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What is an ideal composite?

Let’s turn to Nature for inspiration.

It should be comprised of readily 
available and inexpensive materials.

It should be strong, tough and light.

It should be capable of self-healing.

It should not require prohibitive 
manufacturing processes.

Boeing 787 Dreamliner





Let’s consider:

Avoiding inappropriate use of reductionism because it
could reduce our understanding of such

complex systems
(as per theoretical biologist Robert Rosen).

That we may learn something by studying
the biological structure despite not being able to achieve

the original pie in the sky; aim low and shoot high.

Not using biomimetics in favor of
bioinspiration.



STROMBUS GIGAS: WHY IS IT SO TOUGH?

~97% CaCO3
~3% protein binder
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Ionic 2 10 0.0677 2.82 0.111 

Covalent 8 12 0.0370 1.74 0.0130
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Aragonite is
brittle (flaw-
sensitive), but

available.





Spiny Lobster

Octopus

Loggerhead Turtle

Blue Crab Porcupine Fish
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Southern Stingray





MATERIAL SELECTION CHARTS
AND MATERIAL INDICES

M. Ashby, Materials Selection in Mechanical
Design: Pergamon, 1992

 
 

Design 
 

Tie in tension 
 
Beam in Flexure 

 
Plate in Flexure 

 
Strength to weight 
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Stiffness to weight 
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Large recoverable deformation 
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Material E  
GPa

ρ 
 

Mg/m3 

ρ/E  
GPa/Mg/m3 

ρ/2/1E  
GPa1/2/Mg/m3 

ρ/3/1E  
GPa1/2/Mg/m3 

Palm 3.5 0.15 23 12.5 (10.1) 

Mild steel 210 7.9 27 1.8 (0.8) 

Balsa wood (LD) 2.0 0.1 20 14.1 (12.6) 

 
 
 



Material 
fσ  

MPa 

ρ 
 
Mg/m3 

ρσ /f  

MPa/Mg/m3 

ρσ /3/2

f  

MPa2/3/Mg/m3 

ρσ /2/1

f  

MPa1/2/Mg/m3 

Single silk fibre 2000 1.3 1500 120 (35) 

Single carbon fibre 2200 2.0 1100 85 (24) 

Mild steel 400 7.9 51 6.9 2.5 

Balsa wood (LD) 16 0.1 160 64 (40.0) 

 



Material E  
MPa 

ρ 
 

Mg/m3 
fσ  

MPa 

Ef /2σ  

MJ/m3 

Ef /σ  

 
Single silk fibre 20000 1.3 1500 113 0.08 

Cartilage 5 1.3 11 24.2 2.2 

Skin 20 1.2 11 6.1 0.55 

Leather 45 0.9 45 45.0 1.0 

Spring steel 210000 7.5 2000 19.0 0.01 

Soft butyl rubber 10 1.0 14 19.6 1.4 
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CRACK TIP PARAMETERS

The constituent
readily available

aragonite is brittle and
therefore sensitive
to inherent cracks.

The pain
felt by the
material. Jc , a material property, is 

all the pain it can take 
before the crack grows.



If a material contains an inherent crack

Load carrying capacity ~ (EJc )1/2

Material E  
GPa 

2/1)( cEJ  
MPa-m1/2 

cJ  
kJ/m2 

2/1)/( EJc  
mm1/2 

Antler 10 7.1 5.0 0.7 

Mollusc shell 60 9.5 1.5 0.4 

Mild steel 210 90 40 0.4 

Skin 0.01 0.4 15.0 38.7 

 

Impact energy absorption ~ Jc

Displacement capacity ~ (Jc /E)1/2



http://www.lbl.gov/Science-Articles/Archive/assets/images/2006/Jan/30-Mon/nacre-1-blue.jpg


Microstructure



CROSSED-LAMELLAR
MICROARCHITECTURE



Fracture surface showing crossed lamellar microstructure



Higher Magnification SEM Images



TEM MICROGRAPH OF THE INTERFACE BETWEEN
SINGLE CRYSTALS OF ARAGONITE



REVERSE ENGINEERING

Microstructure Dominant fracture mechanisms

Modeling
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Length: 48 to 62 mm, width: 5 to 10 mm, thickness: 5 to 10 mm.



Increasing load



IN SITU SCANNING ELECTRON 
MICROSCOPY

Environmental SEM 

Four point bend test
Inner and outer spans: 
15 and 30 mm



Nominal fracture toughness
inner layer: 0.46 ±

 
0.15 MPa m1/2 (Use 0.6 in calculations)

middle layer: 2.26 ±
 

0.77 MPa m1/2

NOTCHED SAMPLE RESULTS
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Show video









Multiple cracking of weak interfaces



Basic idea (toughening)
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Cracking conditions
steady state growth
from large flaws

initiation of small flaws
by critical surface stress

∂
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System of basic equations
Crack density evolution in the weak layer

large flaws ( ) ( )U n U n Min nsurface strain+ =, ( )ε

small flaws ( )σ ε σsurface cn const, = =
⎫
⎬
⎭

n=n(ε)
σ=σ(ε)

Failure criterion of the strong layer

KI (ε)=Kc1 strain to failure, stress to failure
and work of fracture



The model

•bending tension
•2 uniform layers with fracture toughness Kc1 >Kc2
•failure at  KI = Kc1 = (2γ1 E /(1-ν2) )1/2

•plane strain

n = ( t1 + t2 ) / a

c = t2 / (t1 + t2 ) = 1/2

crack density

crack length



Crack density n
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Analysis

? crack density evolution n=n(ε)
?

 
stress-strain curve σ=σ(ε)

?
 

failure stress and strain σfailure , εfailure
? work of fracture Wfracture



Crack density at failure

Toughness ratio Kc1/Kc2
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Stress and strain to failure

Toughness ratio Kc1/Kc2
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Work of fracture

Toughness ratio Kc1/Kc2

1.9 2.0 2.1 2.2 2.3 2.4 2.5

W
or

k 
of

 fr
ac

tu
re

  W
f / 

Y
12 L

bγ
1

5

10

15
physical branch
unphysical branch

crack initiation threshold

1

Strength ratio  Y1Kc1 / σct1/2

0 1 2 3 4 5 6 7 8 9 10

W
or

k 
of

 fr
ac

tu
re

  W
 / 

Y 12
Lb

γ 1

0

1

2

3

4

5

6

7

8

cracking
threshold

crack density saturation limit

Large flaws Small flaws



LARGE SCALE BRIDGING
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p=β*u1/2 :  β=630 N/mm5/2, ucrit =5 μm

Kprotein = Kfar-field –Kbridging forces =0.6MPa-m1/2
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WORK OF FRACTURE (E-3J)
Aragonite Protein Notched A Multiply Cracked 

0.07 0.4 5.8 23



-120oC 200oC

Role of the binder



B.L. Smith et al., Nature, 1999

Modular Elongation Mechanism

Nacre tablets

Organic Adhesive



Large force but little energy dissipation

Large energy but little
stiffness at small strains

Best of both worlds



AVESTON-COOPER-KELLY LIMIT
for fiber-bridged cracks
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AVESTON-COOPER-KELLY LIMIT
Under uniform tension, all ligaments remain intact

as crack propagates across specimen.
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Schematic Drawing of Conch Shell

(“flat pearl”)

(plastic lid)





Needle-like aragonite aggregates on “lid” side of regenerated 
tissue (48 hrs). A few sheets of organic matrix are arrowed.



Similar aragonite aggregates on “mantle” side of 
regenerated tissue. Note the extensive matrix. 



Aragonite aggregates within the collagenous matrix. 



Collagenous matrix forms when 
wound repair occurs without the lid. 



Cross-sectional SEM image of regenerated tissue. 
~100 microns of hard tissue must form prior to 
establishment of crossed lamellar structure 



Layer of vertical crystals (V) develop in regenerated tissue 
prior to the crossed lamellar structure (CL), just as in wild shell. 



BIOINSPIRED MEMS COMPOSITE STRUCTURES 
AS MODEL SYSTEMS



Bioinspired polysilicon/polymer MEMS Structures



http://www.lbl.gov/Science-Articles/Archive/assets/images/2006/Jan/30-Mon/nacre-1-blue.jpg


Bioinspired Fabrication of Composites: Synthetic Nacre

Synthetic Natural Courtesy of A. Tomasia



Bioinspired Self-Healing

Courtesy of Nancy Sottos
University of Illinois

Healing agent

Catalyst
Crack plane

In the future the healing
materials will be delivered after damage is sensed.
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