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Abstract. This paper presents the results of a numerical study on the near-tip mechanics of mode I cracking in 
brittle matrix composite laminates. A finite element model is developed within the context of two competing 
characteristic lengths present in the composite, i.e., the microstmctural length such as the layer thickness and the 
macro-length such as the crack length, uncracked ligament size, etc.. The crack surfaces are assumed to be traction 
free and perpendicular to the reinforcing layers. Conditions leading to macroscopic homogeneous orthotropic 
mechanical behavior are also assumed. Thus, the near-tip numerical studies are carried out within a small-scale 
heterogeneous zone which surrounds the crack tip and is dominated at its outer boundary by the displacements 
associated with a mode I crack in a homogeneous orthotropic medium. The model is used to calculate the stresses 
and stress intensities in the vicinity of the crack tip which develop due to the alternating fiber/matrix heterogeneous 
composite microstructure. Parameter studies elucidating the effects of the two competing composite characteristic 
lengths on the evolution and structure of the near-tip heterogeneous stress fields are carded out. The results 
indicate that when the characteristic microstmctural length is relatively large compared to the macroscopic length, 
the singular heterogeneous stress fields may deviate substantially from the assumed homogenized orthotropic fields. 
The study can be used to determine the necessary conditions under which homogenization applies in obtaining an 
accurate description of the stresses in the vicinity of the crack tip in a laminated composite. 

1. In troduct ion  

A significant amount  of  research has been conducted aimed at gaining better understanding of  
the fracture mechanics of  Brittle Matrix Composites (BMCs). Some of  the earlier work [ 1-3] 
concentrated on the development  of  models which could be used to predict the first matrix 
cracking stress under mode I loading conditions. These models addressed primarily fiber 
reinforced systems and were developed utilizing the mechanics of  a fundamental fiber/matrix 
unit cell subjected to remote tension. More recently the problems of  stability of  fiber failure 
[4-6],  fiber debonding [7-8] and delamination in composite laminates [9, 10] have b e e n  
addressed. 

For mode  I problems in which the crack propagates in a direction which is perpendicular 
to the fiber reinforcement,  various techniques have been used to solve for the stress intensity 
factor driving the matrix crack. For example, in accordance with the 'unit cell '  models the 
onset of  crack growth is assessed with the aid of  a K°rth°-dominated local zone, the extent o f  
which is controlled by the composi te  microstructure, such as the fiber or the composite cylinder 
diameter  for fiber reinforced composites,  or the layer thickness in composi te  laminates shown 
in Fig. la. In other methods, the microstructure of  the Composite is smeared out and the 
material is modeled as homogeneous anisotropic consistent with Fig. lb.  To predict matrix 
cracking it is assumed that the local matrix stress intensity factor/(~ip (the stress intensity 
factor which exists when the crack tip is in the matrix) is related to the orthotropic K °~th° 
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Fig. 1. (a) A cracked laminated beam. (b) A homogenized orthotropic cracked laminated beam. 

through the re la t ion K~ ip -- K°rth°Em/E~, where Em and E~ represent the elastic moduli of 
the matrix and the composite respectively. This relation, which follows from the assumption 
that the rule of mixtures applies for stress intensity factors, implies that the stress and strain 
fields in the vicinity of the crack tip are dominated by K °rtn° regardless of the details of 
the microstructure. Such an approach may be warranted for composite systems wherein 
the microstructural characteristic length is sufficiently smaller than its dual macroscopic 
characteristic length obtained from the finite specimen geometry. As discussed elsewhere 
[11 ], although such conditions may apply to fiber reinforced systems, it is very likely that they 
may be violated in composite laminate systems in which case a more thorough study of the 
near tip mechanics is warranted. 

The present study addresses the near-tip mechanics of mode I cracking in brittle matrix com- 
posite laminates within the context of two competing characteristic lengths: the microstructural 
length £ and the macro-length L. The term 'dual length scale mechanics' arises from the com- 
petition between these lengths to characterize the near-tip singular stress field in the composite. 
As such, in this paper emphasis is placed on the mechanics governing the elastic singular stress 
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Fig. 2. (a) A schematic of a plane stress element embedded in the near-tip singular domain. (b) Normal stress 
profiles ahead of the crack tip as predicted via the near-tip asymptotics. The Log-Log scale reveals the square root 
singular character of the near-tip stresses. 

fields in the vicinity of the crack tip embedded in a composite laminate. Consider the planar 
geometry of the cracked laminated beam shown in Fig. la. This geometry is representative of 
a typical fiber reinforced [0/90] cross ply laminate or any multilayer system with alternating 
homogeneous layers. In the case of fiber reinforced laminates, the 0 ° plies, also referred to as 
fiber layers or fiber phase, consist of layers with relatively stiff fiber reinforcements aligned 
along the length of the beam, whereas the 90 ° plies, also referred to as the relatively low 
stiffness matrix phase, may consist of layers reinforced with fibers aligned perpendicular to 
the plane shown in Fig. la. In this study, the crack is placed perpendicular to the 0 ° layers with 
its tip located in the matrix phase between two 0 ° layers. In addition, the laminated beam may 
be subjected to remote tension and bending. Under these loading conditions, a local stress 
intensity factor K~ ip can be used to characterize the stress and displacement fields in the imme- 

diate vicinity of the crack tip. The zone dominated by K~ ip is confined well within the matrix 
phase, extending to a distance from the physical crack tip equal to a fraction of either the layer 
spacing or the layer thickness L In any case, fracture of the matrix phase in the composite 
laminate is driven by this local stress field and thus .K~ ip should be the characterizing frac- 
ture parameter for matrix cracking. The traditional approach, however, used to characterize 
such fracture processes in brittle matrix fiber reinforced composites and composite laminates 
involves modeling the structure as a homogeneous orthotropic material as shown in Fig. lb. 
This approach involves the use of a well defined orthotropic stress intensity factor K~ TM to 
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characterize the homogeneous orthotropic stress and displacement fields in the near-tip region. 
For K~ rth° to be relevant, the extent of its region of dominance should be much larger than 
the microstructural characteristic length g; it should, however, be limited to a distance from 
the physical crack tip which is a fraction of the only available characteristic length in the 
modeled system, in this case the macro-length L or the uncracked ligament b = h - L. The 
following question arises: for which L/g does this procedure lead to an accurate or acceptable 
description of the near-tip fields associated with the original structure? The present work is 
devoted to finding the answer to this question. More specifically, a near-tip finite element 
scheme is employed to calculate the heterogeneous stress field(s) in the vicinity of the crack 
tip and their associated stress intensity factor(s) while preserving the microstructural laminate 
morphology. Parameter studies involving the characteristic length ratio L/e,  the fiber volume 
fraction and constituent properties are carried out. The results are compared to those predicted 
using homogenization. 

2. Near-tip mechanics and small scale perturbations 

The most well known K-dominated near-tip stress fields are associated with cracks in homo- 
geneous systems, and are obtained by solving the asymptotic, near-tip boundary value problem 
assuming a linear elastic response and ideally sharp crack tip geometric conditions [12]. The 
asymptotic linear elastic stress and strain fields exhibit an r -1/2 singularity, with r being 
the radial distance from the crack tip shown in Fig. 2. These singular fields can be described 
through a single parameter K and universal spatial functions for each fracture mode, i.e., mode 
I or opening mode, mode II or in-plane shearing mode and mode III or anti-plane tearing mode. 
The stress intensity factors Kh Kn, Kin, associate the intensity of the related stress and strain 
fields for each of the above modes of fracture to the applied loads and specimen geometry. 
The region of dominance of the above fields is limited by their singular character and extends 
to a distance r0 from the physical crack tip equal to a fraction of some macroscopic speci- 
men characteristic length L, such as the crack length, length of the uncracked ligament, or 
other characteristic specimen dimensions. Outside the K-dominated zone, other nonsingular 
solutions overwrite the diminishing near-tip fields rendering the latter fields meaningless. 

As a means of adjusting to the singular stresses, a material responds locally in a nonlinear 
manner that effectively negates or perturbs substantially the elastic singularity in the immediate 
vicinity of the crack tip. The nonlinearities are unique to the material and may be associated 
with a number of different phenomena such as plastic yielding in metals [ 13] and microcracking 
damage [14] and phase transformation [15] in ceramics. Other mechanisms leading to ductile 
rupture in metal matrices [16-18] or failure of fiber/particle reinforced metal or brittle matrix 
composites [19, 20], may potentially be activated in the zone near the crack tip in various 
material systems. Clearly, upon application of the applied loads and at relatively small load 
levels, the material nonlinear response is limited to a small region surrounding the crack tip. 
As the applied loads increase, the nonlinear process zone, as signified by the active presence of 
any of the above mentioned or other nonlinear processes, spreads outwards from the crack tip, 
resulting in new, often nonsingular stress fields that develop inside the nonlinear process zone. 
From the near-tip mechanics viewpoint, the presence of the process zone helps establish an 
effective microstructural characteristic length, i.e., the process zone size rp, which determines 
the extent of dominance of the new asymptotic stress fields within the process zone itself. It is 
worth emphasizing that the structure of the fields within the process zone may be significantly 
different from the K-fields. Small scale process zone conditions can be assumed when v v 
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is considerably smaller than the singular elastic region dominated by K,  i.e. rp ~< r0/20. 
Under these conditions, the influence of the process zone on the near-tip fields is limited to a 
small region in the immediate vicinity of the crack tip. This allows for a substantial annular 
region bounded by an inner radius which is a small multiple of rp and an outer radius equal 
to r0 where the singular elastic fields are still valid and remain virtually unaffected by the 
presence of the process zone. Under these conditions, K represents a valid stress and energy 
release rate characterizing parameter and can be used to assess fracture even in the presence of 
nonlinear processes within a small zone close to the crack tip. Similar ideas can be formulated 
for laminated heterogeneous systems as follows. 

2.1. NEAR-TIP DUAL-LENGTH ASYMPTOTICS IN COMPOSITE LAMINATES 

Consider the local-global representation of a cracked composite laminate shown in Fig. 3. 
Let L represent the macroscopic length scale (crack length, uncracked ligament length, or 

any other relevant characteristic length), and let e represent the microstructural length scale. 
In this study ~ is taken as the thickness of the stiffer fiber reinforcing layer consistent with 
Figs. la  and 3b. The crack surfaces are assumed to be traction-free, and the crack plane is 
taken to be perpendicular to the direction of the reinforcements. It is expected that for large 
values of L/~., a near-tip, small scale heterogeneous zone exists and arguments analogous to 
those presented for small scale process zones can be used to study the evolution of the near-tip 
stress fields. For example, in small scale yielding, the near-tip plastic zones that develop with 
increasing loads disturb the singular elastic solution giving rise to other near-tip asymptotics 
such as the HRR fields in deformation plasticity and power law hardening materials [21, 
22]. Similarly, it is expected that for the laminated composite problem the heterogeneity 
perturbs the singular fields predicted by the homogenized asymptotic solution giving rise to 
dual asymptotics consistent with the dual length scales present in the near-tip region. 

Moreover, for large L/g values, the mechanical response of the layered material at distances 
sufficiently away from the physical crack tip can be studied by ignoring the microstructure 
while employing the properties of a homogeneous orthotropic medium instead. The latter 
properties are usually extracted from the individual properties of the fiber and matrix con- 
stituents via a homogenization procedure. This approach often leads to the use of the rule of 
mixtures in extracting longitudinal properties and the inverse or a modified inverse rule of 
mixtures in extracting the transverse properties. In any case, the stresses associated with the 
response of the homogenized medium reflect average stress measures acting over the length 
of a microstructural unit fiber/matrix cell. The actual microstresses, can then be obtained by 
considering the deformation characteristics of the unit cell subjected to the overall orthotropic 
average stresses obtained for the homogenized system. 

Under such conditions, the average unit cell stresses in the neighborhood of the crack tip are 
r-1/2 singular and can be characterized via an orthotropic stress intensity factor K~ rth°. The 
outermost radius r3 from the physical crack tip of the zone dominated by K~ rth° is expected 
to depend on the macroscopic characteristic length L such that at least r3 ~< 2&0 . Thus, in a 
homogenized medium, region III as shown in Fig. 3 is defined as being dominated by the 
homogeneous orthotropic singular stress field with K~ 'rth° being the characterizing parameter. 
While this may be a realistic approximation for material systems with large L/£ ratios one 
should also underscore that this approach may only provide useful stress field approximations 
at material points located within region III at distances from the physical crack tip which are 
much larger than the microstructural characteristic length L As a result of the heterogeneous 
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Fig. 3. (a) A schematic representation of small scale singular stress zone near the tip region of a mode I crack 
embedded in a fiber reinforced laminated brittle matrix composite. The material in Region IIl is treated as a 
homogeneous orthotropic continuum with its principal directions shown in Fig. 3a. (b) An enlarged cut-out domain 
from Fig. 3a depicting Region I which is dominated by the tip stress intensity factor ff~P. 

microstructure, it is clear that distinctly different asymptotics will dominate the mechanics at 
material points in region I which contains the physical crack tip. 

As shown in Fig. 3, the extent rl of region I from the crack tip depends on the position of  
the crack tip relative to the adjacent fiber layers and the degree of elastic mismatch, and it is 
a fraction of either the thickness of the fiber phase or the fiber phase spacing i.e. r l  ~< ~/20. 
For the sake of simplicity and without loss of generality, in the present study the crack tip 
is assumed to be within the matrix phase at the mid-point between two adjacent fiber layers. 
Thus, within region I, the singular stress field characterized by a local stress intensity factor 
Ktip l , develops as if the fiber reinforcing phases were not present. 

The distinct asymptotics dominating regions I and III discussed above are assumed to 
develop in heterogeneous systems with large L/£ ratios. In layered systems wherein the matrix 
and fiber are comprised of similar materials, the dominance of region I would clearly prevail 
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Fig. 4, Plane stress model used in the near-tip finite element studies. The arrows represent the homogenized 
orthotropic displacement components which are imposed as boundary conditions in the plane stress near-tip 
boundary value problem. The expressions for u and v are given in the Appendix. 

over region III with rl extending to r 3. For heterogeneous systems, however, the asymptotic 
fields in regions I and III are expected to be matched through other fields dominating the 
transition region II which is also shown in Fig. 3. 

The near-tip dual-length asymptotics discussed above are analogous to the small scale 
process zone concepts discussed earlier. Like plasticity for example, the fiber heterogeneities 
perturb the homogenized singular fields giving rise to local near-tip fields which may be 
distinctly different from those dominating region III. The region affected by the presence of 
the heterogeneous phase, scales with the microstructural characteristic length L For systems 
with large L/g ratios, region I should be considerably smaller than region III and therefore 
its presence may be insignificant in assessing initiation of crack growth. Under such small 
scale heterogeneity conditions, the mechanics of crack growth could be assessed based on 
the homogenized fields dominating the much larger region III. On the contrary, for layered 
systems wherein the L/g ratio is relatively small, region III may not exist thus rendering the 
use of the homogenized orthotropic solutions inappropriate. For such systems, the near-tip 
asymptotics ought to be understood within the context of the lamination morphology and 
composite microstructure through more accurate and realistic studies. 

In this work, a systematic finite element study is used to assess the effects of the heteroge- 
neous layered microstructure on the near-tip asymptotics. The next section describes the finite 
element model that is used to study the effects of dual length ratio L/g, constituent properties 
and volume fraction of fiber reinforcements, on the transition from the behavior dominated 
by region I to that dominated by region III. 
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3. Near-tip finite element model 

While a realistic plane model for a laminated composite consists of plane strain conditions, 
plane stress conditions are assumed in order to reduce the number of required material 
properties. It is expected that the plane stress results will provide significant information 
regarding the effects of heterogeneity on the near-tip stress fields in a laminated composite. 
Consider the near-tip plane stress region shown in Fig. 4. The physical dimensions of this 
zone are 2Rx2R such that R ~< r3, where r3 signifies the boundary of region III consistent 
with Fig. 3. In this model, the actual lamination microstructure is retained. As shown in Fig. 4, 
a regular array of homogeneous linear elastic isotropic fiber layers of equal width denoted 
by ~ is embedded within an otherwise homogeneous linear elastic isotropic matrix material. 
When accounting for fiber induced layer orthotropies, this arrangement is meant to represent 
a typical [0/90] fiber reinforced laminate composite. 

As indicated above, the region under consideration includes the physical crack tip which 
for the sake of simplicity is taken to be within the matrix phase at the midpoint between two 
fiber layers. The crack surfaces are assumed to be traction free. Mode I loading is considered, 
so that only the upper half of the near-tip region is descretized in the finite element studies. 
In doing so, consistent geometric and traction symmetry conditions are imposed ahead of the 
crack such that the displacement components in the y direction at every node on the symmetry 
plane are restrained to zero while maintaining zero nodal force resultants in the x direction 
at each of the above nodes. As shown schematically in Fig. 4, on the remaining boundary 
of this heterogeneous near-tip region, the asymptotic mode I displacements corresponding 
to the homogeneous orthotropic solutions for the laminate composite are prescribed. These 
boundary displacements, driven by the applied K~ rth° have the following form 

v = ' 
(1) 

where r and 0 are the polar coordinates consistent with Fig. 2, u and v represent the dis- 
placement components in the x and y direction respectively, and U and V are the spatial 
eigenfunctions obtained by solving the near-tip mode I asymptotic problem for an orthotropic 
medium. The explicit forms for U and V are given in the Appendix. 

It should be understood that this model does not incorporate finite geometry characteristics. 
In other words, R does not directly represent a macro-length, rather it provides an indirect 
measure of a macroscopic characteristic length as discussed later on in this section. As 
discussed earlier, this model's aim is to study the evolution of the stress fields within the 
singular domain in relation to the laminate heterogeneities. Thus, the only requirement on R 
is that stated earlier, i.e. R <_ r3, where r3 is shown on Fig. 3 and represents the outermost 
boundary of the singular orthotropic domain in the crack tip region. Consistent with this 
objective, the near-tip boundary value problem is defined as discussed above at fixed R 
values. For a given fiber volume fraction, various lamination morphologies corresponding to 
laminates with different L/g. ratios are modeled by changing the number of fiber layers placed 
over the fixed distance R. It is expected that this approach will capture the various near-tip 
asymptotics and the transitional characteristics from region I to region III through region II. 
This procedure establishes critical limits on the dual length ratio L/g for which orthotropic 
volume average stresses and stress intensities can be used to represent with sufficient accuracy 
the near-tip stress fields in composite laminates. The relation between R and the macro length 
L is currently being investigated by the authors using finite geometries. It is expected however, 
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Fig. 5a. A typical finite element mesh used in solving the near-tip boundary value problem shown in Fig.4. 
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Fig. 5b. Detail of the focused near-tip finite element mesh. 

that the macro length is of the order 10-20 R and it is sensitive to both the dual length ratio 
L/£ and the degree of material heterogeneity. This point will be discussed subsequently in the 
results and discussion sections. 

The finite element mesh used in this study is shown in Fig. 5. The mesh is composed of 
eight-noded quadrilateral plane stress elements with four stations for the integration of the 
element stiffness. The meshes were developed in accordance with the layered morphology 
shown in Fig. 4, which was implemented by assigning the corresponding matrix or fiber 
material properties to the respective finite elements. In order to investigate the effects of the 
dual length ratio L/£ various meshes were constructed. In all cases, a focused mesh located 
entirely within the matrix phase, as shown in Fig. 5, was used in the vicinity of the crack tip. 
The crack tip was surrounded by a rosette of singular quarter-point elements. As explained in 
the Appendix, these elements were employed to capture the square root singularity in stresses, 
and to allow calculation of the J-integral in the near-tip region. The tip stress intensity 
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factor, g~ ip and the associated energy release rate Grip were independently calculated using 
the displacement correlation technique [23-25] and the J-integral [26]. 

The idea behind this simplified model is as follows. This model implicitly assumes that the 
tf~rtho region or annular region III exists around the crack tip. If L/g is sufficiently large to 
warrant homogenization, then the volume averaged stresses calculated using the heterogeneous 
finite element model should be close to those predicted by the K~ '~°  dominated singular 
solution. On the other hand, if LIe is relatively small, which implies that the heterogeneous 
zone is composed of only few in number but rather large fibers, the K~ rth° dominated region 
will be engulfed by the transition region introduced by the heterogeneity, and the calculated 
displacements will not approach those predicted by (1). The results of the calculations are 
presented in the next section. 

4. Results 

Mesh sensitivity studies suggested that in order to capture the near-tip fields accurately, 128 
elements were needed in the focused region. This was determined by comparing the J-  
integral calculated using the displacement correlation technique with the corresponding value 
calculated using Park's virtual crack extension method (see Appendix). 

Numerical finite element calculations were performed for E f / E m  = 2, 10 and uf = 
u,~ = 0.3, where the subscripts f and m denote properties for the fiber and matrix phases 
respectively. These are typical values for a ceramic matrix composite and a polymer or metal 
matrix composite respectively. Two fiber volume fractions have been considered: vy --- 0.2 
and vf = 0.5. For each of the above material combinations, the dual length ratio was varied 
from R/g = 10 to R/g = 100. The numerical results are presented in three different ways: 
actual stress cruu ahead of the crack as a function of distance from the crack tip, unit cell stress 
#yy ahead of the crack as a function of distance from the crack tip, and angular variation 
of actual stresses, i.e., axx, ayy, ax v at two fixed radial distances from the crack tip within 
region I and III respectively. 

4.1. NORMAL STRESS PROFILES AHEAD OF THE CRACK TIP 

Figures 6 and 7a through 7d show actual stress profiles for the stress component ay u ahead 
of the crack tip. As indicated on the figures, these results were obtained for a composite 

laminate with fiber volume fraction vy = 0.5, modulus ratio ~ = 10 and dual length 

ratios -~ = 10, 16.67, 25, 50, and 100. The results were nondimensionalized and plotted 
using a Log-Log scale, so that the slope of the stress profile indicates the strength of the 
dominant singularity. The stresses shown in Fig. 6 represent actual stress measures numerically 
predicted at element integration stations close to the symmetry plane. This is clearly reflected 
through the discrete character of the reported results. For comparison purposes, the analytical 
homogeneous orthotropic predictions were also plotted as a solid line. As expected, the 
pointwise cryy stress component predicted via the method of finite elements is discontinuous 
at all fiber/matrix interfaces consistent with the modulus mismatch between the fiber and 
matrix phases. The elastic stresses within the softer matrix phase are consistently lower than 
the orthotropic predictions, whereas those within the fiber or stiffer phase are higher. It is 
observed that consistent stress patterns emerge. For all R/g ratios, the overall stress pattern 
when viewed over the entire distance R in both the fiber and matrix phases seems to be 
r -1/2 singular. This becomes apparent when connecting the mid-point stress predictions at 
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Fig. 6. Normal stress profile ahead of the crack tip predicted via the method of finite elements. These plane stress 
results were obtained for a system with dual length ratio RI£ = 10, elastic moduli ratio F_,slEm = 10 and fiber 
volume fraction v s = 0.5. 
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the fiber and matr ix phases  respectively,  with a straight dash line as shown in Fig. 6. This line 
is parallel  to the or thot ropic  solid line indicat ing s imilar  overal l  s ingular  character. Clearly,  if  

such separable  s ingular  fields are found  to domina te  the stresses in the fiber and the matr ix 
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order to account for the stress intensity difference dominating the ayy stresses in the fiber 
and matrix phases respectively. Such observations may provide useful insights in postulating 
and/or reconstructing analytically the near-tip stress fields for cracks embedded in composite 
laminates similar to that shown in Fig. I. 

Although the stresses reported in Figs. 6 and 7 represent actual micro-stresses developed in 
the fiber and matrix phases, an alternative stress measure, namely the volume average stress, 
is employed to compare the model's predictions with the near-tip homogeneous orthotropic 
asymptotic results, and to assess the effects of dual length ratio on the near-tip stress fields. A 
typical unit cell subjected to discontinuous stresses consistent with Figs. 6 and 7 is shown in 
Fig. 8. For planar problems, the volume average stress or unit cell stress, i.e. ~yy is defined 
with the aid of Fig. 8 as follows 

X2 

_l / ayy(X) dx, (2) 
- d y y -  x 2  x l 

xl 
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Fig. 10. Normal unit cell stress profile ahead of the crack tip predicted via the method of finite elements. A lower 
modulus mismatch results in smaller deviations from the orthotropic predictions in region III. 

where x 2 - -  Z l denotes the width of the unit cell over which ~yy is applied, and cryy(x) denotes 
the pointwise stress which varies with position z within the unit cell as shown schematically 
in Fig. 8. Figure 9 shows the unit cell predictions obtained using the same results that were 
presented in Figs. 6 and 7 above. 

It is observed that, the matrix stresses in the near-tip region within region I (see Fig. 3), are 
r-1/2 singular consistent with the singular fields around cracks embedded in homogeneous 
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Fig. I1. Normal unit cell stress profiles ahead of the crack tip predicted via the method of finite elements. When 
compared to the results reported in Fig. 9, these results in region III are in closer agreement with the homogeneous 
orthotropic predictions. This apparently is due to the lower volume fraction of heterogeneities used. 

systems. Outside region I, the above stress fields exhibit a transition region consistent with 
region II discussed earlier in this work. The extent of the transitional stress profile appears to 
depend on composite microstructural aspects such as fiber volume fraction, fiber/matrix elastic 
mismatch and the composite dual length ratio ~ as depicted through Fig. 9 and Figs. 1 0-12. 

The effects of ~- become more apparent when taking into consideration that the unit cell 
stress profiles reported in Figs. 9-12 are plotted using a L o g - L o g  scale. For example, the unit 
cell stresses in systems with relatively large ~- ratios, i.e. ~ = 50 consistently appear to e 
converge to the orthotropic asymptotic results reported using the heavy line. On the contrary, 
and as shown in Fig. 9, an appreciable discrepancy appears to exist between the orthotropic 
asymptotic results and the unit cell stresses corresponding to laminates with ~ smaller than 

25. This effect is especially pronounced for the ~- = 10 system. Similar but not as pronounced 
trends are exhibited by the other composite laminates considered in this study and reported 
in Figs. 10-12. As expected, the effects discussed above diminish with decreasing material 
mismatch and fiber volume fraction. Thus, in systems elastically similar to those considered 
in this study and with ~- > 25, one may conclude that a well defined region III exists wherein 

the finite element stress predictions exhibit the expected r -1 /2  with the K~ rth° being the 
characterizing parameter. 

In order to explore further the structure of the near tip fields, the angular variations of 
stress components cry v, crux and rxy are presented in Figs. 13-20. The results were obtained at 
radial distances very close to the crack tip within region I as well as far away from the crack 
tip but still in the singular domain within region III. The results corresponding to region I are 
presented next. 
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Fig. 12. Normal unit cell stress profiles ahead of the crack tip predicted via the method of finite elements. The 
influence of the heterogeneities on the near tip stress field becomes less significant with decreasing fiber/matrix 
modulus ratio and fiber volume fraction. 

4.2. ANGULAR VARIATION OF STRESS FIELDS IN REGION I 

The angular variations of ayy, a~x and rxy are presented in Figs. 13-16. As indicated in Fig. 13, 
these results were obtained at a radial distance from the crack tip equal to r = 0.009R within 
region I. The results reported in Figs. 13 and 14 correspond to composite systems with fiber 
volume fraction v / =  0.2 and fiber/matrix modulus ratio Ey/Em = 2 and 10 respectively. 

In addition, the left column results, i.e. Figs. 13a-13c and Figs. 14a-14c were obtained for 
composite laminates for which ~ = 16 whereas the results on the right hand-side column, 

i.e., Figs. 13d-13fand 14d-14f are for laminates for which ~ = 50. Since for both Figs. 13 
and 14, the fiber volume fraction is the same, i.e. v] = 0.2, the left column results in both of 
the above figures correspond to laminates containing fewer in number but relatively thicker 
heterogeneous fibers when compared to those laminates corresponding to the right hand-side 
column results. Results, similar to those reported in Figs. 13 and 14, which were obtained for 
v/ = 0.5 are reported in Figs. 15 and 16. 

In each of the above figures, and for comparison purposes, the orthotropic and homoge- 
neous isotropic stress predictions are plotted together with the numerical finite element results 
obtained with the aid of the current model. In addition, all graphs include the isotropic near-tip 
solutions scaled with a local stress intensity factor K~ ip. This K~ ip was calculated to match the 
auy numerical results at 0 = 0 within region I consistent with Fig. 6. The resulting ratio of 
the applied xx Ir'°tth°//~tx Ir'~tip is reported in the corresponding figures for each system considered. 

T,~" o I ' tho  / All stress components were normalized using the characteristic stress &c = ~z /V  1--ffff6" 
As expected, the numerical results predicted in the matrix region surrounding the crack tip 
for all four systems considered, were found to be in excellent agreement for all values of 0, 
with those predicted for isotropic systems subjected to an effective mode I stress intensity 
factor equal to K i  p calculated as discussed above. It should be noted however, that these 
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Fig. 13. Angular stress profiles in the matrix region I at radial distance r = 0.009R from the crack tip. The 
isotropic stresses correspond to a mode I stress intensity factor which gives rise to normal matrix stresses ahead of 
the crack tip in region I consistent with those reported in Fig. 12. 

fields also depend on the location of  the crack tip relative to its first neighboring fiber inho- 

mogeneity.  

4.3. ANGULAR VARIATION OF STRESS FIELDS IN REGION III 

The angular  stress profiles for ayy, a~x and rxy obtained at a distance r = 0 .8R f rom the 
crack within region HI are presented in Figs. 17-20. These results are reported in a similar  
way as those presented for region I which were discussed above in conjunction with Figs. 13 -  
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Fig. 14. Angular stress profiles in the matrix region I at radial r = 0.009R from the crack tip. The is,tropic stresses 
correspond to a mode I stress intensity factor which gives rise to normal matrix stresses ahead of the crack tip in 
region I consistent with those reported in Fig. 11. 

16. Thus, the results reported in Figs. 17 and 18 were obtained for laminates for which 

v~ = 0.2 and ~ = 2 and 10 respectively, whereas Figs. 19 and 20 were obtained for 

laminates with v /  = 0.5 and ~ = 2 and 10 respectively. As before, in the above figures, 

the left column results were obtained using ~ = 16 while the right column results are for 

laminates wherein ~ = 50. Unlike the results reported for region I, these results do not 
compare to the homogeneous  is , t ropic  predictions which were not included in Figs. 17-20. 
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Fig. 15. Angular stress profiles in the matrix region I at radial distance r = 0.009R from the crack tip. The 
isotropic stresses correspond to a mode I stress intensity factor which gives rise to normal matrix stresses ahead of 
the crack tip in region I consistent with those reported in Fig. 10. 

In the latter figures, comparison is made between the finite element micro-stress results and 

the homogeneous  orthotropic predictions. 
As expected, for all four laminates considered, admissible stress discontinuities for the 

~ryy stress component  are predicted at every fiber/matrix interface due to the fiber/matrix 
elastic mismatch. Consistently, the fiber stresses were found to be higher than the orthotropic 
predictions whereas the stresses in the softer matrix material were found to be lower. These 
trends for auy are shown as the top row of  Figs. 17-20. Again, as expected, the stress jumps 
are greater for laminates with stronger fiber/matrix elastic mismatch. 
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Fig. 16. Angular  stress profiles in the matrix region I at radial distance r = 0 .009R from the crack tip. The 
isotropic stresses correspond to mode I stress intensity factor which gives rise to normal matrix stresses ahead of 
the crack tip in region I consistent with those reported in Figs. 6,7 and 9. 

The angular profiles for the or== and r=y stress components are reported as the second and 
third row in Figs. 17-20. Unlike o-yy, these stresses are continuous with O. It is of  interest to 
notice that for systems with relatively weak elastic mismatch, i.e., E_~ = 2, the finite element Ej  
results were found to follow the orthotropic predictions very closely regardless of the dual 
length ratio ~ .  

For systems with a stronger elastic mismatch, i.e., -~,  = 10, the finite element results 

appear to deviate considerably from the orthotropic predictions. More specifically, consistently 
J 
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Fig. 17. Angular  stress profiles in the matrix region III at radial distance r = 0 .8R from the crack tip. 

lower values are predicted for the crx= stress component for almost the entire 0 range while the 
overall stress profile appears to be similar to that obtained for orthotropic systems. Like crxx, 
the shear stress 7-~:y, also appears to be lower in magnitude when compared to the orthotropic 
predictions. Its overall profile, however, appears to be similar to that obtained for homogeneous 
orthotropic systems. These results suggest that the extent of region III in composite laminates 
depends strongly on both the elastic mismatch as well as on the dual length ratio -~. 

In making the above comparisons, it should be noted that the numerical results reported 
in Figs. 17-20 represent pointwise microstresses. It is with this in mind that the apparent 
discrepancies of the finite element predictions from the homogeneous orthotropic results 
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Fig. 18. Angular stress profiles in the matrix region III at radial distance r = 0.8R from the crack tip. 

ought to be understood. While this paper was in press, angular unit cell calculations were 
performed [27]. The results, which are not presented here, show trends similar to those 
observed in Figs. 9-12. 

5. Discussion 

This paper has shown, numerically, that the heterogeneity of size £ associated with a laminated 
structure containing a crack perpendicular to the reinforcement gives rise to asymptotics anal- 
ogous to those in homogeneous materials undergoing nonlinear deformations. Calculations 
were performed by assuming that at a distance R from the crack tip, the volume average 
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Fig. 19. Angular stress profiles in the matrix region III at radial distance r = 0.8R from the crack tip. 

stresses are dominated by the asymptotic solution for a cracked homogeneous orthotropic 
medium. The displacements corresponding to the homogenized problem were prescribed on 
the boundary of a finite element model which explicitly models the heterogeneous microstruc- 
ture. The stress fields in composites with/~/~ > 25, i.e., laminates wherein the layer thickness 
is much smaller than the radius of the singular domain, were found to exhibit three distinct 
regions. Region I, which surrounds the crack tip, is dominated by a local stress intensity 
factor. For the systems considered, the stress fields within region I were found to be consistent 
with the homogeneous isotropic singular near tip fields. Outside region I the stress profiles 
revealed admissible discontinuities induced by the fiber/matrix elastic mismatch. However, 
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Fig. 20. Angular stress profiles in the matrix region III at radial distance R = 0.8R from the crack tip. 

the volume average stresses exhibited a continuous transition from region I through a transition 
region II, which appears to be limited to between one and three fibers ahead of the crack tip. 
The singularity of the associated transition stress fields appears to diminish with elastic 
mismatch, fiber volume fraction, and dual length ratio. In fact, nonsingular transition 
stress fields were obtained for certain laminate systems. Region II is in turn engulfed by 
region III, wherein the stress fields consistently were found to approach those predicted by 
the asymptotic solution for homogeneous orthotropic materials. Region III was found to 
dominate large portions of the near-tip singular domain extending over a large number of 
fibers/layers. 
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near-tip fields in the 2R x 2R domain shown, will be monitored systematically consistent with the present study. 
Morphologies such as those shown in Fig. 22 could be included in the proposed studies. 

Systems with R/g < 25, on the other hand, were found to exhibit well pronounced 
transition regions with little or no orthotropic regimes. For such systems the orthotropic stress 
intensity factor becomes meaningless. These results provide strong evidence that the relative 
size of the microstructure as well as its morphology and degree of material mismatch, may 
govern in a critical manner the evolution of the elastic stress and deformation fields in the 
near-tip domain. These, in turn, will strongly influence the development of whatever process 
zone results in the material system in the near tip domain. 

The numerical model developed in this paper represents the first step in the development of 
numerical codes for simulating crack propagation in laminated composites, using a substruc- 
ture approach. As such, this study has enhanced our understanding regarding the structure 
of the elastic near-tip fields and their complex relationship to the composite microstructure 
which is clearly needed in order to assess both qualitatively and quantitatively fracture in 
composite laminate systems. In the current study however, several simplifying assumptions 
have been made which limit the scope of the results. For example, in modeling the laminate 
constituents, the fiber/matrix phases have been assumed to be linear elastic and isotropic thus 
neglecting potential nonlinearities and inherent ply orthotropic characteristics. Stress induced, 
nonlinear processes such as plasticity or microcracking for example, may severely perturb 
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Fig. 22. Near-tip lamination morphologies at a fixed fiber volume fraction v! = 0.5. (a) R/£ = 2; (b) R/g = 4; 
(c) R/e = 8. 

the elastic stress fields in the near tip region and may be critical in assessing crack growth 
behavior. In addition to the material modeling assumptions, and, in an effort to retain a degree 
of generality the study focused on the evolution of stress fields within the near-tip domain 
subjected to the asymptotic near-tip elastic displacements. As a result of this approach, the 
study has been limited to addressing finite geometry effects only indirectly through the size 
R of the singular domain which limits the ability of the current model to explore fully the 
dual length ratio effects on the evolution of the near-tip stress and deformation fields. Such 
an investigation, will require the use of a finite laminate geometry, say, the layered compact 
tension specimen shown in Fig. 21. 
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In such a study, wherein the number of layers and fiber volume fraction could vary from a 
very small to a very large number without any limitations, (see Fig. 22), the full dual-length 
scale effects could be captured by systematically monitoring the ensuing near-tip fields using 
methods similar to those used in this study. 

In light of all of the above, the current study should be viewed as only the first step 
in an effort to enhance our understanding of fracture in composite laminates. As such, the 
methods, results and discussion reported in this study can be used to assist future complemen- 
tary research in the field of fracture of laminated composite systems. This approach offers 
promise as a practical and relatively accurate method for analyzing and designing composite 
laminates. 

6. Conclusions 

The relationship between the laminate microstmcture and the near-tip singular elastic 
stress fields has been studied numerically via the method of finite elements. A dual-length 
composite ratio has been introduced to account for the presence of two characteristic 
lengths, namely, the macrolength representing a macroscopic specimen dimension and 
the microlength representing a microstructural length. The stress fields and their respec- 
tive region of dominance, were found to be sensitive to the elastic mismatch between thef iber 
and matrix phases, the volume fraction of fiber layers and the total number of layers placed in 
the singular domain. 

This study suggests that homogenization procedures ought to be used with a great deal 
of caution, especially when dealing with heterogeneous laminates containing relatively low 
number of layers. The study provides evidence that, in the latter systems, the homogenized 
orthotropic singular stresses may not describe with sufficient accuracy the near tip stress fields 
which may require the use of finite geometry considerations. 

Appendix 

The following brief discussion presents some of the mechanics that is relevant to the work 
presented in the main body of the paper. 

CONSTITUTIVE RELATIONS OF AN ORTHOTROPIC CONTINUUM 

The inverse generalized Hooke's law for a linear elastic generally anisotropic material can be 
written using indicial notation as follows 

ei = A i ja j .  (A.1) 

Matrix Aij  is a full six by six symmetric matrix containing the anisotropic compliance 
coefficients. For an orthotropic material oriented along its principal axis as shown in Fig. A1, 
uncoupling between tension and shear is obtained and the strain-stress relation become 
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Fig. A]. Cross-sectional morphologies for (a) a fiber reinforced composite ply, and (b) a cross-ply composite 
laminae. The axis l (x), 2(y) and 3(z) are used to denote the principal orthotropic material directions. 
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In accordance with Fig. A1, Eii,  i = 1,3 are the elastic moduli in the principal l ,  2, 3 
directions, respectively, while G23, G31, and G12 are the shear moduli in the 2-3, 3-1 and 1-2 
planes, respectively. The Poisson's ratios ul2, via and//23 are defined such that//0 = - e i i  / ejj 
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due to an applied normal stress aii. It follows from constitutive symmetry that vii / Eli = 
left / Ej j  for all permissible i j  pairs. 

For plane stress condition (A.2) reduces to 

{ Exx } 
Eyy = 
7xy 

--vl2 
Ell Ell 

-v21 __!_1 
E22 E22 

0 0 

o/xx / 
0 O'yy . 

~12 O'xY 
(A.3) 

The coefficients that appears in (A.3) are approximated in terms of the volume fraction of 
fibers vs, the Young's moduli and Poisson ratios of the matrix and fiber (Em, E s, Um and u s) 
as follows 

Ell  = v : E /  + (1 - vs)E,~, 
E22 = 1 / ( v s / E s  + (l - v s ) /  
u12 = v / u / +  (1 - vf) urn, 
G,2 = 1 / ( v s / G  s + (1 - vy) Gm).  

(A.4) 

CRACK TIP FIELDS IN AN ORTHOTROPIC MATERIAL 

For the mode I loading considered in this paper, the stress field in the neighborhood of a crack 
tip in a linear elastic orthotropic material has the conventional square root singularity, which 
is characterized by the (orthotropic) stress intensity factor t(~ ah°. The stress and displacement 
components at a distance r from the crack tip are given by [28] 

/r(~rtho 
0"~, x ~ F #1#2 ( #2 

R e L # ~ 2  v/cosO+ p2sin 0 

K~rth° [ 1 ( #1 

cryy - ~ R e  #1 - #2 M/cos0+#zs in0  

M/cos 0 + #1 sin 0 ' 

M/COS 0 + #1 sin 0 ' 

a~y -- 2M/~ Re L#1---~2 M/cos0+# t s in0  - M/cos0+#2s in0  ' (A.5) 

u = t(~rtho Re #1 #2 #lP2(c°sO+#2s inO) l  -- #2Pl(COsO+plsinO) , 

= - #lq2 (cos 0 + #2 sin 0)½ - #2ql (cos 0 + #l sin 0)½ , 
#1 #2 

where u and v represent the displacements in the x- and y-direction, respectively. In (A.5) 
#j = aj  + i/3j (j = 1,2) are the roots (with/3j > 0) of 

Al l#  4 - 2A16# 3 + (2A12 + A66)# 2 - 2A26# + A22 = 0, (A.6) 



and 

pj = All# 2 + A12 - A16#j, 

qj = A12#j + A22/#j - A26. 
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(A.7) 

DISPLACEMENT CORRELATION TECHNIQUE 

A square root singularity in strain can be introduced into a quadratic isoparametric element by 
the manipulation of the mid-side node positions. Barsoum [23] and Ingraffea and Manu [24] 
showed that by shifting the mid-side nodes to the quarter-point the displacement field along 
an edge of the element takes the form 

cL u = A +  + l~' 

= A* + B * v f ~  + C* r 1) l-~' ( i .8)  

where A, B, C, A*, B* and C* are functions of the nodal displacements, along the edge 
which corresponds to the crack surface, of the singular element of length l~ which emanates 
from the crack tip. These are presented in detail for the three dimensional case by Ingraffea 
and Manu [24]. 

By equating the square root terms in the asymptotic displacement equations in (A.5) 
with those given by (A.8), Saouma et al. [25] obtained the following stress intensity factor 
calibration equations 

{ tfl } f11(141,#2) f,2(#I,l~2)] (gl(disPe) } 
/ ( I I  = f21 (]Al,#2) f22 (/AI,V2) ] g2 (disPe) ' (A.9)  

where the functions fij and gi (i, j = l, 2) represent, respectively, functions of relative 
anisotropy and nodal displacements. These can be recovered in [25]. 

ENERGY RELEASE RATE G 

For linear elastic fracture mechanics, the J-integral and the energy release rate G are synony- 
mous. These are expressed in terms of the stress intensity factor by 

jItip ~tip (t(~ip)2 
= ~I = E11 (A. 10) 

This integral was calculated using the virtual crack extension technique option of ABAQUS 
as well as through the use of the calculated local stress intensity factor K~ p. 
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