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Analysis of Branched Interface 
Cracks 
A solution is presented for the problem of a finite length crack branching off the 
interface between two bonded dissimilar isotropic materials. Results are presented 
in terms of the ratio of the energy release rate of a branched interface crack to the 
energy release rate of a straight interface crack with the same total length. It is 
found that this ratio reaches a maximum when the interface crack branches into 
the softer material. Longer branches tend to have smaller maximum energy release 
rate ratio angles indicating that all else being equal, a branch crack will tend to turn 
back parallel to the interface as it grows. 

1 Introduction 
The interface crack problem was addressed in the late 1950's 

by Williams (1959). Williams used an eigenfunction expansion 
technique to solve the interface crack problem and discovered 
complex singularities and rapid oscillating stresses near the 
crack tip. Williams also estimated the oscillatory region to be 
very small. 

In the mid 1960's, various workers (England (1965), Erdogan 
(1965), Rice and Sih (1965)) came up with closed-form solutions 
to the interface problem. These solutions verified Williams' 
(1959) finding of complex singularities and rapidly oscillating 
stresses near the crack tip. England (1965) also pointed out 
that the complex singularities lead to the physical impossibility 
of the crack faces interpenetrating near the crack tips. Like 
Williams (1959), these workers found the region where these 
phenomena occur was very small. 

In the mid-1970's Comninou (1977) put forth an alternate 
solution that addressed the difficulties at the crack tip. Com
ninou resolved the problems at the crack tip by solving the 
interface crack problem assuming there is a small contact zone 
near the crack tips. This zone was found to be extremely small. 
While calculations were carried out for a limited range of 
Dundurs' constants (Dundurs 1969), Comninou's work pro
vides a rational explanation of the oddities occurring near the 
crack tips. 

Lately, the interface crack problem has received renewed 
attention. Gautensen and Dundurs (1987) have solved the prob
lem formulated by Comninou (1977) using quickly convergent 
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series. Unlike Comninou's (Comninou (1977) results which 
were carried out for only severe material mismatches, Gautesen 
and Dundurs obtain results covering all material combinations. 
Symington (1987) has completed Williams' (Williams 1959) 
eigenfunction analysis by finding a set of integer eigenvalues 
left out by Williams. Rice (1988) has proposed that the pe
culiarities at the crack tip are not too critical. In an argument 
similar to the concept of small-scale yielding, he asserts that 
the complex stress intensity factors will be indicative of the 
general state of the crack tip even if they do not correctly 
represent the state immediately surrounding the crack tip. Rice 
also provides a framework to interpret the complex intensity 
factor in terms of the classical form stress intensity factors Kj 
and K„. He also includes an interesting discussion of the in
teraction of the crack length and load phase angle influence. 
Hutchinson, Mear, and Rice (1987) have looked at a crack 
completely in one body but very near the interface. Their 
solution, based on dimensional arguments, energy consider
ations, and the representation of the crack as a distribution 
of dislocations, examines criteria for crack growth parallel to 
the material interface. Park and Earmme (1986) use various 
integrals to describe the interface crack tip characteristics and 
include a discussion of the properties of these integrals. Shih 
and Asaro (1988) have investigated the interface crack with 
plasticity. They find that the pathological features of the linear 
elastic analyses are lessened by nonlinear behavior and that 
the linear elastic solutions are good in regions not immediately 
around the crack tip. Delale and Erdogan (1988) have looked 
at the interface crack by modeling the interface as a transition 
material; they put the crack in a thin third layer between the 
two half-spaces. They present some results regarding the di
rection of maximum Kt of the crack. Generally, Kj is larger 
as the crack tends toward the softer material. He and Hutch
inson (1988) have performed an analysis very similar to the 
present one for the case of a branched semi-infinite crack. 
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Fig. 1 A branched interface crack 

They have presented extensive results on the initial branching 
angle, couched in terms of strain energy release rates. 

In this paper, the branching of a finite length crack is ana
lyzed. For small branch lengths the asymptotic results of He 
and Hutchinson are reproduced. For longer branch lengths the 
behavior changes as the global portion of the stress field in
fluences further branch growth. Based on the obtained results, 
some conjectures are made concerning the fate of branching 
cracks. 

2 Formulation 
The problem configuration is depicted in Fig. 1, which shows 

the main crack, the branch crack, the loading at infinity, and 
the coordinate system. In the upper half-plane (Si), the shear 
modulus is /t] and Poisson's ratio is vx. In the lower half-plane 
(S2), the shear modulus is \x,2 and Poisson's ratio is v2. The 
boundary conditions for this problem require that both the 
main and branch cracks are traction-free and that at infinity 
the stresses approach o™y and r^.. Single-valuedness of the dis
placements at infinity is also required. 

Some techniques useful for dealing with interface boundary 
conditions which are used in the problem formulation are 
presented first. These results follow directly from the for
mulation used by Clements (1971) to treat interface cracks in 
anisotropic materials. 

In terms of the Muskhelishvili (1953) potentials, the stresses 
and displacements in isotropic elastic bodies may be expressed 
as follows: 

(%>-»>),• = *,(z) + *,(z) + z*/ (z) + * , U ) 

(o^ + ff«)/ = 2[$,-(z)+*/(z)] 

(1) 

(2) 

2ft(lx ~ / ^ ) , . = K ' * ' ( Z ) _ [ * ^ + Z * ' ( Z ) + * ' ( Z ) ] (3) 

in which the subscript /(/= 1, 2) denotes "in region i", $lt ^i 
correspond to the potentials for the upper half-plane and *2, 
* 2 correspond to the potentials for the lower half-plane. More
over, z is the complex variable x + iy, the prime denotes dif-
ferentation with respect to z, an overbar denotes conjugation, 

3-p 

K = 3 - 4 C for plane strain, and K= for plane stress. 
1 + v 

For interface problems, it is convenient to introduce addi
tional potentials as follows. Making use of the fact that if/(z) 

is analytic for z in region R, then f(z) =/(z) is analytic for 
z in region R, the following analytic jump potentials are con
structed: 

(-$,(?) - [*2(z) + z*2' (z) + *2(z)] zes, 
Qs=) — — — (4a) 

U 2 (z) - [*, (z) + z*/ (z) + * , (z)] ztS2 

fin= 
2/X] 2 ^ 2 

^ -* 2 U)+ z-l*i(z)+zi({z)+T1(z)] ztS2. 
2/*2 2/*! 

(4b) 
Note that in terms of these jump potentials, the interface con
ditions can be expressed as: 

(a y y-h y x) 2-{o y y- hyx)i = Q.si(x) -QSi (x) 5(a) 

The 0 potentials thus represent the jump in traction (fis) and 
displacement (QD) across the interface. The inverse relationship 
between the jump and Muskhelishvili potentials is determined 
algebraically from equations (4): 

# ! < * ) = & 

* l U ) = f t 

* 2 (z) = Q2 

* 2 ( z ) = QI 

where 

— nSi(z)+QDi(z) 
L2/i2 

^ Q S 2 ( z ) + n 2 3 2 ( z ) 

T-QS2(Z) + QD2(Z) 
L2/*i J 

^Qsl(z) + Qm(z) 

- $ , ( z ) - z $ i ' ( z ) 

- $ 2 ( z ) - z # 2 ' ( z ) 

,-, 2/^/xj 
W i -

Q2=
 2 ^ 2 

(6a) 

(6b) 

(6c) 

(6d) 

(7a) 

(lb) 
M2+K2M1 

This formulation allows for straightforward development 
of the various interaction potentials derived below. 

3 Solution 
The solution is obtained by a Green's function technique 

based on distributing dislocation singularities along the branch. 
The solution for the interaction between an interface crack 
and a dislocation is found by superposing the solutions for: 
(1) a dislocation in S, near an interface; (2) two perfectly 
bonded semi-infinite bodies loaded at infinity with ayy and ryx; 
and (3) an interface crack loaded with the negative of the 
stresses produced by (1) and (2). This solution for a single 
dislocation interacting with an interface crack (with the ap
propriate far-field loading) is then modified to model a dis
tribution of dislocations along the branch, and by requiring 
zero tractions along the branch face a singular integral equation 
is obtained for the unknown dislocation distribution. The rel
evant physical quantities can be calculated after numerically 
solving the integral equation. 

Most of the component solutions to be superposed are well-
known. Nevertheless, it is convenient to rederive them here 
using the framework presented in Section 2. This will provide 
a consistent formulation, as well as a demonstration of the 
generality of the approach. 

Consider first a dislocation near an interface (see Head, 
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1953; Dundurs and Sendeckyj (1965) located at a point z0 in 
the upper half-plane. The continuity of tractions and displace
ments across the interface in combination with equation (5) 
implies the following boundary conditions on the jump po
tentials: 

0 £ - 0 & = 0 | 

og,-og2=o< 
\x\-<oo,y-=Q. (8) 

The singular portion of the jump potentials can be obtained 
directly by transforming the known singular potentials for a 
dislocation in a homogeneous full-plane into jump potentials. 
For a full-plane dislocation in region 1 we have: 

^ 1 , Singular 
z-z0 

* 1, Singular + A Zo 

Z — Zo \Z~Zo) 

P — UrD _ n 
2, Singular— * 2 , Singular — u 

9(a) 

9(6) 

9(c) 

in which A = ixie'e{[ur] +i[vg]]/iir(.Kl + 1), with [ur] and [ve] 
representing the jumps in the tangential and normal displace
ments accrued upon circling the dislocation. The corresponding 
0 potentials are determined from equation (4): 

" S I , Singular1 

Z-Zo 
(10a) 

^ 2, Continuation : 
(l+a)(Zo-Z0) 

(1 + PKz-ZoV 
+ A 

( l + « ) 
( l+ /3) (z -z 0 ) J 

(12d) 

Y 2 , Continuation **^2, Continuation 

where a and /3 are Dundurs' (Dundurs, 1969) constants defined 
by: 

M2<«1 + 1) — Ml(«2 + 1) 

M2(«l+ l ) + ̂ l(«2+ 1) 

M 2 ( « l - l ) - / * l ( * 2 - l ) 

(13fl) 

(136) 
i"2(«l + l ) + ^ l ( « 2 + l ) 

The constant potentials corresponding to the far-field load
ing can be derived from the jump potentials by simply starting 
with constant fi's, which automatically satisfy the interface 
conditions, and inverting to determine the corresponding $'s. 
The details of this operation are in the Appendix; the results 
are as follows: 

$ » = Gyy + a>°* +i W-W M 

*r= ^-f^ +/v« 

* 2 ° ° = 
Oyy + Oxtf. 

+ 1 
08+D* 2L ICs 

(14«) 

(146) 

(14c) 

^»S2, Singular= 

''SI, Singular" 

A + A z°~z° 
z-z0 iz-zZY 

2^ z-z0 

Q° - — 
" S 2 , S i n g u l a r - T 

2MI 

A +A Z°~Z° 
z-z0 (z-zi)' 

(106) 

(10c) 

(lOd) 

Obviously, the boundary conditions given by equation (8) 
are not satisfied. To patch up the interface boundary condi
tions, potentials of the following form are added, which are 
analytic in their respective regions: 

^ S l , Continuation = ^S2, Singular; Z€S{ ( H « ) 

"S2, Continuation — «s t SI, Singular; z€& (11*) 

with similar expressions for the displacement jump potentials. 
Using equation (6) to invert these to regular potentials gives 
the additional terms to be added to the singular potentials in 
equation (9) to give the desired solution (i.e., eqi 

+ *§, Continuation"+" ^Singular, etc.): 

d>° — A 
* 1 , Continuation — r a 

( a - f t 
L( l+/3)(«-^) . 

+ A 
( a - j 3 ) ( z 0 - z 0 ) 

*f , 

( l + i 8 ) ( z - 5 ) 2 

( a + 13) 

(12a) 

l(l-H)(z-T0) 

^ 1 , Continuation ^ ^ 1 , Continuation 

fi>D — A 
^2, Continuation ~ ^* 

1 + a 

(l-/S)(z-«6). 

(126) 

(12c) 

¥5° = ^ 2 L . • °JCT2 
+ w£ (I4d) 

in which the arbitrary constant ICS does not affect the stresses 
and is related to a rigid body rotation. For convenience, 
it is chosen so the Imag ($ , , Far Field) = 0 . This gives 

a - / 3 
Imag (*2, Far F ie ld) = ryx. 1 —a 

In determining the relations (14), it turns out that the 
x — direction stresses are related: 

4j3-2a „ 1 + a 
°Ja2 — 1 - a <rvv + 1 - a 

(15) 

This result for o„2 and a^ i is typical of interface problems 
(see, e.g., Dundur s (1969)). Since this analysis will be consid
ering branches which are no t strictly parallel to the x-axis, 
these A>direction stresses are impor tan t : They cannot be ig
nored as in the normal interface crack problem. Since it is 
generally not possible to have these stresses vanish in bo th 
regions simultaneously, some choice must be made for their 
values. The choice made here is to take aXX2= - f f ^ i , which 
implies tha t the net force on a vertical cut is zero. It was verified 
using a finite element analysis of bonded interface bodies of 
finite dimensions tha t there exists a region at the center of the 
specimens near the interface where the tensile stress parallel 
to the interface in one body is equal and opposi te to the tensile 
stress parallel to the interface in the other body. Thus , the 
present choice of x-direction stresses would be appropr ia te for 
interface cracks far from free boundaries with no applied x-
direction tract ions. 

It is now necessary to int roduce the main crack. The stresses 
due to the dislocation near an interface and the far-field loading 
will be removed from the crack faces by the following poten
tials: 

c (16a) 

* — ^Dislocation + * F a r Field (166) 

where ^Dislocation removes the stresses on the crack face due to 
the dislocation and $Far Field removes the stresses due to the 
far-field loading. 
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To obtain these potentials, first consider the interface crack 
under arbitrary crack face loading (the standard solution has 
been presented by many investigators e.g., England, 1965; 
Erdogan, 1965; Rice and Sih, 1965). For a crack on an inter
face, the interface boundary conditions are: 

(ayy-iT„x)i-(ayy-iTyX)2 = 0 \x\<co,y = 0 (17a) 
(u'-iv')l-(u'-iv')2 = 0 l x ! > c (lib) 
Oyy-fryX=f{X) I X I < C. (17 C) 

These boundary conditions, in terms of the standard po
tentials, are somewhat cumbersome. However, as shown by 
equation (6), in terms of the jump potentials the first boundary 
condition is simply: 

Qsl(x)-SlS2(x)=0 lxl<oo. (18) 

Using an argument similar to the one in the far-field solution 
(see the Appendix), since fis is analytic everywhere and 
bounded, by Liouville's theorem it must be constant. More
over, for zero stress at infinity, $2S = 0. 

The second boundary condition in terms of the jump po
tentials is: 

Qmix)-Qia(x)=0 \x\>c. (19) 

The third boundary condition in terms of the jump potentials 
is: 

Q I O D 1 ( * + ) + G 2 0 D 2 ( X - ) = / ( J C + ) = / ( * ) 1*1 < c (20a) 

Q2QD2(x-) + Qfim (x+) = / ( * - ) = / (* ) 

Q£ + mQD 

m = 

= 6. 
Qi 

f(x) ;\x\<c 

l+<3 
= 1 - / 3 ' 

(20b) 

(21a) 

(21ft) 

These last two boundary conditions (equations (19) and (21a)) 
define a Hilbert problem, with the well-known solution: 

Qfl(«) = 

in which 

Xjz) 
2TT/ J : i fix) 

QlX
+(x)(x-z) 

dx+X(z)Piz) (22) 

Xiz) = (z-cV~l(z + c)-< 

1 ' , 1 • 
7 = 2 - ^ l 0 g W = 2 + ' e 

-1A 1 
''£>, Dislocation — 

1+fflfil 

2~A 1 

-—- F(z, z0) + ——z F(z, z0) 

in which 

1+mQi 

+ Xiz)Piz) 

Fiz, a) = 

Giz, a) = 

(z0-Zo) 
1 + q 
1+0 

1 + 0 ' 

Giz, z0) 

1 1 

2 iz-a) 

dFiz, a) 

X(z) 

X(a) 

da 

mv) 

(25a) 

(25b) 

Inverting these to standard potentials gives: 

n , Dislocation" 

* 1, Dislocation" 

2A 

l+m 

1+q 

1 + 0 

2A 

l+m 

2mA 

l + m 

1 + q 
1-/3 

F(z, z0) 

(ZQ-ZQ) 

(Zo-Zo) 

F(z, Zo) 

1+q 

U+0 
1 + q 

1 + / 

G(z, Zo) (26a) 

G(z, z~0) 

2mA 

l + m 

1+q-

l - i 
; Fiz, Zo) + 

1 + q-

17/3 Fiz, Zo) 

* 1 , Dislocation , Dislocation (266) 

^ 2 , Dislocation" 
2mA 

l+m 

2mA 

l+m 

1+q „ , , 1 + q „ , — „ 
— - Fiz, Zo) + 7—r Fiz, Zo) 

iz0-Zo) 
1+q 

1+/ 

1 + / 3 ' 

Giz,z0) (26c) 

v2, Dislocation " 
2A 

l+m (ZQ-ZQ) 

1 + q 

1 + 0 
G(z, To) 

1 . 1 
— log — 
2ir m 

2A_ 

l+m 
1 + q - 1 + q -
l _ a F(z' Zo ) + Y+~s F ( z ' Z o ) 

and P(z) is a polynomial determined by far-field behavior. 
After flp is obtained, the jump potentials can be inverted back 
to standard potentials using equation (6). 

To remove the stresses on the crack caused by the dislocation 
solution, the integration in equation (22) is carried out with 
fix) equal to the opposite of the tractions due to a dislocation 
near the interface. These tractions are obtained by substituting 
equations (9) and (12) into equation (1): 

^ 2 , Dislocation ^-^2, Dislocation* (26d) 

-hyX=A 
+ q / 1 \ 1 + q / 1 \ 

- 0 \x-Zo) + 1 + 0 \x-7j 

— | 1 + q iZo-Zo) 

Each of the potentials in equation (26) contains an X(z)P(z) 
term following inversion. However, requiring that the stresses 
vanish at infinity and requiring that there be no net displace
ment at infinity (no net l/z term) leads to all the P(z)'s being 
zero. 

Removal of the constant far-field tractions is simply the 
standard interface problem. After performing the necessary 
integrals in equation (22), the £2 potentials are: 

OS i = 0 

. 1 + 0 ix-zo)2 

The resulting jump potentials are 

(27a) 

(23) oo ,"_c» _oo ,"_°° 

^ 5 , Dislocation — 0 (24a) 

'* - «"= " oT^a + (IT^Elz+ ^-1)C]X{Z) 

+ Piz)Xiz) i21b) 

Again, P(z) is determined by far-field behavior and turns 
out to be zero. Inverting to standard potentials gives the fol-
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lowing result, which is of course identical to the previous so
lutions mentioned earlier: 

-IT; 
* £ F a r meld = , ? , ,„ f [X{z)iz-(l-2y)c}-l] 

*1, 

r- r r , c , u (1 + w) 

Far Field- (\ + m\ l - * ( Z H 2 

- ( l - 2 ^ ) c ) - l ] - $ , - z * , ' 

m(a\ 
v2, Far Field — 

yy 
(1+WJ) 

[ J f U ) { z - ( l - 2 7 ) c ] - l ] 

(28a) 

(286) 

(28c) 

V 2, Far Field — 
'yx 

(1+w) yru){z-(i-27)cj-i]-*2-«*2'. 
(28tf) 

The final potentials that give the solution to the interaction 
between a discrete dislocation and an interface crack subjected 
to uniform far-field stresses are: 

*! = *f+< • + *f 

* i = = ¥ f + ¥f 

(29a) 

(296) 

where the Dislocation (D) potentials, the infinity (oo) potentials 
and the Crack (Q potentials are all defined above. For the no 
interface case (a = /3 = 0) the present solution reduces analyt
ically to Lo's (Lo, 1978) solution. 

Replacing the discrete dislocation with a continuous distri
bution of dislocations enables the modeling of the crack branch. 
Requiring the traction to be zero on the branch leads to an 
integral equation in terms of the unknown dislocation density. 
After nondimensionalizing and separating the kernel into sin
gular and regular parts, the following Cauchy-type integral 
equation is arrived at: 

J-1 t-s s 2 
1 {_,[£, (s,t)D(t) 

+&2(s,tj5(t)]dt=-f(s) (30) 

in which D(t) = p,xe'6d/bt{ [ur] + i[ve] J/iir (K, + 1) along the line 
zQ= 1 +te'e, [ur] and [ve] are the jumps in the tangential and 
normal displacements across the dislocation line, Kt and K2 

are the kernels resulting from the potentials derived earlier, 
and/(s) is the known traction along the branch line z = 1 + seie 

due to the main crack loaded at infinity. 
This equation is solved numerically using piecewise contin

uous polynomials in the manner of Gerasoulis (1982). Once 
the dislocation densities have been determined numerically, 
the stress intensity factors are obtained directly from the dis
location density at the tip of the branch crack in the normal 
fashion (e.g., Bryant, Miller, and Keer, 1984). In applying the 
numerical scheme, the integration point at the base of the 
branch crack is eliminated. Ignoring the integration point at 
the "knee" of the branched crack is an approximate method 
of incorporating the fact that the singularity at this end of the 
crack is less than one half. In their asymptotic analysis, He 
and Hutchinson (1988) investigated the effect of neglecting this 
integration point as opposed to including the actual singularity 
explicitly and found the effect to be minimal. Although it does • 
not necessarily follow that the minimal effect of ignoring the 
integration point in the asymptotic problem holds true for the 
finite length crack problem, for those cases where one would 
expect the most problems (short branch lengths) the calculated 
results match those of He and Hutchinson quite well. Thus, 
despite the approximate nature of the handling of the junction 
of the main crack with the branch, the numerical solution 
provides accurate results for the branching problem. 

4 Numerical Results and Conclusions 

Although shear loading at infinity is included in the for
mulation of the problem, it is not included in the numerical 
results since the resulting large contact zones at the crack tips 
change the requirements of the solution procedure quite dras
tically. For this reason, the integral equation (30) was solved 
numerically for pure tensile load at infinity only (o£,). Although 
results are presented as follows for a small set of material 
parameters, calculations were actually carried out over the 
entire a,/3 plane, with some not unexpected numerical diffi
culties arising in the vicinity of extreme material mismatches. 
The presented results are representative of these more wide-
ranging calculations. 

For purposes of linking up to the asymptotic results of He 
and Hutchinson (1988), the parameter of interest is taken as 
S/S0 ; the ratio of the energy release rate at the tip of the 
branch to the energy release rate at an equivalent unbranched 
interface crack. For this analysis, 9 corresponds to the strain 
energy release rate of a branch crack tip in material 1 and 9 0 

corresponds to the strain energy release rate at the tip of an 
interface crack of total length 2c' = 2c +1. The expressions for 
9, So. and 9 / g 0 are: 

l - " i ' 

2/x, 
(Kj + Kjj) (31a) 

9o = 

9 

A*i /"2 J 

(<4 + < 4 ) ( l + 4 e V C 
4 cosh2(7re) 

(316) 

So 
= ( l + a ) 

cosh2ire 

(i+462)(a;/+T; j r
2) 

(31c) 

As the length of the branch becomes very small relative to 
the main crack, it is expected that the present results should 
in some sense approach those of the semi-infinite crack. How
ever, as explained below, the present results can be directly 
compared to He and Hutchinson's (1988) asymptotic results 
only for j3 = 0. Figure 2 shows the dependence of the strain 
energy release, rate, g / 9 0 on the branch angle, 6 for a = 0.5, 
/3 = 0, and 1/c = 0.0001. The g / g 0 results in Fig. 2 indeed agree 
well with those of He and Hutchinson (1988), as expected. 

For pVO, there are some interesting problems regarding the 
loading parameter. As shown by Rice (1988), the far-field 
loading and crack length are coupled in the expression for the 

complex intensity factor K= K{ + iK2=(k1 + ik2) \Jir cos(ire), 
where kx + ik2 is the complex intensity factor of Sih and Rice 
(1964). Since He and Hutchinson (1988) used 7 = tan"1A:2/A:1 

Branch Angle, G 

Fig. 2 Strain energy release rate ratio, g/g0, versus extension angle, 
for lie = 0.001, a = 0.5, 0 = 0 (e.g., r = 3, », = *2 = 0.5) 
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Branch Angle, 0 

Fig. 3 Strain energy release rate ratio, g/g0, versus extension angle, 0, 
for //c = 0.001, i., = »2 = 0.3, r = 3 (a = 0.5, (3 = 0.14286) 

5o 

Branch Angle, 0 

Fig. 5 Strain energy release rate ratio, g/g0, versus extension angle, 
for ,., = ..;, = 0.3, T = 3, l/c = 0.001, 0.01, 0.1, 0.5, 1 (a = 0.5, (3 = 0.14286) 

Branch Angle, 0 

Fig. 4 Strain energy release rate ratio, g/g0, versus extension angle, 0, 
for l/c = 0.001, p1 = ^ = 0.3, r = 1, 3, 10, 100 (« = 0, 0.5, 0.81818, 0.98020; 
0 = 0, 0.14286, 0.23377, 0.28006) 

1/c = 0.001 

l/c = 0.01 

Branch Angle, 0 

Fig. 6 Strain energy release rate ratio, g/g„, versus extension angle, 0, 
for v, = v2 = 0.3, T = 10, //c = 0.001,0.01,0.1,0.5,1(a = 0.81818, /3 = 0.23377) 

as their loading factor, it is not possible to match their loading 
parameters uniquely for (3^0. Specifically, the loading pa
rameter used here, ¥ = tan" l%/o™y, is related to He and Hutch
inson's parameter, 7, by: 

* = 7 + tan " '2e - elog2c. (32) 

In the present analysis, the salient length parameter is the 
ratio of the branch crack length to the main crack length, // 
c, and the absolute value of c is arbitrary. Since the value of 
c is arbitrary ^ and 7 cannot be related in a definitive manner. 
Equation (32) shows that for (3 = 0, e will be 0 and ^ is equiv
alent to 7, and thus the results in Fig. 2 can be directly compared 
to He and Hutchinson's. Conversely for |8^0, ^ ^ 7 , the two 
loading parameters are different. As noted by Rice (1988), e 
is usually very small. However, because of the e log 2c term 
in equation (32), this does not ensure that ^r = y. If e log 
2 C < < 1 , then * s y , 

Figure 3 shows that for the case of the crack growing into 
the softer material, the maximum 8/So> 8/8omax. occurs at an 
angle somewhat off the interface and in the softer material 
(0>O). Although it is not shown by these figures, the angle at 
which K, is maximized in the softer material corresponds to a 
nearly zero value for Kn. These results are typical for different 
l/c and r\s(r = /*2/7*i)> and are consistent with the observations 
of He and Hutchinson concerning the tendency of branching 
to occur in the softer material provided the material tough
nesses are comparable. Subsequent results are presented for 6 
in the soft material only. 

Figure 4 shows Q/Oo versus 6 for various T and l/c = 0.001. 
Notice that as T increases, so does 8/Somax- The angle that 
maximizes g/9o> m̂ax. also increases as T increases. Again, 
both these trends agree with He and Hutchinson's (1988) results 

for 7^0, although for the reasons given above, direct com
parison is no longer possible. It should be noted that the in-
plane stresses, a^, are increased also by increasing material 
mismatch, although these stresses appear to have only sec
ondary influence on the branch behavior. 

Figures 5 and 6 show the influence of finite main crack size 
by considering 9/80 versus 6 for various l/c values. In both 
Fig. 5 and 6, l/c increases, S/Somax decreases towards a value 
of unity, while the branch angle corresponding to maximum 
energy release rate decreases. (Note, however, that in calcu
lating S/80. 80 is adjusted to be the strain energy release rate 
for a crack of length 2c +1. Thus, Smax itself is not necessarily 
decreasing with increasing branch length, since 80 is increasing 
with /. In fact, 8max reaches a minimum and then starts to 
increase again as l/c is increased). Using S/Somax a s a crack 
growth criterion, the decreasing 0max with increasing branch 
length can be taken as an indication that the branch would 
tend to turn back parallel to the interface as it grows (this 
rough method for predicting crack trajectories does not always 
work; see Rubinstein, 1989). Given the further result that the 
maximum energy release rate at the branch tip approaches that 
of the interface crack itself as the branch grows, then together 
this would imply that in a limited sense branching is irrelevant, 
since the driving force would be similar whether branching 
occurs or not. The critical issue, however, remains the relative 
toughnesses of the materials involved. 

The primary conclusions to be drawn from the present anal
ysis are that branching from an interface is a viable mode of 
crack growth, and that such branching is likely to occur initially 
at an angle somewhere between 10 deg and 47 deg in the softer 
of the two materials, provided the material toughnesses are 
similar. As the branch extends its growth characteristics will 
be altered, resulting in a tendency to return to a path parallel 
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to the interface, with a driving force similar to that of an 
unbranched crack. 
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A P P E N D I X 

The boundary conditions for the interface body (no crack) 
under remote stress are: 

Usi ~ ®si — 0 

fi^ - O D 2 = 0 
\x\<<x,y = 0. (Al) 

As pointed out earlier, QSI, Qm and fi^, 0 ^ are analytic in 
their respective regions. Moreover, since these two potentials 
are equal along the region boundary (as given by the above 
boundary condition), it can be concluded that Qs and UD are 
analytic everywhere. By Liouville's theorem, since 0S and QD 

are analytic everywhere and bounded, they must be constant. 
Thus, set: 

Q% = Cs = RCs+iICs {Ala) 

(Alb) Q% = CD = RCD + iICD 

in which RCS, ICS, RCD, and ICD are real constants. 
Inverting relations equation (A2) to Muskhelishvili (1953) 

potentials gives: 

*r=Qt 

*r=e2 

*2°° = Q2 

*r=& 

z-cs+cD 
L2/i2 J 

L 2 L I 2 

^-cs+cD 

- 2 ^ 

-a CS+CD 
L2/i2 

-Qi CS+CD 
-2/X] J 

(A3) 

(A3b) 

(A3c) 

. (A3d) 

The two complex constants Cs and CD are determined from 
the conditions at infinity: 

cj-tt£=*r+*r+*r (A4«) 
<£-«£i = 2(#r + *f) (A46) 

^ - ^ = 2(*2°° + *T) (A4c) 
Inverting these leads to the expressions in equation (14). 
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