe the mechanical response of an isolated collagen fibrils. Collagen fibrils

have a distinctive architecture resulting from their self-assembly from soluble single molecules ( Fratzl, 2008 ). The entrop-

ically driven formation of micro-fibrils is initiated by cleavage of the terminal C-propeptides of the procollagen molecule.

This results in both lateral and axial molecular association forming fibrils (10-200 nm in diameter) with a distinctive axial

periodic pattern of 67 nm due to precise parallel molecular overlap likely driven by electrostatic interactions. A number of

covalent crosslinks, e.g lysyl oxidase enzymatic links and glucose derived glucosepane links), stabilize the fibril assembly

providing integrity and strength. At length scales greater than the single fibril diameter, bundles of collagen fibrils inter-

woven with layers of non-collagenous glycoproteins form. While it is known that there are significant helical structures

spanning the sub-molecular up through the microscale fibril bundle level ( Perumal et al., 2008 ), we have not included this

detail in our model. We fit a tensile test of isolated collagen fibrils (see Shen et al., 2008 for details of the experimental pro-

cedure and results) in a fully straight reference configuration by means of a least-square method using τ . Results are plotted

in Fig. 3 . We obtain a value of L = 13.46μm and r 0 = 3.54μm and c 1 = 410 . 43 kPa with a normalised root mean square error

(NRMSE) of 0.012. This result shows that the phenomenological extension-force relationship described in Eq. (3) accurately

describes the mechanics of collagen fibrils. 

3.2. Mechanical response of arterial tissue through a SEDF 

We aim at modeling the mechanical behaviour of arterial tissue by making use of the SEDF in Eq. (1) , which represents

a non-linear full-network model. The elastin network is modeled using a one-dimensional Neo-Hookean law with ψ e =
2 μ(λ2 − 1 /λ) in each orientation direction, whereas collagen is modelled using Eq. (15) with P s = 1 i.e., no waviness is

considered. Hence, the parameters to be identified result: L , r 0 and c 1 for the collagen network, and μ for the elastin network.

The parameters of the Bingham distribution have been taken from Sáez et al. (2016) resulting in the distribution shown in

the inset of Fig. 4 . The material parameters for the constitutive models were obtained by means of a nonlinear regression

analysis of uniaxial test data of pig carotid artery reported in Garcia et al. (2011) . The resulting material parameters were

L = 5.81μm, r 0 = 3.26μm and c 1 = 42.67 kPa for the collagen network, and μ= 40.1 kPa for elastin. As shown in Fig. 4 , this

approach is able to fit the experimental data satisfactorily with a normalized root mean square error (NRMSE) of 0.045.

However, the stress-like parameter of the collagen network, c 1 , is an order of magnitude lower than the one identified

in the previous section on single collagen fibrils i.e., 42.67 kPa vs 410.43 kPa. For completeness, we also fit the model

considering the waviness of the collagen fibers i.e. P s ∈ [0 , 1] described in Section 2.4 to see if this helped to improve these

discrepancies. Unfortunately, incorporating the waviness did not improve the results. 

3.3. Mechanical response of arterial tissue through a complementary SEDF 

The discrepancies in the material parameter between the micro- and macro-scales found in the previous sections give

the key motivation of this work, namely: The mechanical behavior of the micro-structural collagen fibrils do not resemble the

mechanical response of the tissue at the macroscopic scale . In other words, the material parameters of the collagen net-

work identified using the SEDF approach are of little physical meaning. Further, if for the collagen network SEDF model

in Section 3.2 we use the material parameters identified in Section 3.1 (at the microscale), and reproduce the same uniaxial

protocol described in Garcia et al. (2011) the results is in an over stiff response of the tissue (see black solid line in Fig. 5 ).

Since the anisotropy and the waviness of the collagen network can be determine by direct experimental observations, the
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Fig. 4. Stress-strain relation obtained from experimental test is fitted, by means of a least-square procedure, to obtain the material parameters that better 

describe the mechanical behavior. The elastin network is the only component that mechanically entangles in the longitudinal direction (blue) since the 

collagen is preferentially aligned in the circumferential direction. In the circumferential direction (red), the main contribution to the mechanics of the 

tissue is the collagen fibril bundles. Discrete marks represent the mean of 13 experimental data and shadows show the standard deviation. Lines represent 

the model results. Inset on top shows the sketch of the circumferential and longitudinal directions of the artery, in which the artery is cut and uniaxial 

tests are performed. Inset on the bottom shows the resulting Bingham distribution taken from Sáez et al. (2016) , with two families of fibers and 	κ f 1 
1 , 2 , 3 

= 

[13 . 5 , 0 . 0 , 25 . 2] and 	κ f 2 
1 , 2 , 3 

= [14 . 7 , 0 . 0 , 26 . 6] . 

Fig. 5. Experimental data and model results for the complementary full-network model. Red and blue lines shows the results of the cSEDF when the 

mechanical response of the fibrils are included in the full-network model. Black line shows the network response when the SEDF is used to describe the 

tissue. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

discrepancies in the mechanical response between the tissue scale and the single fibril scale can only arise from the defi-

nition of the energy functions. In this particular, we wonder if the previous modeling limitations arise from the assumption

associated with the SEDF approach that elastin and collagen work in parallel. In this case, for a given stretch, the colla-

gen (much stiffer than elastin) dominates the mechanical response of the tissue. On the contrary, if a series arrangement

is assumed for the constituents, the transmitted force is the same for all constituents whereas the varying quantity is the

displacement of each element that occurs in a non-affine manner i.e., u T = 

∑ i 
1 u i , where u i is the displacement of each

constituent. In this regard, analysis of the tissue strains through confocal microscopy have shown that the individual tissue

components deform in a non-affine manner ( Billiar and Sacks, 1997; Chandran and Barocas, 2005; Huyghe and Jongenee-

len, 2012 ) during the reorganization and damage of the sclera’s collagen fiber arrangement under loading Chakraborty et al.

(2016) and Mauri et al. (2016) . Consequently, we asked ourselves if a series construct is able to reproduce the mechani-

cal response of cardiovascular soft tissues at the macroscale while incorporating the actual mechanical properties of the

constituents determined at the microscale. In an effort to give an answer to this question, we have developed the comple-

mentary SEDF described in Section 2.5 . 

We incorporated in the complementary SEDF model described in Section 2.5 , the properties of the collagen fibrils iden-

tified in Section 3.1 . For the elastin we use the same constitutive law, described in Eq. (13) . We first fit the longitudinal

direction in which only elastin is present. Then, we included the resulting values (see Fig. 5 ) to reproduce the mechanical

test at both the circumferential and longitudinal directions. The parameters associated with the anisotropy and waviness
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have been left unaltered with respect to Section 3.2 . It is important to recall that we do not perform any further fitting

procedure of the mechanical parameters at the tissue scale. In other words, at the tissue scale we have just assembled the

contributions from the different constituents. Fig. 5 shows that the cSEDF is able to reproduce the mechanical response of

the tissue with a NRMSE = 0.175. Clearly, the cSEDF is able to unite the mechanical response of the micro- and macro-scale

of the tissue. 

4. Conclusions 

In short, we have introduced a new reasoning in the mechanical modeling of soft biological tissue, in which the com-

plex architecture of the network components works concomitantly in series and not in parallel, as usually assumed. Here,

we evaluate the behavior of the complementary SEDF against a standard SEDF within the same full-network model. Fur-

ther comparison between different chain models, full-network models and full-network versus invariant and stretch-based

models can be found elsewhere, e.g. in Miehe et al. (2004) , Boyce and Arruda (2000) , Ogden et al. (2006) , among others.

Through the definition of complementary energies, we have formalized in a thermodynamically consistent manner a full-

network model where a description of the mechanics of the tissue components has been introduced. We have made use of

the main structural features of the collagen network, i.e. the orientation, distribution and waviness of the collagen network

and the mechanical properties of the elastin and collagen fibrils, to define ad-hoc the mechanical response of the tissue. The

structural aspects of the network were recovered from experimental data, and a Bingham distribution function Sáez et al.

(2016) and the Beta probability function Rezakhaniha et al. (2012) were used to define the orientation and waviness of the

collagen fibrils, respectively. The mechanical properties of collagen fibrils were obtained independently from experimental

data at the micro-scales. The mechanical properties of elastin were computed at the low strain regime of the tissue, in

which only elastin bears the mechanical load. Future experimental data on individual tissue components in this and other

tissues could be introduced directly in our theoretical approach. Both the mechanical and structural information were intro-

duced ad-hoc in the complementary strain energy function, in which an additive decomposition of the deformation gradient

appeared naturally. Therefore, we have been able to unite the mechanics of the collagen and elastin with the mechanical

behavior at the artery without any further fitting at the tissue scale which represents a fundamental step forward in the

modeling of soft biological tissues. Our present contribution, however, relies on the stresses as the primary field variables,

whereas the deformation is obtained as a work conjugate from the complimentary energy function. Therefore, we cannot

evaluate stresses from a displacement-driven experiment in complex loading scenarios. This approach may be cumbersome

when implementing it within the finite element method. Therefore, we believe that this contribution can be the initial seed

for an interesting discussion and research on the mechanical description of biological tissues in the future. In conclusion, we

believe that such simple physical reasoning is the answer to realistically integrating the information at the different scales

of biological tissues and molecules and to open a novel approach in the modeling of soft biological tissue, and polymer

networks in general. 
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