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Theme
What I enjoy and have been doing.

•Mechanism-based design guidelines.
•Exploration and modeling of failure mechanisms.

•Whatever it takes experimentation.



2 μm2 μm

Design of anchor bolts
Design guidelines for spur gears

Fatigue of MEMS materials/structures
Mechanical testing

of nanofibers
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Stress field near crack tip
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CRACK GROWTH MECHANISMS

Fast fracture

High cycle fatigue

Stress corrosion
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Design Curve



Crack Paths

















Results of RILEM Round-Robin Tests



Now an undergrad
can do these calculations



• Thin-rim gears desired for reduced weight.
• Stress fields and failure characteristics significantly 

different for thin-rim gears compared to conventional gears.
• Designed according to standards published by AGMA.
• Catastrophic failures have occurred in thin-rim gears.

Thick rim Thick rim --
““benignbenign””

 
tooth tooth 

fracturefracture

Thin rim Thin rim --
catastrophic rim catastrophic rim 

fracturefracture

Spur GearsSpur Gears



ObjectivesObjectives

Develop fracture mechanicsDevelop fracture mechanics--
 based design guidelines to based design guidelines to 

prevent rim fracture failure modes prevent rim fracture failure modes 
in gear tooth bending fatigue.in gear tooth bending fatigue.
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Bending stress index



Crack mouth
Crack tip

UserUser--defined defined 
initial crackinitial crack

Quarter-

 
point
rosette

Final mesh of Final mesh of 
initial crackinitial crack

Simulated
crack
trajectory

Initial
crack
region

Predicted crack pathPredicted crack path

Crack Modeling Using Finite Element MethodCrack Modeling Using Finite Element Method



Definition of Initial Crack Location (θ0 )Definition of Initial Crack Location (θ0 )

θθ00

PitchPitch
radiusradius

Applied Applied 
tooth loadtooth load



Stress Intensity FactorsStress Intensity Factors

x

Initial 
crack mouth

Initial crack tip
New crack tip

Crack increment size

Predicted angle = Predicted angle = f f ( ( KKII II / / KKII ))

y

Gear tooth fillet

KI = mode I 
stress intensity 

factor

KII = mode II 
stress intensity 

factor
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Crack Propagation Angle and Growth RateCrack Propagation Angle and Growth Rate
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Tooth load at Tooth load at 
HPSTCHPSTC

SlotsSlots

FixedFixed
innerinner--hubhub
B.C.sB.C.s

Typical Finite Element Gear ModelTypical Finite Element Gear Model



Load Case Locations for FEMLoad Case Locations for FEM

Load case
1
2
3
4
5
6

7
8

9
10
11
12

13
14

15
16

17
18

Tooth 1 Tooth 2 Tooth 3

0.26-mm crack size, 68 N-m driver gear torque.



Effect of Initial Crack Location on Crack PathEffect of Initial Crack Location on Crack Path

Gear Parameters:Gear Parameters:
•• 28 teeth28 teeth
•• 8 pitch8 pitch
•• 1.75" pitch rad1.75" pitch rad
•• 2020°°

 
pressure anglepressure angle

•• mmBB = 1.0= 1.0



Effect of Initial Crack Location on Crack PathEffect of Initial Crack Location on Crack Path

Initial crackInitial crack
location:location:

θθ
 

00 = = 120120°°

Failure mode:Failure mode:
ToothTooth

 
fracturefracture



Effect of Initial Crack Location on Crack PathEffect of Initial Crack Location on Crack Path

Initial crackInitial crack
location:location:

θθ
 

00 = = 114114°°

Failure mode:Failure mode:
ToothTooth

 
fracturefracture



Effect of Initial Crack Location on Crack PathEffect of Initial Crack Location on Crack Path

Initial crackInitial crack
location:location:

θθ
 

00 = = 109109°°

Failure mode:Failure mode:
ToothTooth

 
fracturefracture



Effect of Initial Crack Location on Crack PathEffect of Initial Crack Location on Crack Path

Initial crackInitial crack
location:location:

θθ
 

00 = = 104104°°
(max tensile)(max tensile)

Failure mode:Failure mode:
ToothTooth

 
fracturefracture



Effect of Initial Crack Location on Crack PathEffect of Initial Crack Location on Crack Path

Initial crackInitial crack
location:location:

θθ
 

00 = = 9999°°

Failure mode:Failure mode:
ToothTooth

 
fracturefracture



Effect of Initial Crack Location on Crack PathEffect of Initial Crack Location on Crack Path

Initial crackInitial crack
location:location:

θθ
 

00 = = 9494°°

Failure mode:Failure mode:
ToothTooth

 
fracturefracture



Effect of Initial Crack Location on Crack PathEffect of Initial Crack Location on Crack Path

Initial crackInitial crack
location:location:

θθ
 

00 = = 8888°°
(root centerline)(root centerline)

Failure mode:Failure mode:
ToothTooth

 
fracturefracture



Effect of Initial Crack Location on Crack PathEffect of Initial Crack Location on Crack Path

Initial crackInitial crack
location:location:

θθ
 

00 = = 8383°°

Failure mode:Failure mode:
ToothTooth

 
fracturefracture



Effect of Initial Crack Location on Crack PathEffect of Initial Crack Location on Crack Path

Initial crackInitial crack
location:location:

θθ
 

00 = = 7878°°

Failure mode:Failure mode:
RimRim

 
fracturefracture



Effect of Initial Crack Location on Crack PathEffect of Initial Crack Location on Crack Path

Initial crackInitial crack
location:location:

θθ
 

00 = = 7373°°

Failure mode:Failure mode:
RimRim

 
fracturefracture



Effect of Initial Crack Location on Crack PathEffect of Initial Crack Location on Crack Path

Initial crackInitial crack
location:location:

θθ
 

00 = = 6868°°

Failure mode:Failure mode:
RimRim

 
fracturefracture



Effect of Initial Crack Location on Crack PathEffect of Initial Crack Location on Crack Path



Mode I
stress

intensity
factor,

KI (ksi√in)

0

20

40

60

80

Crack Length, in
0.0 0.1 0.2 0.3 0.4 0.5

Mode II
stress

intensity
factor,

KII (ksi√in)

-2

0

2

4

Stress Intensity FactorsStress Intensity Factors

θ0 =120°
99°

88°
83°

θ0 =68°

θ0 =83°



Backup ratio:Backup ratio:
mmBB = = 1.01.0

Tooth/rim fractureTooth/rim fracture
transition:transition:

θθ
 

00 = = 8181°°

Effect of Backup Ratio on Crack PathEffect of Backup Ratio on Crack Path



Backup ratio:Backup ratio:
mmBB = = 1.11.1

Tooth/rim fractureTooth/rim fracture
transition:transition:

θθ
 

00 = = 7676°°

Effect of Backup Ratio on Crack PathEffect of Backup Ratio on Crack Path



Backup ratio:Backup ratio:
mmBB = = 1.21.2

Tooth/rim fractureTooth/rim fracture
transition:transition:

θθ
 

00 = = 7171°°

Effect of Backup Ratio on Crack PathEffect of Backup Ratio on Crack Path



Backup ratio:Backup ratio:
mmBB = = 1.31.3

Tooth/rim fractureTooth/rim fracture
transition:transition:

All tooth fracturesAll tooth fractures

Effect of Backup Ratio on Crack PathEffect of Backup Ratio on Crack Path



Backup ratio:Backup ratio:
mmBB = = 1.01.0

Tooth/rim fractureTooth/rim fracture
transition:transition:

θθ
 

00 = = 8181°°

Effect of Backup Ratio on Crack PathEffect of Backup Ratio on Crack Path



Backup ratio:Backup ratio:
mmBB = = 0.90.9

Tooth/rim fractureTooth/rim fracture
transition:transition:

θθ
 

00 = = 8686°°

Effect of Backup Ratio on Crack PathEffect of Backup Ratio on Crack Path



Backup ratio:Backup ratio:
mmBB = = 0.80.8

Tooth/rim fractureTooth/rim fracture
transition:transition:

θθ
 

00 = = 9191°°

Effect of Backup Ratio on Crack PathEffect of Backup Ratio on Crack Path



Backup ratio:Backup ratio:
mmBB = = 0.70.7

Tooth/rim fractureTooth/rim fracture
transition:transition:

θθ
 

00 = = 9797°°

Effect of Backup Ratio on Crack PathEffect of Backup Ratio on Crack Path



Backup ratio:Backup ratio:
mmBB = = 0.60.6

Tooth/rim fractureTooth/rim fracture
transition:transition:

θθ
 

00 = = 102102°°

Effect of Backup Ratio on Crack PathEffect of Backup Ratio on Crack Path



Backup ratio:Backup ratio:
mmBB = = 0.50.5

Tooth/rim fractureTooth/rim fracture
transition:transition:

θθ
 

00 = = 107107°°

Effect of Backup Ratio on Crack PathEffect of Backup Ratio on Crack Path



Design MapDesign Map

T = tooth fracturesT = tooth fractures
R = rim fracturesR = rim fractures
C = compressionC = compression

Initial crack location, θ0 (deg)
60708090100110120

Backup
ratio,
mB 

0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
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Mode I
stress

intensity
factor,

KI (ksi√in)

0

1

2

3

4

5

6

7

8

9

Mode I Stress Intensity FactorsMode I Stress Intensity Factors

0.5

0.7
1.0 1.3Backup ratio, mB

68

78

88

99

109

120

Initial
crack

location,
θ0 (deg)

Gear Parameters:Gear Parameters:

•• 28 teeth28 teeth
•• 8 pitch8 pitch
•• 1.75" pitch rad1.75" pitch rad
•• 2020°°

 

press anglepress angle

•• 500 lb tooth load500 lb tooth load
•• 0.030" crack size0.030" crack size



Mode I
stress

intensity
factor,

KI (ksi√in)

0

1
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3

4
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Mode I Stress Intensity FactorsMode I Stress Intensity Factors

0.5

0.7
1.0 1.3Backup ratio, mB

68

78

88

99

109

120

Initial
crack

location,
θ0 (deg)

Gear Parameters:Gear Parameters:

•• 28 teeth28 teeth
•• 8 pitch8 pitch
•• 1.75" pitch rad1.75" pitch rad
•• 2020°°

 

press anglepress angle

•• 500 lb tooth load500 lb tooth load
•• 0.030" crack size0.030" crack size

•• AISI 9310 steelAISI 9310 steel
•• ΔΔKKthth = 5 ksi= 5 ksi√√inin



Design MapDesign Map

T = tooth fracturesT = tooth fractures
R = rim fracturesR = rim fractures
N = no fractureN = no fracture

Initial crack location, θ0 (deg)
60708090100110120

Backup
ratio,
mB 

0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
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Test GearsTest Gears

Backup ratio = 3.3

Notch inserted 
in tooth fillet

Backup ratio = 1.0

Backup ratio = 0.3

AISI 9310 Steel
Case carburized and ground

Effective Case Depth  0.032 in.



Crack growth gage



Spur gear rig at NASA Glenn

Specimen



Spur gear rig at NASA Glenn



P
E

P
E

PE

Backup ratio = 3.3Backup ratio = 3.3

Backup ratio = 1.0Backup ratio = 1.0

Backup ratio = 0.5Backup ratio = 0.5

E = Experiment
P = Predicted

Validation of Finite Element ModelingValidation of Finite Element Modeling



Fracture and Fatigue of MEMS Polysilicon
and Silicon Carbide



Analog Devices Gyroscope
iMEMS

 

Gyro Die Showing the Rate Sensor and Integrated Electronics
http://www.analog.com/technology/mems/gyroscopes/index.html



MEMS Device-Fuel Atomizer
Motivation
• Reduce cost through batch fabrication
• Achieve desired tolerances using a 

precise silicon micromachining 
technology

Operation
• Fuel enters the spin chamber 

through tangential slots
• Fuel swirls in the spin chamber 

and exits through the orifice in 
a hollow conical spray

• Swirling produces sprays with 
wider spray angles as compared 
to plain orifice atomizers



Ant Carrying a (1000 µm)2

 

Microchip

Or is it a Palm Pilot?



silicon substrate

polysilicon
SiO2SiO2

SiO2SiO2

crack surface

a)

b)

c)

d)

INDENTATION CRACKING



ORIGINAL OBJECTIVES

Characterize strength, fracture toughness, high 
cycle fatigue

 

and environmentally assisted 
crack growth

 

in poly-Si, poly-SiC,
and SiC

 

at scales relevant to MEMS devices.

•Develop (micron size) on-chip specimens.
•Generate data.

•Study mechanisms.
•Formulate predictive models.

CHALLENGES

•Experiments are difficult to design, execute and 
interpret.
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CRACK GROWTH MECHANISMS

Fast fracture

High cycle fatigue

Stress corrosion

If applicable, how sensitive are the parameters
to processing procedures?



Two types of on-chip specimens
have been developed:

•Loading through electrostatic actuation
•Loading through fabrication-induced residual stress



acr
2μm

Say acr

 

=1μm

Say tlife

 

=10yrs

Then vcr

 

<10-15

 

m/s !!!

Why subcritical crack initiation and
growth should be studied in MEMS



CVD Polysilicon - Effects of Deposition Temperature
550°C 580°C 615°C

1100°C 570/615°C

all films
are ~2-6 µm
thick, and
deposited
on SiO2



Fracture Mechanics 
Specimen

Actuator

anchor pads

movable 
comb drive

fixed
comb drive

MEMS Fracture Mechanics Specimen
integrated with

MEMS Loading Device Actuator

(Proc. Royal Soc. A, 455, 3807-3823, 1999)

produces ~0.7 mN



Fracture Device (notched specimen)

specimenspecimen

actuator

500 μm



ADVANTAGES OF THIS “ON-CHIP” SPECIMEN

•No need for external loading device.
•Resonance loading can be used to study very high cycle fatigue.

•Uncracked ligament size of the same order as dimensions of 
typical MEMS components.

CURRENT LIMITATIONS

•Low “yield”, but improving





Sharpe and Bagdahn, Proc. Fatigue 2002

Fatigue of Notched Polysilicon



DIFFICULTIES IN DETERMINING ENVIRONMENTAL EFFECTS
USING THESE TESTS

•Tests involve cyclic loading, not constant load.

•Tests involve tension and compression.



100 μmSpecimen T 100 μm100 μmSpecimen T 100 μmSpecimen C100 μm100 μmSpecimen C

VARIATIONS ON A THEME

R-ratio
and mean

stress
effects



Dynamic Fatigue Results
low-cycle fatigue

1

2

3

4

5

6

-4 -3 -2 -1 0 1

Load Ratio, RLo
w

-C
yc

le
 F

at
ig

ue
 S

tr
en

gt
h,

 σ
m

ax
(G

Pa
)

PolySi

 

thickness

 

Test Ambient
3.5 μm air (105
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5.7 μm air (105
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5.7 μm

 

vacuum (10 Pa)



polysilicon

indent

2h = 500 μm

w=60 μma
A

silicon substrate

polysilicon

SiO2 anchors

B pre-crack

Stress Intensity and Stress vs. Crack Length
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WITH CONSTANT TENSION

(Science, 2002)



5 um

indent

substrate

pre-crack

beam

residual tensile stress
beam anchor (to substrate)

crack tip

1 um

INDENTATION CRACK

CWRU
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FINE-GRAINED POLYSILICON
FRACTURE TOUGHNESS



FRACTURE TOUGHNESS DATA
(MPa-m1/2)

Multilayered silicon 0.79<KIc

 

<0.84
Fine-grained silicon

 
0.76<KIc

 

<0.86
SiC

 
2.80<KIc

 

<3.41
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FINE-GRAINED SILICON
STATIC FATIGUE STUDY

90% RH

K between 0.62-
 

0.86 MPa-m1/2

No growth in 30 days
V< 3.9 x10-14

 

m/s
Same results for eight multipoly

 
specimens
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Schematic Bend Strength Tests

Monotonic Increasing Amplitude Fatigue

1 Comp/Mono Fixed Δσ
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Increasing Amplitude Fatigue 
B-doped polysilicon (no sputtered Pd)

Mean Stress, σm
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Monotonic Bend Strength 
after cycling with a fixed (low) amplitude
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Mechanical Testing of Collagen Fibers 
(Nanotechnology)

• Most abundant protein in the human body.
• One of the basic components of bone, ligaments, 

tendons, teeth, skin.
• Collagen monomer:

– Triple helical structure made of three chains of 
amino acids.

– The monomers assemble into fibrils.



Collagen 
Fibrils

Rho et al., 1998



Hierarchical Structure of Bone



Nanofiber
 

Testing Device

Journal of the Royal Society Interface, 2006.

Force: 0.1-100 µN
Displacement: 1-5 µm

A    B

anchor

Actuation 
Force

fibril

anchor
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hole  etched 
in substrate

stiffening  
com b drive

anchor

Actuation 
Force

fibril

anchor
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beam s

canals

hole  etched 
in substrate

stiffening  
com b drive

 



Labeling fibrils using fluorescent 
antibodies

1. Imaging using SEM
2. Labeling

fibril

Primary antibody

Secondary antibody

Alexa Fluor 568

fibril

Primary antibody

Secondary antibody

Alexa Fluor 568



Fluorescently Labeled Collagen Fibers (Negative Image)

Different dilutions of the fibrils were imaged using SEM
to determine the appropriate dilution at which individual

fibrils were distinguishable. The fibrils were labeled with fluorescent
antibodies to achieve contrast and brightness under optical microscope

for 5 minutes. Anti-fading agents being
tried to allow 30 minutes of manipulation time.



Manipulation using
micropipette

2 μm2 μm
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