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Abstract-Linear elastic fracture mechanics (LEFM) does not provide a realistic propagation 
criterion for a crack tip touching a bimaterial interface. In fact, LEFM predicts that the crack 
penetrates the interface at either zero or infinite value of the characteristic applied load, depending 
on the relative stiffness of the bonded materials. This paper presents a cohesive zone model that 
provides a propagation criterion for such cracks in terms of the parameters that define the relation 
between the crack opening displacement and the traction acting along the crack surfaces. Extensive 
numerical results are presented for the case of constant cohesive traction, 6, associated with a 
critical crack tip opening displacement, q<. A quantitative evaluation of the effective toughening 
resulting from the presence of the interface is presented, for both small scale and large scale bridging, 
in terms of the Dundurs parameters (9 and /I), and pn/L, where pZ is proportional to the small scale 
critical cohesive zone length and L is a characteristic length of the crack problem. In particular, 
universal results for small scale bridging are presented as 

where k,. and 6, are, respectively the critical stress intensity factor and critical cohesive zone length, 
i is the power of the stress singularity associated with the elastic crack touching the interface, and 
A and B* are universal functions. These equations generalize those derived from the Dugdale model 
for a homogeneous medium. It is shown through the analysis of a finite length crack that for a 
relatively wide range of LX$ and pz/L values, the presence of the interface has a rather insignificant 
effect on the critical stress, and the elastic singularity associated with a crack terminating at the 
interface between two dissimilar elastic materials dominates the stress field within an extremely 
small near-tip region, 0 1997 Elsevier Science Ltd. All rights reserved. 
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1. INTRODUCTION 

Consider, as shown in Fig. 1, a crack terminating at the interface between two perfectly 
bonded linear elastic half-planes. The shear moduli, Poisson’s ratios and critical energy 
release rates are, respectively, pi, vi and G, where subscript i (i = 1,2) denotes “material i”. 
As shown by Zak and Williams (I 963),for loading symmetric with respect to the crack line, 
the stress at a point Y = -t ahead of the crack tip can be written as 

o’2’Kku ;. 
(1) 

where the stress infinity factor, k, is a function of geometry, loading and elastic mismatch 
between the bonded materials, and /I, the power of the stress singularity, is the solution of 
the characteristic equation 

COSG~) = (, +p) 

2!p--cr)(l_i)~+~ Odi”< 1. 

In eqn (2) a and /I are the Dundurs parameters (Dundurs, 1969), defined by 

cI = PL?(Kl +l)-hh(K*+l) ; p= P2(~1-1)-P,I(K2-1) 

P2(~I+l)+P,(G+1) P2h +-1)+P,(K2+1) 

(2) 

(3) 

where 

for plane strain and 

K; = 3-4V, 

3-v, 
Kf = 1 

for plane stress. The loci of constant 1 in the a-P plane are plotted in Fig. 2a. As shown by 
Suga et al. (1988), the /I values for an extensive number of relevant composite systems are 
arranged in a rather narrow band around the line CI = 48, while the a values span the entire 
domain. For this reason the calculations presented subsequently were performed for cx = 4p. 

material 2 
v, IJz 

Fig. 1. Crack terminating at a bimaterial interface 
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Fig. 2. (a) Loci of constant i. in the r-B plane. (b) Loci of constant I( in the r-B plane 

The stress concentration at the tip of the crack shown in Fig. 1 can be relaxed 
by penetration through the interface, propagation along the interface, reflection, or a 
combination of these mechanisms. If the interface is not perfectly bonded, but is subjected 
to compressive residual stresses, the stress concentration can be relieved though frictional 
sliding along the interface. This latter mechanism was studied by Wang et al. (1991) using 
singular integral equations. This paper is concerned with predicting the loads necessary to 
extend the crack through the interface. This implies a “strong” interface. 

Because k is not the same as the intensity factor Kat the tip of a crack in a homogeneous 
material, the classical LEFM criterion K = K, is not available to predict crack penetration 
through the interface. Even the standard energy release rate criterion is not appropriate. In 
fact, the energy release rate per unit thickness, GZ, associated with a virtual infinitesimal 
crack extension, 8, through the interface is given by 

where o(2) is the stress ahead of the crack before the extension given by (I), and [u!Z’] 
represents the crack opening displacement (COD) of the extended crack, which, as shown 
in the Appendix, can be written as 
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where His a (non-dimensional) bounded function of position and the Dundurs parameters, 
and E: = 8pj/( 1 + rcj). Substitution of (1) and (5) into (4) yields 

According to (6), as 6+0 the energy release rate becomes infinite for those bimaterial 
systems characterized by i > 0.5 (I*, > p2), and zero for jb < 0.5 (p, < p2). Therefore, LEFM 
predicts that the crack propagates through the interface under zero load for p, > pZ and 
infinite load for pLz > p,. An attempt at resolving this problem was made by Cook and 
Erdogan (1972), who proposed a fracture criterion based on the comparison of the elastic 
stresses in the composite medium with the corresponding critical stresses in the reference 
homogeneous systems. The method, which can be applied to a variety of propagation 
mechanisms such as through cleavage of medium 2, reflection in medium 1, or interfacial 
debonding, relies on the determination of a characteristic distance, Y, at which stresses are 
compared. However, the determination of Y,~ which is associated with the materials’ micro- 
structure, is rather unclear. 

Another important issue that has not been addressed systematically is the deter- 
mination of the region of dominance of the stress intensity factor k. If this parameter is to 
be relevant in the assessment of the state of stress near a crack tip surrounded by damaged 
material, it should be associated with a “healthy” region of dominance. The results cal- 
culated in this paper show that the region dominated by k is extremely small if the crack is 
in the more compliant material. Thus for this case the linear elastic solution cannot be used 
to characterize crack initiation. 

He and Hutchinson (1989), using singular integral equations, developed a model and 
criteria for predicting whether a crack that touches a bimaterial interface will penetrate the 
interface or be deflected along the interface. Their analysis eliminates the parameter k 
through the assumption that the putative extensions are of equal length, and therefore 
cannot be used to predict the loads needed to extend the crack in either direction. 

In the present work, a cohesive zone model is developed in the spirit of Barrenblatt’s 
original model (Barrenblatt 1962), which postulates the existence of an autonomous region 
(whose length is much smaller than any other characteristic length) along the crack surfaces 
which is subjected to tractions that resist crack opening. The relevant parameters in this 
model are those that define the relation between the crack opening displacements and the 
associated tractions. Moreover, the model can be (and has been) extended to cases where 
the length of the cohesive zone is not much smaller than the crack length and other 
characteristic dimensions. An example is the Dugdale model (Dugdale, 1962), which cor- 
responds to a constant traction equal to the yield stress, rro and the critical crack tip opening 
displacement, yc. Barenblatt’s model is intended to describe the cohesion which resists crack 
propagation, while Dugdale developed his model to predict the extent of crack tip plasticity 
in plane stress specimens of steel. However, the same mathematical techniques can be used 
to formulate and solve the boundary value problem associated with each model. 

The model developed in this paper, which is formulated in terms of singular integral 
equations, extends Barenblatt’s ideas to the case of a crack whose tip touches a bimaterial 
interface. The numerical calculations performed for a constant crack opening resisting 
traction therefore generalize the Dugdale yield strip model, for both large scale and small 
scale cohesive zone lengths. It is important to note that the model presented here does not 
suggest that crack propagation is accompanied by plastic deformation : the model is pro- 
posed for any material system and configuration that is characterized with inelastic defor- 
mation in the vicinity of the crack tip that is localized along a plane, and can therefore be 
approximated with a traction/crack opening displacement law. Material systems for which 
this type of modeling is generally acceptable include concrete and rock, whose cracks are 
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accompanied by microcracking, and polymers, which are associated with crazing. Regard- 
less of the type of inelastic deformation, if the length of the cohesive zone is much smaller 
than any other characteristic lengths in the problem, the deformation will henceforth be 
referred to as small scale yielding (SSY). Otherwise it is termed large scale yielding (LSY). 
SSY (LSY) is associated with relatively small (large) values of the ratio 

where L is a characteristic length of the crack problem. In this study, p2, which is pro- 
portional to the length of SSY plastic zone, is assumed to be a constant material property. 
The distinction between SSY and LSY is essential in this work because each requires a 
different computational scheme. A direct numerical integration of the integral equations 
governing the specific finite cohesive crack problem is appropriate for LSY conditions. For 
small crack tip deformation such an algorithm loses accuracy and an asymptotic crack 
analysis is recommended, which leads to a general SSY propagation criterion based on the 
introduction of the bimaterial toughness, k,. The two methods are mutually complementary 
and the corresponding solutions show a smooth transition. 

This paper is organized as follows. The next section provides a review of the assump- 
tions and principal results of the Dugdale model. This is followed by a generalization of 
the model to bimaterial systems under SSY conditions. To assess the range of validity of 
the universal results obtained for SSY, the stresses ahead of a finite length crack calculated 
for general yielding conditions are compared with those predicted by the singular elastic 
solution. Finally, the critical stress associated with crack penetration, calculated as functions 
of elastic mismatch and the parameters that describe the inelastic deformation, is compared 
with the stress required to extend the crack in a homogeneous medium. 

2. BRIEF REVIEW OF THE DUGDALE MODEL FOR HOMOGENEOUS SYSTEMS 

The Dugdale model was first proposed for a Griffith crack of length 21 embedded in 
an infinite homogeneous elastic-plastic plane under remote tension, (T. The zone of plastic 
deformation ahead of either crack tip is modeled as an extension, 6, of the actual crack 
subjected to a constant closing pressure equal to the material yield stress, go. This model 
relies on the superposition of two elastic solutions, a crack under remove tension and a 
crack with closure pressure near the tips. The equilibrium length of the plastic zone, 6, is 
determined by requiring a zero stress singularity at the tip of the virtual crack extension. 
The following expressions result for 6 and for the crack opening displacement, ye, at the tip 
of the actual crack. 

6 -=sec?nri_* 
1 20, 

(9) 

Equations (8) and (9) are exact for all 6/l and thus apply to the general case of LSY. For 
SSY conditions, S/I << 1, they reduce to 

(10) 

where K is the stress intensity factor due to the remote loading. 
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Fig. 3. Superposition scheme for a semi-infinite cohesive crack. 

It is assumed that the crack propagates when the crack tip opening displacement, q, 
reaches a material constant critical value, v(. Under SSY conditions the critical cohesive 
zone length, 6, and critical stress intensity factor, K,, are 

(12) 

(13) 

where p = E’qJa,, is a characteristic length of the material. Equation (1 l), as shown by 
Rice (1968), proves that the condition q,,,,., = qc is equivalent to the crack propagation 
criterion, K = K,.. 

3. EXTENSION OF THE DUGDALE MODEL TO BIMATERIAL SYSTEMS UNDER SSY 
CONDITIONS 

3.1. SSYmodel 
Consider a crack terminating at a bimaterial interface and assume that the inelastic 

deformation is confined to a line of length 6 beyond the bimaterial interface, such that 
6/L << 1, where L is a characteristic length of the problem. Assume that the bimaterial 
system remains in the elastic range elsewhere. This problem can be solved by means of an 
asymptotical analysis using the superposition scheme shown in Fig. 3. A semi-infinite crack 
whose tip is at a distance 6 beyond the interface is subjected to two loading conditions : a 
generic far-field loading given in terms of the applied remove stress intensity factor, k, (Fig. 
3a), and a constant pressure, go applied along the surfaces of the virtual crack extension 
through the interface (Fig. 3b). 

It is important to note that for metals this scenario is applicable to plane stress 
situations ; it is not applicable to plane strain situations, for which the yielding may occur 
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along inclined slip planes. However, the analytical model proposed here can be modified 
without major difficulties to handle either situation. 

As shown by Atkinson (1975), He and Hutchinson (1989) and Romeo and Ballarini 
(1993, the stress infinity factor at the tip of the extended crack, &, and crack opening 
displacement at the interface, IQ,, resulting from the remote loading are given by 

Kk = k6”2-‘j&,fl) (14) 

where k corresponds to the stress infinity factor associated with the same crack terminating 
at the interface (b = 0). For the second loading condition the corresponding quantities are 
given by 

(17) 

A brief description of the singular integral equation techniques used by He and Hutchinson 
(1989) and Romeo and Ballarini (1995) to calculate functions ji, rjk, as well as necessary 
modifications used in this paper to calculate,f,,, and Q,,,, is included in the Appendix. The 
loci of constant values of these functions in the X-P plane are presented in Fig. 4ad For a 
homogeneous system (E = /3 = 0) j; = 1, IjA = (2/7-c)‘,” and fV,, = q,,,, = 2/7r. 
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Fig. 4. (a) Loci of constantf,, in the r-/3 plane. (b) Loci of constant vi, in the a-/I plane. (c) Loci of 
constant.fb,,, in the x-b plane. (d) Loci of constant +jO,, in the a-b plane. (Continued ouerleqf.) 
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The total stress intensity factor at the tip of the extended crack and the COD at the 
interface are given by 

? = Yk -%; 

For a given bimaterial system and a given value of K2, (I?+( 19) can be used to derive 6 
and q as 

K2 = 0 corresponds to a generalized Dugdale (GD) model, for which the resistance to the 
crack propagation relies entirely on the cohesive pressure, 6,. For this case, (20) and (21) 
are explicit and reduce to 



where 
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(22) 

(23) 

(24) 

B(bB) = 4A(& bmA(@,B) m”-flJ. (25) 

The propagation criterion u = qt. (where qC is a known medium 2 property independent of 
the bimaterial combination), applied to the crack opening displacement at the interface, 
can be used to obtain the value of the far-field stress intensity factor associated with crack 
propagation through the interface 

where 

The non-dimensional critical length of the plastic zone, 6,. is given by 

5 _ A ~2 A ~2 
L-BCLIB*L 

(27) 

(28) 

Equations (22), (23) (26), and (28) generalize to bimaterial systems the SSY results for 
homogeneous systems given, respectively, by (IO), (1 l), (13) and (12). Note that the critical 
extent of the plastic zone is governed by p2 and the function of the Dundurs parameters 
AC/B. As for the homogeneous case, it is independent of the intensity of the remove load. 
A plot of (28) is shown in the boxed insert of Fig. 12, which illustrates that for a given p2/l 
the critical cohesive zone length for positive values of cx is larger than for negative values. 

3.2. Ejjtictive strengthening 
The quantity k, represents an effective fracture toughness associated with the presence 

of the interface. Since the physical dimensions of k,. show an a-p dependence through I,, a 
comparison of different bimaterial systems in terms of k,. is not appropriate. A comparison 
of bimaterial strengthening is, on the other hand, possible in terms of the critical nominal 
value of the far field stress, O< associated with k,., which can be normalized with respect to 
on as 

(29) 

where h = k/(oJnL’) represents the non-dimensional stress intensity factor and L is a 
characteristic length of the problem. Through (29) it is possible to express the ratio of cr<. 
for a crack at the interface of a given CC/~ system to the critical stress for the same crack in 
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Fig. 5. Finite crack terminating at bimaterial interface (a) and superposition scheme for LSY (bd) 

a homogeneous medium 2, .prn, for which A(O,O) = n/8, B(O,O) = 1 and C(O,O) = 1. This 
ratio is given by 

(30) 

where 0 for a given crack problem is a function of the Dundurs parameters only. Equation 
(30) provides a criterion to quantify the strengthening associated with the bimaterial 
interface. Those bimaterial systems that are characterized by 

@(a,)!$ y 0 
i- I.2 

> 1 (31) 

exhibit a higher value of the critical load as compared to the reference homogeneous system. 
Note that for a homogeneous system the left hand side of (30) is identically 1. 

3.3. Finite crack terminating at the interface and corresponding k dominance 
As an application, consider a crack of length 21 terminating at a bimaterial interface 

and subjected to constant remove tensile stresses, 6, and cr2 such that 

1-E 
rJ, = --CT* = Ca, 

1+L7 (32) 

as shown in Fig. 5a. The stresses defined by (32) produce a uniform state of stress in the 
untracked half-planes and correspond to a constant far-field displacement. 
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In order to determine the conditions under which the SSY model for the crack tip 
plastic effects is appropriate, it is first necessary to estimate the extent of the k-dominance 
for the elastic problem, 6 = 0. The region of k-dominance, r,_ is defined as the zone in 
front of the actual crack tip (Fig. 5a) in which the elastic stress field, oC2’(& is approximated 
by its leading singular term (k-solution) given by 

to within a given relative error, e 

(33) 

(34) 

The loci of the non-dimensional stress intensity factor 

(35) 

in the entire a-/I plane, as calculated in Romeo and Ballarini (1994), are shown in Fig. 6. 
The values of h were found by means of a singular integral formulation of the elastic crack 
problem, which was also used to compute the full elastic stress field, oC2’({). As expected, 
r,,e depends strongly on the elastic mismatch between the two bonded half-planes. Plots of 
the non-dimensional size of the k-dominated zone, rkJl, vs CI for e = 5%, lo%, 15% and 
20% are presented in Fig. 7 for bimaterial systems characterized by a = 4fi. It is observed 
that a healthy k-dominance exists when the crack is in the stiffer material. The k-dominated 
region reaches in fact a peak for a bimaterial mismatch corresponding to CI z - 0.7 where 
it is as large as l/4 of the crack length for e = 10% and almost 1.2 of the crack length for 
e = 20%. For homogeneous SySteKIS rk,(> is considerably lower than its peak value (about 
L/l3 for e = 10% and l/6 for e = 20%). When the crack is in the elastically softer material, 
rb,r diminishes dramatically, and for CI > 0.5 it almost vanishes. 

Figure 7 can be used to determine upper bound values p2/l, for which the GD SSY 
model is applicable to the finite length crack problem shown in Fig. 5b. Since the SSY 
model requires that the zone of plastic deformation, 6, be completely contained within the 
k-dominated region, p2/& is determined by setting 6 = r,_. in (28). The results are presented 
in Fig. 8. For a given p2 and CI = 4/I, this plot provides the shortest crack length for which 
the SSY analysis is expected to hold. For negative CI values the model applies not only to 
“brittle” cracks (small p2/1 values) but also to relatively “ductile” ones (large pZ/l values). 
For positive c( values the SSY model applies only to increasingly longer cracks, and virtually 
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Fig. 6. Loci of constant h in the r-B plane. 
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does not apply for IY. > 0.5, due to the lack of a sufficiently large k-dominated region. An 
accurate evaluation of the region where the crack tip stresses predicted by the cohesive 
crack model are approximated by (33) is given in the next section. 

For admissible pz/l values, eqns (26), (29) and (30) can be used to derive the critical 
far-field stress intensity factor, the non-dimensional critical far-field tension, ~,,/a,,, and 
the CS, Jop”” ratio respectively. The loci of constant @(a, /I), which appears in (30), are 
shown in Fig. 9. Plots of a,,/o, and (~,‘/crjlO~ as functions of the pJl are shown in the boxed 
inserts of Figs 10 and 11 for various values of c( = 48. An interesting result is that under 
SSY conditions, the critical far-field stress, CJ,~, is a weak function for a broad range of c( 
values. This suggests that the parameters go and pz have more control on crack initiation 
than the strength of the elastic stress singularity at the interface, I.. For instance, at 
pz/l = 0.05 the (T,JI$“” values for cx = 4/1 = -0.7-0.7 (E;/E’, = 0.18-5.7) are in the range 
1 i0.2. For larger values of pz/l the characteristic c(-curves tend to spread; however at 
p2/l = 0.2, a,,/CT:‘:” values still fall in the range 1 +0.25 for R = 48 = -0.4-0.4 (C/E; 
= 0.43-2.3). 

As expected, for the limiting case of no plastic deformation the linear elastic solution 
is recovered. As shown in the insert of Fig. 11, for p2/l-t0 the G,~/cJ~ ratio tends to 0 for 
pz -C p,(cc < 0) and CC for p2 > ,u,(cx > 0), as predicted by LEFM. 
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4. EXTENSION OF THE DUGDALE MODEL TO BIMATERIAL SYSTEMS UNDER LSY 
CONDITIONS 

4.1. LSYmodel 
The validity of the GD model introduced in the previous section is limited to SSY 

conditions ; a different approach must therefore be developed for the case of large crack tip 
deformation. However, (8) and (9) cannot be directly generalized to the problem of Fig. 
5b since universal solutions for the stress intensity factor and crack opening displacement 
at the interface are not available. For this reason, it is necessary to rely on the direct solution 
of the integral equations governing the finite length cohesive crack problem, which can be 
formulated in terms of the unknown dislocation densities 

where [uy’(ir)] is the crack opening displacement. 
The problem shown in Fig. 5b, with a”’ and a(*) related by eqn (32), can be analyzed 

by means of the superposition scheme shown in Fig. SC and 5d. The loading condition in 
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Fig. 11. Normalized critical remove stress, IT,,./cT~ as functions of pZ/l. 

Fig. 5c corresponds to a uniform state of stress in the two half-planes, whereas for the case 
of Fig. 5d the system of singular integral equations can be written symbolically as 

s 21 

E; b"'(<)K, jdc+Ez h (2) (<)K,;d< = - 47~9’) (i = 1,2) 
0 

where K, (i,j, = 1,2) are Cauchy type kernels, a”’ = c, and cr@) = ~~-0~). The first two 
eqns (37) represent the traction boundary conditions along the crack surfaces, while the 
third enforces single valued displacements. An additional condition for the dislocation 
densities at the interface is necessary to insure the correct asymptotic behaviour ; the details 
are given in the Appendix. Note that in (37) the quantity 6 is unknown, while the value of 
the regular part of b’*‘( - 6), which is proportional to the stress intensity factor at the tip of 
the virtual crack extension, is zero, according to the Dugdale-Barenblatt model. 

The solution of the singular integral eqns (37) can be readily obtained with a standard 
Gauss-Jacobi quadrature scheme. This numerical method is appropriate for the case here 
considered of relatively large plastic deformation ahead of the interface, for which no 
numerical instability is encountered. On the other hand, due to the nature of the generalized 
kernels, K,,, the numerical integration method becomes inaccurate for small S/l, and is 
therefore unsuitable for SSY conditions. Therefore the SSY model and the direct integration 
method are complementary. The threshold value of 6// resulting in numerical instability 
mainly depends on the number of integration points used in the quadrature scheme, even 
though other factors, such as the level of bimaterial mismatch, may be significant ; the 400- 
point integration employed in this study was found to break down for S/I < IO-‘. Note that 
for the semi-infinite crack model given in the previous section the numerical solution scheme 
used to compute the non-dimensional quantities fk, Q,,.fn,, and q6<, is always well behaved. 

4.2. SSY-LSY transition and accuracy of the singular elastic solution 
The transition from SSY to LSY conditions resulting from gradually increasing the 

magnitude of the applied load is shown in terms of the stress ahead of the crack in Figs 13- 



Model for cracks terminating at a bimaterial interface 

0.45 

0.4 

0.35 

0.3 

2 0.25 

0.2 

0.15 

0.1 

0.05 

0 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Fig. 12. Non-dimensional length of the cohesive zone, S,jl. as functions of pz/l. 

1321 

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 

Distance from interface, r/l Distance from interface, r/l 

1.2 

0.8 
0 

20.6 
D 

0.4 

0.2 0.2 ~- 
I 

0 
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 

Distance from interface, r/l Distance from interface, r/l 

Fig. 13. Crack tip stress fields for LY = 40 = -0.5. 

15 for three different bimaterial systems, c( = 48 = - l/2, 0 and l/2. The stress according 
to (33), that is the singular term of the elastic solution, is represented in bold, whereas the 
stress profiles corresponding to the SSY and LSY solutions are represented by the dashed 
line and the solid line respectively. The boundaries of the k-dominated region for the elastic 
problem associated with e = 10% are marked by the vertical dashed lines. The shaded areas 
highlight the region in which the k-solution and the cohesive crack solution match within 
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a 10% error ; note that for this comparison the appropriate cohesive zone model (SSY or 
LSY) was chosen for each figure. 

(1) x = 4p = -l/2 
As a first example, consider a bimaterial system with Dundurs parameters 

c( = 4p = - l/2 for which Y~,,~~~ /l-0.46. Figure 13 shows the stress profiles in front of the 
crack tip for a,/@, = 0.05, 0. I, 0.2 and 0.5. It is observed that, compared to the full non- 
linear solution, the k-solution provides acceptable stress values in a region that gradually 
contracts as the critical applied load increases. In fact, for the lowest stress level, 
G,/(T,, = 0.05, the singular term of the asymptotic solution is sufficiently accurate in a large 
region in front of the crack tip, between the values r/l - 0.0043 (just ahead of the plastic 
zone, S/l = 0.0037) and r/l - 0.45. This region slightly contracts as the loading undergoes a 
twofold and a fourfold increase (r/l = 0.024 to 0.43 for a,/~, = 0.1, r/l = 0.088 to 0.37 for 
~,/a, = 0.2) and eventually, for very high applied stresses, it vanishes, as for the case of 
Fig. 13d relative to cr,Jr~,~ = 0.5. 

Bimaterial systems characterized by the same elastic mismatch but for different pr 
reach the state of incipient crack propagation under different magnitudes of the remove 
stress, depending on the specific value of pz/l. The four remove stress levels in Figs 13a-d 
represent the critical crack tip stress fields for bimaterial systems with pz/l = 0.01, 0.024, 
0.083 and 0.37, respectively. Note that for the case of Fig. 13b, the SSY and LSY models 
predictions are very close. For pJ/ = 0.083, Fig. 13c, the SSY solution starts losing accuracy 
even though it still provides reasonable stress values, while for p2/1 = 0.37 it must be 
replaced by the LSY solution. On the other hand, for pz/l = 0.01 the LSY solution does 
not provide correct 6 values ; in this case the SSY solution is appropriate. 

(2) cc=4fl= l/2 
The region of k-dominance, as well as the region of acceptability of the stress predicted 

by (33), is dramatically reduced for the conjugated bimaterial stress, obtained by switching 
the two bonded materials (CZ = 4p = 0.5). The crack tip stress field for this a-p combination 
is shown in Fig. 14 for the four loading levels CJ,/C,~ = 0.016. 0.02, 0.03, 0.05. From any 
practical standpoint, it is concluded that for this system, as for most bimaterial combinations 
with (c( = 4/? > 0.4) there is virtually no k-dominance and that (33) does not provide useful 
information even for very low remote loading levels. 
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Fig. 14. Crack tip stress fields for c( = 4p = 0.5. 
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(3) CY. = 4p = 0 
Figure 15 shows the results for a homogeneous medium, for which rk,, ,,%/l N 0.15. Note 

that for 0, < 0.050, eqn (33) provides accurate stress values in a region that extends from 
r/l = 0.003 1 (just ahead of the virtual crack tip) to r/l = 0.15. For higher loads, this region 
rapidly contracts and disappears, as shown in Fig. 15d for U, -0.21~~. The four stress 
levels, 0,/o,, = 0.02, 0.05, 0.1, 0.2, correspond to the critical load peak for incipient crack 
propagation of systems with &I= 0.0013, 0.008, 0.03 1 and 0.126 respectively. Figure 15a 
and 15d again show the transition between SSY conditions and LSY conditions. 

4.3. Critical stress and cohesive zone length 
The critical value of the remote stress cr,, cl0 normalized with respect to gu and the 

critical stress for the homogeneous system, aym, for the problem of Fig. 5b is shown in Figs 
10 and 11 as functions of p2/1 for various values of CI = 4fl. The non-dimensional critical 
length of the cohesive zone, SC/l, is shown in Fig. 12. It is observed that the SSY solutions, 
shown in the inserts, exhibit a smooth transition to the LSY solutions obtained by inte- 
grating (37). 

For LSY conditions, both o,J6, and c,Jc$“” are weak functions of pZ/l for a wide 
range of CC = 4/I values. Moreover, as already observed for the case of SSY, ~,Jc$“” is 
insensitive to the level of bimaterial mismatch even for LSY. For most metallic composites, 
characterized by LX < 0.6, the critical remote stress, g,(, is in fact bounded within f 50% of 
the corresponding reference critical stress, G:?. For a higher level of mismatch (for instance 
aluminium composites and plastics composites, which are characterized by c1 > 0.6) 
a,,./o:m may reach considerably high values or values close to zero, depending on the 
relative stiffness of the bonded materials. 

5. CONCLUSIONS 

A propagation criterion for cracks terminating at a bimaterial interface has been 
derived by modeling the fracture process zone ahead of the interface with a cohesive closing 
pressure. Both the cases of LSY and SSY conditions have been considered. In particular, 
the SSY propagation criterion is based on the introduction of the bimaterial fracture 
toughness, k,., which has been expressed in terms of the parameters that control the elastic 
mismatch and inelastic deformation. For a crack of length 21 terminating at a bimaterial 
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interface, it’s been shown that under SSY conditions, the ratio of the critical remote stress 
to the critical stress for the homogeneous system, B,~/cJ~ ‘Orn, is sensitive to variations of the 
inelastic parameter pr/l, where p2 is proportional to the SSY critical cohesive crack length ; 
for large crack tip deformation this dependence tends to disappear. For relatively small 
PzlL GIC/~?m IS insensitive to the level of material mismatch. For most bimaterial systems 
with CI = 4/I, the stress ratio G,J@” has been predicted to be in the 1 f0.5 range. During 
the solution of the integral equations it was discovered that the stress intensity factor has a 
relatively small region of dominance for the case where the crack is in the more compliant 
material. 
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APPENDIX 

44 E; 
A,=-=- 

7L(l+K,) 4Z 
(i= 1.2) (Al) 

(.43) 

Al. Semi-in$nite crack extending through a bimaferial interfaee 
The problem of a semi-infinite crack extending through a bimaterial interface is governed by the equations 

s 

_ 

s 

” 
AI b’“(S)K,,dS+A, b'*'(QK2,dl = u(I) (i = 1,2) (A4) 

0 -‘i 

lim b”‘(~)/b’*‘( - 5) = F(cc, b. p) 
5-w 

(A5) 

where 
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F(a B p) = (l+~)B+(a-B)(l-8)(-1+4p(--2~+(l-p’)~0~(ptrr) 3 3 
(1 +a)(- I +2&2/$l() 
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(Ah) 

and p is the power of the stress singularity at the interface, which satisfies the characteristic equation 

(1-/Y)(l+cos’/or)+2[2a~-1-(2x~-/I~)COS/o7]+ 

4~(2-fl)[(a-P)‘(1 -p(,‘-x/?+/l(a-B)cosptn] = 0. (A7) 

The loci of p in the r-/J plane are presented in Fig. 2b. 
The unknown dislocation density functions have the form 

where 6”’ and 8(*’ are regular functions, M’, is defined in A 1.1 and A 1.2 as a transition function which depends on 
the applied loading, and 

+E;&-- lfcc [1-2/W-l] 
4 sin (27~) 1 _/iz 

A I. 1. Semi-infinite crack subjected to remoce ioadiq. k 
For this case 0”’ = 0 and W,(T) is taken as 

(AlO) 

By extracting the dominant term of the crack tip singularity. the non-dimensional ratio of the local stress intensity 
factor. Kk, and far-field stress intensity factor. k, is given by 

The crack opening displacement beyond the bimaterial interface is given by 

- [p(t)] = b”‘(<)d< = $ k6’ ‘H(t/fi ;r, /T) (A13) 
n I 

where His a non-dimensional function. This last equation provides the value of the crack opening displacement 
at the interface 

where Qk(z, /I) 3 H(0 ;a, /J) 

A I .2. Semi-inznite crack subjected to unijorm cohesive pressure 
For this case (Y”’ = 0, u”) = o,, and w,(c) E 0. k disappears as a parameter, and is incorporated in the 

dislocation density functions. Again, the local stress intensity factor can be derived by extracting the dominant 
term of the crack tip singularity as 

The crack opening displacement at the interface is given by 

A2. Finite crack subjected to unifbrm cohesive pressure 
The integral equation formulation for the problem of Fig. 5d is given by (A4) with the upper limit IX replaced 

by 21. At the right hand side, o(I) = 0, and &) = a,-a,/C. For this case the dislocation densities have the form 
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(A17) 

where 6”’ and 6”’ are regular functions. Equation (A5) is unchanged, while the far-tield condition (AlO) is replaced 
bY 

which enforces single valued displacements. 


