
Igor Ostanin
Department of Civil Engineering,

University of Minnesota,

500 Pillsbury Drive SE,

Minneapolis, MN 55455

e-mail: ostan002@umn.edu

Roberto Ballarini1
Mem. ASME

Department of Civil Engineering,

University of Minnesota,

500 Pillsbury Drive SE,

Minneapolis, MN 55455

e-mail: broberto@umn.edu

Traian Dumitric�a
Mem. ASME

Department of Mechanical Engineering,

University of Minnesota,

111 Church Street SE,

Minneapolis, MN 55455

e-mail: dtraian@me.umn.edu

Distinct Element Method
Modeling of Carbon Nanotube
Bundles With Intertube Sliding
and Dissipation
The recently developed distinct element method for mesoscale modeling of carbon
nanotubes is extended to account for energy dissipation and then applied to character-
ize the constitutive behavior of crystalline carbon nanotube bundles subjected to simple
tension and to simple shear loadings. It is shown that if these structures are sufficiently
long and thick, then they become representative volume elements. The predicted initial
stiffness and strength of the representative volumes are in agreement with reported ex-
perimental data. The simulations demonstrate that energy dissipation plays a central
role in the mechanical response and deformation kinematics of carbon nanotube
bundles. [DOI: 10.1115/1.4026484]

1 Introduction

Carbon nanotube (CNT) based materials, and in particular CNT
bundles and CNT ropes, show great promise for technological
applications [1–13]. Twisted CNT yarns are candidate structures
for electromechanical torsional actuators and artificial muscles
[10]. Crystalline CNT bundles and CNT ropes, consisting of
micrometer-long CNTs, are of great interest as wires and cables
with high tensile load bearing capacity [7–9,13] and thin and
flexible conductors that can be embedded onto polymer
composites [12].

Predicting the mechanical response of CNT-based materials
from the properties of and interactions between individual nano-
tubes has been a challenging mechanics problem. While molecu-
lar dynamics (MD) has been applied successfully to model the
mechanical and physical properties of single CNTs [14–17], com-
putational limitations related to affordable simulation times and
system sizes do not allow applying MD to problems of collective
mechanical behavior of large assemblies of CNTs. These limita-
tions have led to the development of numerous empirical and the-
oretical mesoscopic models for studying the behavior of CNT
structures [18–28] including our distinct element method (DEM)
for CNTs [29,30]. Starting from the atomic-level description,
these models rely on coarse-graining procedures to reduce the
number of degrees of freedom (DOF) in order to make simulations
manageable.

In DEM, we represent a CNT by a chain of distinct elements
interacting with each other via prescribed contact models
informed by accurate simulations at the atomistic scale. These
contact models capture both the covalent intratube binding and
the van der Waals (vdW) intertube microscopic forces. We dem-
onstrated the suitability of the DEM methodology to investigate
the mechanics of large-scale CNT systems, including nanotube
ropes, rings, and films.

Using the DEM methodology, in this paper we consider two
aspects of the mechanics of CNT bundle that have not yet been

adequately addressed in the literature. The first is the question of
whether a bundle composed of CNTs interacting via vdW forces
can be considered a representative volume element (RVE). Con-
sidering that CNT-based structures are candidates for technologi-
cal applications involving mechanical forces, it is remarkable that
this question has not yet been answered. The second is the role of
intrinsic energy dissipation, which involves energy transfer from
the coherent mechanical motion into the internal energy (stochas-
tic motion) of the carbon atoms. Experiments [4,31,32] suggest
that energy dissipation is an essential feature of the mechanical
response of pure CNT materials and CNT composites. Therefore,
it should be included in mesoscopic models of CNT structures.
Investigating these two aspects becomes meaningful in the context
of our recent work [30] on developing a vdW contact model that
produces a smooth intertube potential energy surface for CNTs
sliding against each other. This model is in agreement with the
microscopic level picture, where there is convincing evidence that
the corrugation potential associated with the vdW registry is
small [33].

In this paper, we show that the two aspects of representative
mechanics for the volatile CNT bundle system and the energy dis-
sipation are strongly connected. The paper is organized as follows.
Section 2 summarizes the DEM methodology applied for (10,10)
CNTs, that were parameterized [30], and delineates the treatment
of energy dissipation. In Sec. 3, the mesoscopic model is used to
simulate the response to simple tension and simple shear loadings
of crystalline CNT bundles. The results demonstrate that in the
presence of sufficient energy dissipation, large enough crystals
behave as RVEs (the stress-strain curves of specimens that are
larger than the RVE are weak functions of their size). In Sec. 4,
we make connections with existing experiments and give our
conclusions.

2 Simulation Method and Procedure

The first application of the DEM to the problem of mesoscopic
modeling of CNT systems was presented in Ref. [30]. This
approach is based on a coarse-graining of the atomistic structure
of a CNT into a system of interacting rigid particles. The interac-
tions between these particles are derived from the results of finer-
scale MD simulations. Here, we review the DEM model and
describe its new features.
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2.1 Damped Dynamic of CNT Elements. Within DEM, a
CNT is represented by a chain of rigid hollow cylindrical seg-
ments, which are the distinct elements. Each segment has a unit
aspect ratio, i.e., its length T is twice the radius of a CNT R
(Fig. 1(a)). For (10,10) CNTs, such segment lumps approximately
220 carbon atoms. Each segment is characterized by mass m and
inertia tensor Iij. Cartesian components of inertia tensor of a hol-
low cylindrical segment with an axis parallel to z coordinate axis
are

I11 ¼ I22 ¼
m

12
6R2 þ T2
� �

; I33 ¼ mR2; I
ði 6¼jÞ
ij ¼ 0 (1)

The values of mass m and components (Eq. (1)) for (10,10)
CNTs are given in Table 1. Translational motions of cylindrical
segments are calculated with conventional velocity Verlet time
integration scheme. Rotational motions are integrated with fourth
order Runge–Kutta method, combined with a quaternion represen-
tation of rotations [34].

The coarse-graining (homogenization) leads to the complete
elimination of atomistic DOFs. Therefore, the dissipative micro-
scopic processes associated with CNT sliding are not explicitly
captured and should be included in a phenomenological manner.
In this respect, our model presents two channels of energy
dissipation—local damping and viscous damping, characterized
by parameters a and b, respectively [35].

Local damping is introduced with the sole goal of stabilizing
the nonsymplectic time integration. It acts on each element and
applies components of damping force Fa

i (moment Ma
i ) propor-

tional to the corresponding components of unbalanced force Fi

(moment Mi) according to

Fa
i ¼ �aFisignðviÞ; Ma

i ¼ �aMisignðxiÞ; i ¼ 1:::3 (2)

Here vi and xi are components of the translational and rotational
velocity of an element, and signðxÞ is the sign function.

We utilize viscous damping, in addition to time-integration sta-
bilizing damping, to capture the complex energy losses during
CNT sliding. Micromechanisms of such losses were described
qualitatively in Ref. [31]. They are associated with forced vibra-
tions of carbon atoms that are pulled out of their vdW registry.

Experimental works [4,33] reveal rate dependence of such losses.
Therefore, the effective dissipative force acting between two CNT
surfaces can be modeled as a dashpot (Fig. 1(a)), acting in parallel

with the vdW contact model. Normal Fb
n and tangential Fb

s forces
developed by the dashpot are proportional to normal vn and tan-
gential vs relative velocities of elements in vdW contact

Fb
n ¼ cnvn; Fb

s ¼ csvs (3)

Viscosity coefficients cn and ct are related to b as follows:

cn ¼ 2b
ffiffiffiffiffiffiffiffiffi
Mkn

p
; ct ¼ 2b

ffiffiffiffiffiffiffiffi
Mkt

p
(4)

where kn and ks are stiffnesses of the contact model, here taken
kn ¼ 100 eV/nm2, ks ¼ 100 eV/nm2.

Coefficient b has the meaning of damping ratio.
Unfortunately, a direct, microscopic calibration of damping has

proven to be insurmountable to date. Therefore, a top-down
approach is used here, where the viscous damping coefficient is a
free parameter chosen to reproduce the mechanical behavior
observed experimentally. Thus, rather than predicting
quantitatively-correct rate-dependent mechanical properties, the
goal of our effective damping approach is to reveal the role of
energy dissipation processes on the mechanics of CNT materials.
The simulations presented in this paper were performed with the
fixed time step of 10 fs. Maximum local damping value a ¼ 0:7 is
used to ensure the time integration stability [34]. The value of
viscous damping b ¼ 0:03 is chosen in a top-down way to
reproduce the realistic energy balance in a mechanical simulation
(see Sec. 4).

2.2 Parallel Bond Contact Model. Neighboring distinct ele-
ments representing a CNT are interacting with elastic parallel
bonds that capture the linear elasticity of CNT walls [30]. A paral-
lel bond provides an interface of distributed springs that resist
stretching, shearing, bending, and torsional deformations, accord-
ing to the following incremental laws:

Dx ¼ �kb
n

�ADFn; Dy ¼ �kb
s

�ADFs; Dh ¼ �kb
n
�IDMn;

Du ¼ �kb
s
�JDMs (5)

Fig. 1 (a) Coarse graining of a CNT into a chain of cylindrical segments, repre-
senting inertial properties of a CNT. Segments are linked with parallel bond interfa-
ces, representing elastic properties of a CNT surface, arising from covalent bonds
between C atoms within the CNT surface. Segments of neighboring CNTs interact
via mesoscopic vdW contact model, acting in parallel with viscous forces that
damp relative translational motion of CNT segments. (b) Illustration of definition of
generalized coordinates r , h, / for two interacting cylindrical segments of neigh-
boring CNTs. n1 and n2 are axial directions of first and second cylinder.
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where �A, �I, and �J are area, moment of inertia, and polar moment
of inertia of a cylindrical cross section,

�A ¼ 2pRt; �I ¼ pRtðR2 þ 0:25t2Þ; �J ¼ 2�I (6)

kb
n ¼ ECNT=T, kb

s ¼ GCNT=T are the distributed normal and shear
stiffnesses of a CNT bond contact; t ¼ 0:335 nm is the thickness
of the CNT wall, accepted to be equal to interlayer vdW spacing;
ECNT ¼ 1029 GPa, GCNT ¼ 459 GPa are values of CNTs Young’s
and shear moduli, respectively, which are determined from the
results of atomic-scale simulations [15]. Variables Dx;Dy;Dh;Du
denote increments of normal and shear displacement components,
and bending and twisting angles; DFn;DFs;DMn;DMs are incre-
ments of normal force, shear force, bending moment, and twisting
moment. A chain of parallel bonded elements behaves as an elas-
tic beam with corresponding cross section and elastic moduli.

2.3 vdW Contact Model. The elements of neighboring CNTs
interact via a vdW contact model. Accurate derivation and detailed
description of the potential is presented in Refs. [29,30]. Unlike
simple isotropic pair potentials, which are typically used in
particle-based approaches, our contact model reproduces near-
field anisotropy of interacting cylindrical segments, which leads to
realistic representation of adhesive interactions of CNTs. In partic-
ular, the realistic vdW contact model resolves relative sliding of
CNTs in contact. An anisotropic potential has the following shape:

Uðr; h;/Þ ¼ fcðrÞVkðr; hÞUðr;/Þ

Vkðr; hÞ ¼ e0
A0

Dkðr; hÞa0
� B0

Dkðr; hÞb
0

 !

Dkðr; hÞ ¼ r

RHkðhÞ
� 2

Uðr;/Þ ¼ 1þW/ðrÞð1� cosð2/ÞÞ

HkðhÞ ¼ 1þ
Xk

i¼1

Ciðð�1Þi�1 þ cosð2ihÞÞ

W/ðrÞ ¼ C/ðr=RÞd
0

fcðrÞ ¼
X3

i¼0

Qiðr=8RÞi (7)

Potential U depends on three variables—the distance between
segments r and angular variables h and /, defined according
to Fig. 1(b). The potential is designed as a generalized Lennard–
Jones pair potential V, modified with angular adjustments H and
U, in order to provide translational symmetry of the potential of
two infinite parallel CNTs and aligning moments acting between
misaligned segments [30]. Full parameterization of the potential is

presented in Table 1. The normal and shear contact force, as well
as the contact moment are defined as

Fr ¼ �
@U

@r
; Fh ¼ �

1

r

@U

@h
; M/ ¼ �

@U

@/
(8)

2.4 Mechanical Test With DEM Model. We now present
the procedure for the self-assembly and loading of a CNT bundle
model that is used in the tension DEM tests described in Sec. 3.
Figure 2(a) presents a schematic of a close-packed bundle of
CNTs with a hexagonal cross section. The side of a hexagon is
ðN � 1Þr0, where N is the number of tubes along the side and
r0 ¼ 1:71 nm is the equilibrium center-to-center distance between
the constituent (10,10) CNTs. The number of CNTs that define
the bundle cross section and its effective area write

NCNT ¼ 1þ 3NðN � 1Þ

S ¼ 3
ffiffiffi
3
p

4
1þ 3NðN � 1Þ½ �r2

0

(9)

The bundle of length L is composed of individual CNTs with
length LCNT, where LCNT < L. The ratio M ¼ L=LCNT will be
referred to as length factor of a CNT bundle. In a row of CNTs
(along the x direction), there is no spacing between the CNT caps
(Fig. 2(a)); vdW interaction between the caps is not prescribed.
For each row, the positions of CNT joints is defined by the dis-
tance LI between one of the edges of a bundle and the nearest
CNT edge (Fig. 2(a)); LI is random with uniform distribution on
the interval ð0;LCNTÞ.

A bundle specimen is assembled in the following way: A hexag-
onal CNT bundle, described above, is generated at time zero and
allowed to relax for 10,000 cycles, or 0.1 ns (it is worth noting
here that the time of this evolution is affected by the damping pres-
ent in the mesoscale model and does not directly correspond to the
time of evolution in the full atomistic model). We observe that the
bundle contracts in the x-direction (Fig. 2(b)), leading to approxi-
mately 0.3% decrease in length and an elastic strain energy of
approximately 0.5 kJ/kg (Fig. 2(c)). In this stage of initial relaxa-
tion, bundles may also develop lateral deformations and store part
of elastic energy in bending. This behavior is due to inherent asym-
metry of random positions of joints. As one can see from Fig. 2(c),
initial relaxation does not bring the bundle to a global equilibrium.
However, the relaxation time is sufficient to exclude the influence
of relaxation processes on the stress response during the test.

After the relaxation is completed, two layers of distinct ele-
ments at both edges of a bundle are designated as grips. The ele-
ments between grips represent the gage of length Lg ¼ L� 2T
(Fig. 2(d)). The x degree of freedom of grip elements are fixed,
and the bundle is equilibrated for an additional 1000 cycles
(0.01 ns) in order to ensure that the initial force acting on each
grip is zero. A displacement controlled loading is achieved next

Table 1 Parameters of DEM model for (10,10) CNTs

Geometry, mass, and moment of inertia of a segment
R, nm T, nm m, amu I11, amu� nm2 I22, amu� nm2 I33, amu� nm2

0.678 1.356 2649 1014.75 1014.75 1217.7

Parameters of parallel bond contact model

kn, eV / nm4 ks, eV / nm4 �A, nm2 �I, nm4 �J, nm4

4740 2110 1.427 0.348 0.696

Parameters of vdW contact model

e0, meV a0 b0 A0 B0 d0 C/

149.3 9.5 4 0.0223 1.31 �7.5 90

k C1 C2 C3 C4 C5

5 0.35819 0.03263 �0.00138 �0.00017 0.00024
Q1 Q2 Q3 Q4

�80.0 288.0 �336.0 128.0
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by prescribing that both grips accelerate from 0 to the given veloc-
ity vgð�vgÞ during 5000 cycles (0.05 ns). This acceleration period
is used to reduce the dynamic response, which is significant in
case of instantaneous acceleration of the grips.

3 Results

3.1 Size Convergence Studies of Stress-Strain Curves in
Tensile Tests. We investigate the behavior of CNT bundles sub-
jected to simple tension loading aiming to establish if an RVE can
be achieved. Systematic tensile tests have been carried out for a
collection of CNT bundles with different values of the L, LCNT, N,

and M bundle parameters, as given in Table 2. Stress-strain curves
(SSCs) were plotted during each test, see Figs. 3(a) and 3(b) and
Figs. 3(d) and 3(e). The tensile stress is defined as rxx ¼ Fx=S,
where Fx is the x-component of force acting on the grip. The nom-
inal strain is defined as exx ¼ 2ug

x
=L, where ug

x
is the x-component

of the grip displacement. Indexes of stress and strain (strain rate)
are omitted below. In the described series of simulations, the
bundles were elongated up to 2% strain at the strain rate
_e ¼ 2� 107 s�1.

A typical SSC of a CNT bundle consists of a monotonic growth
region up to a peak value and a postpeak evolution. The peak
value of stress, which represents the uniaxial tensile strength of a
bundle (ruts), is about 1 GPa. As it can be seen in Figs. 3(c) and
3(f), it depends on M and N only for short and thin specimens, but
it is size-independent for those that are representatively long and
thick. Other important parameters of the SSCs—the Young’s
modulus of a bundle E, the critical strain ec (Table 3) at ruts, and
the monotonic growth shape of the SCC curve all exhibit the same
trends. Interestingly, comparison of the convergence of tensile
strength for the two different values of LCNT, Figs. 3(c) and 3(f),
suggest that the size of an RVE has a weak dependence on LCNT.

We conclude that in the monotonic growth region, the size
dependences of SSCs becomes negligible for specimens with
M � 4 and N � 4. Such specimens can be considered as RVEs of
a CNT bundle. One can also estimate the Young’s modulus of
hexagonal arrangement of noninteracting individually stretched
CNTs as

E0 ¼ ECNT

ST

SC
; ST ¼ 2ptrCNT; SC ¼

3
ffiffiffi
3
p

4
r2

0
(10)

Based on the values for (10,10) CNTs given above, one obtains
E0 ¼ 385 GPa. As it can be seen in Table 3, the initial Young’s
modulus of a bundle is overall significantly smaller than E0. This
indicates that the sliding of CNTs within a bundle significantly
decreases the effective elastic modulus.

3.2 Small Deformation of a CNT Bundle: Energy Balance
and Kinematics. The mechanical response of a CNT bundle pre-
sented in Sec. 3.1 is by the result of the interplay among forces of
potential, inertial, and dissipative nature. In order to identify the
role of each, we track during simulations the different terms of
potential energy, kinetic energy, and dissipated energy. The
energy balance during the displacement control tension test is
given by

Fig. 2 (a) Schematics of a crystalline CNT bundle (N 5 2). (b) Geometry of the prerelaxed bundle (N 5 4, M 5 4). Color legend
gives x -component of displacements developing during the relaxation. (c) Changes in different terms of CNT bundle energy
during prerelaxation. The change in strain energy DUstr, vdW adhesion energy DUvdw, total energy DUtot, and kinetic energy Ukin

are presented. (d) Gage and grip regions of a CNT bundle specimen.

Table 2 Parameters of the tested specimens of CNT bundles

Specimen L, lm M LCNT, lm N NCNT vg, m/s

1 0.133 2 0.068 4 37 1.33
2 0.2 3 2
3 0.267 4 2.67
4 0.333 5 3.33
5 0.4 6 4
6 0.467 7 4.67
7 0.533 8 5.33
8 0.6 9 6
9 0.667 10 6.67

10 0.267 2 0.136 4 37 2.67
11 0.4 3 4
12 0.533 4 5.33
13 0.667 5 6.67
14 0.8 6 8
15 0.933 7 9.33
16 1.067 8 10.67
17 1.2 9 12
18 1.333 10 13.33

19 0.267 4 0.068 2 7 2.67
20 3 19
21 4 37
22 5 61
23 6 91
24 7 121

25 0.533 4 0.136 2 7 5.33
26 3 19
27 4 37
28 5 61
29 6 91
30 7 121
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AextðDÞ ¼
ðD
0

FextðD0ÞdD0

¼ DKðDÞ þ DUstrðDÞ þ DUvdwðDÞ þ DQðDÞ (11)

Here D (D0) is the absolute elongation of a CNT bundle; AextðDÞ is
the work done by external force FextðDÞ during the test; DKðDÞ
is the change in kinetic energy during the simulation; DUstrðDÞ is
the change in total strain energy (sum of CNTs stretching, bend-
ing, shearing, and torsion); DUvdwðDÞ is the change in vdW adhe-
sion energy, associated with the formation of a new vdW surface;
and DQðDÞ is the energy dissipated by local and viscous damping
that represents heating of a CNT bundle. In a quasi-static test, the
changes in the kinetic energy appear to be negligible compared to
other terms. By formal differentiation of Eq. (11) with respect to
D and omitting the kinetic energy term, one has

FextðDÞ ¼
dðDUstrðDÞÞ

dD
þ dðDUvdwðDÞÞ

dD
þ dðDQðDÞÞ

dD
(12)

Therefore, for the SSC of an RVE, one can write

rtotðeÞ ¼ rstrðeÞ þ rvdwðeÞ þ rdisðeÞ (13)

Thus, total stress response rtotðeÞ in the quasi-static test (neglect-
ing inertial effects) can be formally decomposed into three terms
associated with elastic deformation of CNTs ðrstrðeÞÞ, formation
of a new vdW surface (rvdwðeÞ), and dissipation ðrdisðeÞÞ. It is im-
portant to note that neither of these terms is rate- and path-
independent; the presence of rate-dependent dissipation affects
the whole mechanism of the deformation, i.e., the balance
between stretching and sliding of CNTs.

Figures 4(a) and 4(b) presents the decomposition (11,13) for
SSC of an RVE (specimen 12 in Table 2). Figure 4(a) gives the
variations in different energy terms that appear in Eq. (11), and
Fig. 4(b) presents the decomposition (Eq. (13)).

Initial rapid changes of the decomposition terms given in
Fig. 4(b) are likely associated with dynamic effects. Omitting this
initial part, we can distinguish three regions of the SSC. The first
region corresponds to strains between 0.05% and 0.3% and is
dominated by the elastic response of individual stretched tubes.
An interesting feature is that initial elastic response is negative
because, as was noticed in Sec. 2.4, CNTs in a bundle are slightly
compressed by vdW adhesion forces, and at the initial stage of the
test they are unstrained by external tensile load. We note that
almost all strain energy in our small strain simulations is associ-
ated with the tension/compression term in Eq. (5), with less than
10% associated with bending, shear, and twisting terms.

The second part of the response (strains between 0.3% and 1%)
is characterized by the changes in all energy terms; this signifies

Fig. 3 (a), (b) SSCs of bundles of different length, containing 37 tubes on a cross section (N 5 4), for LCNT 5 0:068 lm (speci-
mens 1–9, (a)) and LCNT 5 0:136 lm (specimens 10–18, (b)). (c) Uniaxial tensile strength of a bundle ruts as a function of the
length factor M for LCNT 5 0:068 lm and LCNT 5 0:136 lm. (d), (e) SSCs of bundles of different thickness, with length factor M 5 4,
and LCNT 5 0:068 lm (specimens 19–24, (d)) and LCNT 5 0:136 lm (specimens 25–30, (e)). (f) Uniaxial tensile strength of a bundle
ruts as a function of the thickness factor N for LCNT 5 0:068 lm and LCNT 5 0:136 lm. The slope of reference lines given in figures
(a), (b), (d), (e) corresponds to Young’s modulus E0 estimated for hexagonal arrangement of stretched noninteracting CNTs.
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sliding of tubes within a bundle, accompanied by formation of
new vdW surface and energy dissipation. Energy dissipation
occurs without releasing the elastic strain energy accumulated in
individual CNTs. These two processes dominate the prepeak
shape of the SSC. The postpeak region (strains more than 1%) is
characterized by the release of the elastic strain energy of the
CNTs.

To visualize sliding of CNTs in a bundle, we adopt the notion
of a slip vector [36], defined as

~di ¼ � 1

ki

Xki

j

xðijÞ � XðijÞ
� �

(14)

where xðijÞ and XðijÞ are the vector differences between the coordi-
nates of elements i and j in the current and reference states,
respectively, and ki is the number of nearest neighbors to element
i in the initial reference configuration.

In the case of small deformation, the slip direction is always
parallel to the axis of a CNT bundle. We are interested mostly in
the slip vector magnitude, which is displayed in Fig. 4(c) at three
representative strain levels for specimen 12 in Table 2. One can
see the development of localization of the CNT sliding region. At
the stage of initiation, the CNTs slipping interfaces are distributed
nearly evenly along the bundle, showing, however, an initiation of
periodic structure reflecting periodicity of the structure of a bun-
dle. When approaching peak stress, deformation starts localizing,
and this localization develops further in a postpeak regime. The
development of localization is indicated by the magnitude of a
slip vector that grows faster than the nominal strain.

3.3 Role of Dissipation. The mechanical behavior of CNT
bundles depends on the rate of energy dissipation. Figure 5(a)
gives SSCs, obtained in a tensile test identical to size convergence
tests described above but without viscous damping (b ¼ 0) and
with a relatively small value of local damping. Stress-strain curves
obtained in such a test demonstrate size dependence. Analysis of
CNT kinematics (Fig. 5(b)) indicates that specimens immediately
develop localized failure. Figure 5(c) demonstrates the effect of
local and viscous damping on deformation localization. The figure
shows the distribution of slip vector magnitude, averaged over
thin slices along the length of a specimen. The localization is con-
trolled mostly by viscous damping. On one hand, if b ¼ 0 slip is
immediately localized close to the grips. On the other hand,
b ¼ 0:03 leads to a nearly uniform distribution of slip along the

Fig. 4 (a) Work of external force Aext, as compared to changes in elastic strain energy DUstr,
vdW adhesion energy DUvdw, and dissipated energy DQ during the test. (b) Terms of decomposi-
tion (Eq. (13)) during the simulation. Total stress response rtot is calculated as a sum of deriva-
tives of traced energy terms (dashed line) and directly from force balance (solid line). (c)
Development of a localized deformation in a CNT bundle. Visualization of CNT bundle geometry
and magnitude of a slip vector (on the surface of a bundle and on a horizontal axial cross sec-
tion of a bundle).

Table 3 Results of tensile tests on CNT bundles

Specimen E, GPa ruts, GPa ec,% Specimen E, GPa ruts, GPa ec,%

1 70.191 0.819 1.346 10 145.774 1.146 1.02
2 63.267 0.781 1.568 11 137.162 1.126 1.05
3 61.8 0.738 1.646 12 135.377 1.108 1.062
4 60.776 0.728 1.712 13 127.923 1.104 1.057
5 60.339 0.72 1.748 14 121.273 1.102 1.069
6 61.53 0.719 1.745 15 123.234 1.101 1.061
7 62.409 0.717 1.763 16 127.971 1.095 1.097
8 62.925 0.712 1.785 17 131.678 1.096 1.09
9 62.472 0.713 1.778 18 131.613 1.094 1.092

19 25.421 0.482 1.242 25 67.898 0.917 1.349
20 48.716 0.625 1.527 26 87.632 1.014 1.014
21 61.8 0.733 1.55 27 135.377 1.108 1.062
22 65.374 0.815 1.475 28 128.223 1.158 1.06
23 68.849 0.809 1.451 29 148.965 1.263 1.091
24 73.411 0.832 1.55 30 152.298 1.294 1.13
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length and size-independent (material) response. As far as the
localization phenomena is controlled by the magnitude of viscous
forces between CNTs, it equivalently depends on damping ratio
and strain rate.

3.4 Large Strain Deformation and Failure. So far we have
been considering small deformation of CNT bundles under tensile
load. In this section, we give a qualitative picture of a large strain
deformation and breakage of a representatively large CNT bundle.
Consider specimen 2 from Table 2, subjected to a large strain test.
Strain is applied at a fixed rate of _e ¼ 2� 108 s�1 in a

displacement control mode until the specimen’s breakage. The
initial regime of postpeak deformation is characterized by smooth
sliding of CNTs along each other with slip direction parallel to an
axis of the bundle. This regime of the deformation is characterized
by nearly linear changes in vdW adhesion energy, and a gradual
decrease in elastic energy (Fig. 6(a)). The strain softening behav-
ior (Fig. 6(b)) is conditioned by a decrease of the averaged length
and number of vdW contacts between CNTs, and corresponding
decrease in viscous and potential forces, acting between CNT
interfaces.

At the initial stage of postpeak deformation, one can see the de-
velopment of CNT sliding in periodically located slip zones

Fig. 5 Low damping ( a 5 0:2; b 5 0:0 ) mechanical tests on CNT bundles. (a) Stress-strain curves for specimen 12 and speci-
men 16 in Table 2 indicate the absence of an RVE. (b) Magnitude of slip vector, visualized on a horizontal axial cross-section,
indicates immediate localization of the deformation and brittle fracture of a specimen. (c) Magnitude of a slip vector, averaged
over thin slices of a bundle (specimen 16) along the length for few different values of viscous and local damping.

Fig. 6 Large deformation of a CNT bundle. (a) Work of external force Aext, as compared to
changes in elastic strain energy DUstr, vdW adhesion energy DUvdw, and dissipated energy DQ
during the test. (b) Terms of decomposition (Eq. (13)) during the simulation. (c) CNT bundle
geometry and magnitude of a slip vector on the surface of a bundle and on a horizontal axial
cross section of a bundle.
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presented in Fig. 6(c). They appear in certain longitudinal posi-
tions, equally spaced with period LCNT in the reference configura-
tion. After the critical strain of 40%, the specimen starts
developing necks. Necking is characterized by the process of fill-
ing the vacancies developed in slip localization zones of a CNT
crystal by local rearrangement of CNTs leading to formation of
thinner close-packed regions (necks). Initiation of this process is
accompanied by bending deformation of tubes, which leads to a
jump in the strain energy (Fig. 6(a)). Necking is also characterized
by a drop in (absolute) vdW adhesion energy and a slight increase
in the rate of energy dissipation (Fig. 6(a)). The decomposition
(Eq. (13)) for the SSC is presented in Fig. 6(b). It appears that the
elastic strain does not play any significant role in the energy bal-
ance of the breaking CNT bundle. The response is dominated by
dissipative forces and vdW adhesion forces (Fig. 6(b)).

3.5 Shear Test on Crystalline Assembly of CNTs. As has
been demonstrated in previous sections, large CNT bundles
behave as a material with the mechanical properties defined by
stiffness of individual CNTs, strength of vdW adhesion between
CNTs, and rate of energy dissipation during CNT sliding. How-
ever, the properties of this clearly anisotropic material with com-
plex constitutive behavior have been studied for only one
particular case of uniaxial tension. In this section, we extend our
discussion with consideration of another practically relevant case
of a simple shear loading of a hexagonal CNT arrangement with
shear load directed along the axes of CNTs.

Consider a close-packed crystal of aligned CNTs, subjected to a
simple shear test (Fig. 7). The specimen consists of hexagonally
arranged CNTs with distance r0 between CNT axes, filling a
cuboid of length l, height h, and width b (Figs. 7(a) and 7(b)). The
geometry of a specimen is defined by three integer parameters:
number of CNTs along the width B, number of CNTs along the
height H (these parameters are illustrated with Fig. 7(b)), and
CNT aspect ratio D. Sizes of a specimen and number of CNTs in
a cuboid are given by

h ¼ r0ðH � 0:5Þ; b ¼
ffiffiffi
3
p

r0ðB� 0:5Þ; l ¼ TD; NCNT ¼ 2BH

(15)

Periodic boundary conditions are applied along the y direction.
Two surfaces of the specimen parallel to the yz plane are traction
free. CNTs of two sides parallel to the xy plane are designated as
grips (Fig. 7(a)). These grips are moving in a displacement control
mode in opposite directions along the x axis. The gradual acceler-
ation on the first stage of the loading is followed by motion with
fixed velocity, providing a constant rate simple shear loading of a
crystal.

Consider the test on a specimen with B ¼ 3;H ¼ 3; and D ¼ 10.
The specimen is subjected to a shear strain czx ¼ 1% at the strain

rate of _czx ¼ 2� 107 s�1. Nominal shear strain is defined as
czx ¼ 2ug

x
=h, where ug

x
is the grip displacement. The shear stress is

defined as szx ¼ Fx=bl, Fx is the force acting on the grip. The

Fig. 7 Shear test on a close-packed CNT assembly. (a) Problem geometry and boundary conditions. (b) Definition of the cross-
sectional area of a specimen for given values of B and H . (c) Displacement field (x component of displacement) observed in a
simple shear test. (d) External work as compared to potential energy terms and dissipation during the test. (e) Decomposition of
stress into vdW adhesive, elastic, and dissipative terms. (f) The influence of specimen length on its shear modulus. Red circles
are simulation results, and blue crosses are theoretical predictions for the shear modulus due to surface tension. On the inset—
the effect of cross section size (B and H) on the shear modulus.

061004-8 / Vol. 81, JUNE 2014 Transactions of the ASME

Downloaded From: http://appliedmechanics.asmedigitalcollection.asme.org/ on 02/02/2016 Terms of Use: http://www.asme.org/about-asme/terms-of-use



indexes of stress, strain (strain rate), and shear modulus are omit-
ted below. Figure 7(c) gives x component of displacement during
the test, indicating uniform shear deformation.

Similarly to the case of simple tension, one can establish the
decomposition of the SSC of the specimen into vdW, elastic, and
dissipative terms. Figure 7(d) gives the energy balance during the
test; Fig. 7(e) gives the stress-strain curve and its decomposition.
It appears that elastic deformations of CNTs are nearly absent,
and almost all work of external force is dissipated, with small
fraction stored in vdW adhesion energy. Quadratic variation of
vdW energy during the test dictates linear elastic response of the
specimen, with a shear modulus of G ¼ 29 MPa.

The shear modulus of a cuboid specimen arising from the sur-
face tension forces can be easily estimated analytically. It follows
that G ¼ 2n=l, where n is the vdW surface energy per unit area of
an edge surface. The surface energy n ¼ 2:6 eV/nm2 is estimated
from the simulation via splitting the specimen with formation of
new vdW surface. The obtained value of surface energy yields
G ¼ 31 MPa.

A size convergence study of material response (Fig. 7(f)) demon-
strates that the specimens demonstrate size dependence of the
response that is clearly conditioned by surface tension forces. A rep-
resentative response is achieved for B ¼ 3;H ¼ 3; and D ¼ 100.
The shear modulus of representatively large specimens G¼ 18 MPa
is likely conditioned by imperfect translational symmetry of vdW
potential of parallel CNTs.

It is interesting to note that the crystals loaded in a direction
perpendicular to CNT axes demonstrate linear elastic size-
independent response with very high shear moduli of about
40 GPa, which is fully determined by the changes in vdW energy.
This high shear modulus is conditioned by the interlock of CNTs
in a hexagonal arrangement.

Very low values of shear modulus of CNT crystalline bundles
(0.01–0.1 GPa) qualitatively agree with recent MD studies [37].
However, vdW registry features, as well as significant artificial
corrugation are absent in our DEM model. Therefore, we can
expect that our model underestimates shear modulus and shear
strength of a CNT crystalline arrangement. In order to mimic
shear behavior of CNT crystals more precisely, one needs to
incorporate fine features (vdW registry corrugation) into the
mesoscopic vdW potential.

4 Discussion

The results presented in Sec. 3 demonstrate that in presence of
significant dissipation during CNT sliding, crystalline CNT bun-
dles exhibit nearly uniform deformation with the material me-
chanical response and representative SSCs. On the other hand,
without sufficient dissipation these structures develop localized
slip zone at the initial stage of the deformation.

It is known that dense aligned CNT structures subjected to ten-
sile tests in experiments [8,9] demonstrate the material mechani-
cal response, with wide zone of plastic deformation, which is
presumably associated with CNT slippage [8]. The SSCs,
observed in tensile tests on fine CNT strands [9], are in good
agreement with the representative SSCs obtained in our simula-
tions. The comparison between the experiment and simulation in
terms of critical strain, tensile strength, and Young’s modulus are
presented in Table 4.

Therefore, one can suggest that forces of dissipative nature are
responsible for material behavior in real aligned CNT structures
[8,9]. This suggestion is supported by the results, presented in
Ref. [31], where the magnitude and structure of the force acting at
CNT-CNT interface in a pullout experiment were studied. It was
concluded that this force is mostly conditioned by dissipation and
formation of new vdW surfaces whereas other effects, such as
vdW registry, were found insignificant. The decomposition
(Eq. (13)) of the stress response observed in our RVE tensile test
(Fig. 4(b)), renormalized in terms of an averaged force acting at
each CNT-CNT contact2, is very close to the one presented in
Ref. [31] (see Table 5). Therefore, the parameters of SSCs
observed in tensile tests (Table 4), as well as the structure of the
intertube forces (Table 5) demonstrate the importance of dissipa-
tion and justify the chosen calibration of viscous damping.

Clearly, relatively high stiffness of CNTs and weak vdW adhe-
sion determines a small amount of elastic energy that can be
stored in the system, which leads to the mechanical response
dominated by dissipation. The more compliant bundle systems,
such as collagen fibrils, with stronger adhesion (including not
only vdW interaction but also hydrogen bonds) naturally store
much larger amount of elastic energy “locked” by relatively
strong adhesion. This leads to a negligible role of dissipation in
the mechanical response, which allows effective mechanical mod-
eling of such systems with simple energy-conserving bead-spring
models [36].

Our results were obtained for a relatively simple model of a
crystalline bundle consisting of close-packed CNTs with fixed
length. The more realistic models with disordered CNTs, vacan-
cies in the crystalline structure, and random length of CNTs are
expected to bring some new features, such as (i) statistical effects
on stiffness, strength and ductility; (ii) initial densification and
alignment of a bundle, with corresponding convex region of an
SSC, similar to one observed in experiments [9]; (iii) larger size
of an RVE for bundles with complex hierarchical morphologies;
(iv) more complex structure of elastic energy, including bending,
twisting, and shear terms; and (v) localization processes facilitated
by variation in CNT length.

The presence of dissipative forces increases the strength of
weakly bonded CNT structures by improving the load transfer
between CNT interfaces. The bead and spring model that is
widely used in mesoscopic modeling of CNT materials [19–24]
provides the load transfer between CNTs due to artificial corruga-
tion of vdW potential [30]. This property of the model leads to
artifacts both in energy balance and kinematics of CNTs. In par-
ticular, it prohibits CNT sliding, rearrangements, and self-
assembly processes in CNT materials. CNT models based on
potentials, allowing relative CNT sliding [25,30], are able to
model self-assembly processes but cannot provide sufficient load
transfer between CNTs, and therefore, they are not suitable for
modeling the mechanical properties of CNT materials. Our meso-
scopic model, based on anisotropic vdW potential and dissipative
mechanisms of load transfer between CNTs proves to be efficient
in modeling both self-assembly processes (this topic was explored

Table 4 Young’s modulus E , uniaxial tensile strength ruts, and
critical strain ec , measured in experiment [9], as compared with
the results of our DEM simulations

E, GPa ruts, GPa ec,%

Experiment [9] 100–150 0.9–1.2 2–3
Simulation 70–150 0.7–1.3 1–2

Table 5 Total CNT-CNT force and its decomposition into contri-
butions from the formation of a new vdW surface, dissipation
and other effects, according to experimental-numerical study
[31] and our DEM simulations

Total
force

vdW
surface Dissipation

Other
effects

Experiment [31], nN 1.7 6 1.0 <0.4 >0.85 <0.34
Simulation, nN 1.4 0.35 0.94 0.11

2It was assumed that an average CNT in a bundle has three slipped nearest
neighbors. Critical strain ec is used to calculate stress and its terms in Eq. (13).
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in our previous work [30]) and representative mechanics of CNT
structures.

5 Concluding Remarks

In this work, we applied the DEM model for CNT assemblies
to study the mechanical properties of arranged close-packed CNT
bundles. The key problem of energy dissipation during sliding
was addressed with simple viscous contact forces, acting in paral-
lel with vdW forces between neighboring CNTs in a bundle. In
spite of this simplified approach, the model provides a quantita-
tively correct description of the mechanical behavior of aligned
CNT structures. It was shown that sufficiently long and thick bun-
dles behave as RVEs. It was also demonstrated that the energy
dissipation during relative CNT sliding plays a central role in the
material response of CNT structures. Our simplified model of
energy dissipation can be improved with microscopic calibrations
of rate-dependent properties, as well as intratube energy dissipa-
tion [28], in order to enable dynamic simulations of acoustic
vibrations and wave propagation in CNT structures.

The DEM model applied here to model bundles of CNTs can be
generalized to model other classes of nanostructures with similar
properties, such as bundles of nanowires (nanobelts) and organic
fibers and fibrous biological tissues [36,38,39]. The DEM model
presented here is able to describe in a “hands-off” manner the
extensive plastic change in response to small stress caused by the
sliding of individual CNTs across each other. This early yielding
behavior is highly undesirable for applications. In this respect, our
current model provides a robust starting point for further investiga-
tions of various strategies aimed at enhancing the load transfer
between CNTs and, thus, at improving the global strength.
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