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ABSTRACT 

THIS PAPER PRESENTS a model which can be used to predict the two-dimensional nonlinear behavior of 
bridged cracks in orthotropic strips. The results obtained using a singular integral equation formulation 
which incorporates the anisotropy rigorously show that, although the effects of anisotropy are significant. 
the nondimensional quantities employed by Cox and Marshall (Acfu Metail. 39, 579-589, 1991) can 
generate nearly universal results (R-curves, for example) for different levels of relative anisotropy. The role 
of composite constituent properties in the behavior of bridged cracks is clarified in this paper. 

1. INTRODUCTION 

THE BRIDGING of cracks by fibers is an important toughening mechanism in fiber 
reinforced brittle matrix composites (BMC). S imilar characteristics are shared by 
ductile matrix composites (DMC) with weak interfaces upon cyclic loading (EVANS, 

1991). This fact has led to a significant amount of research in the area of stress analysis 
of bridged cracks. The results calculated with the models presented by MARSHALL et 

al. (1985), MARSHALL and Cox (1987), Cox and MARSHALL (1991), Cox (1991) and 
BALLARINI and MUJ~ (1993) have provided a good understanding of the fracture 
mechanics of bridged cracks in$&e specimens. In all these models, excluding the 
orthotropic finite element model used by Ballarini and Muju, the anisotropy which is 
inherent in fiber reinforced composites was incorporated in an approximate way which 
may or tnay not provide an accurate account of its effects. 

The integral equation model for a bridged crack in a finite specimen developed by 
Cox and co-workers can be summarized as follows. A fictitious line load P per unit 
width of crack front was placed on one crack surFdce at position x measured normal 
to the crack front. Using Castigliano’s theorem the crack opening displacement 
(COD) u(x) was determined as U(X) = lim P_,O a W/cYP, where W is the elastic strain 
energy of the system per unit width of crack front. This energy was then written in 
terms of the crack length (;I, strain energy release rate 3 and stress intensity factor K, 
i.e. W = fz S’da’ = jg K2/E’ da’. In this equation E’ is given, for an orthotropic 
material with a plane stress crack parallel to the principal material axis ox,-axis, 

as l/E’ = dl, 1122!2f&/11 I +(21,2+lbh)/211 ,} ‘:2, where the I,, are compliance 
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coefficients which enter the inverse Hooke’s law, as will be explained in the next 
section. COX and Marshall made the following approximation. They expressed the 
stress intensity factor K in terms of the Green’s function G(.u. l/, N,) for the isor~c~l?ic~ 
material. where II‘ is a relevant characteristic length which introduces finite geometry. 
The representation K = 2 ftc G(.u. u’. w)(T(.Y) d.y-, where a(.~) is the traction on the crack 
surface, leads to the integral equation u(s) = (4/E’) Jy du’{ f;I G(x’, u’, II’)~(.Y) d-u' j x 
G(.u. (I’, w), which they solved numerically. This integral equation can be more directly 
derived using the weight fLin~tion technique (BUECKNER, 1970). Thus, the Green’s 
function G(_x, (I’. II*) can also be referred to as the Bueckner weight function. This 
model, by neglecting the dependency of the Green’s function on the compliance 
coeffZents. leads to the result that the COD is inversely proportional to E’. Morcovcr. 
norn~~lliz~ltion of this integral equation leads to the so-called bridging length scale (I,,. 
that is associated with a fully bridged crack in an infinitely extended material. A crack 
length (1 CC N,, is considered short in the sense that its bridging Lone is still developing. 
For these short fully bridged cracks the forces in the fibers are relatively small. since 
the crack opening disp]a~~Knei~ts are small. Hence the fibers do not shield the crack 
tip significantly, and the stress required to propagate the matrix crack is inversely 
proportional to the square root of the crack length, as for the monolithic matrix. For 
ii >> u,, the crack is termed long. because the bridging zone has fully developed and a 
steady state is reached for matrix cracking (the stress required to propagate the matrix 
crack is independent of crack length). 

The authors have recently learned of the significant contribution to the under- 
standing of the role of material orthotropy in fracture specimens for composites made 
by St.;<> cl ul. (1991). They found a spatial resealing that could be used to reduce 
boundary value problems (BVP) involving orthotropic materials to equivalent prob- 
lems in materials with cubic symmetry. Under certain conditions the cubic-symmetric 
materials may be approxi~~~~ted by isotropic materials. Therefore the resealing tcch- 
nique can be used in conjunction with existing isotropic material solutions to construct 
approximate orthotropic material solutions. These spatial resealing relations. which 
will be discussed subsequently, were used by RAO rt CI/. (1992) in their analysis of 
commonly used fracture specimens to investigate the interplay between tnateriaf 
anisotropy and finite geometry. In their finite element method analysis the role of 
orthotropy in fiber bridging phenomena was not considered. 

The work presented in this paper was initiated to investigate the effects of relative 
anisotropy on the behavior of ~~~~i~~~~~ uucks in long strips so that the ~issurnptit?Il 
used in the aforementioned analyses of bridged cracks could be assessed. Morcovcr, 
an cflicient and highly accurate analytical model based on dislocation theory was 
sought that will facilitate the analysis of experiments conducted on beam spccimcns. 
The results obtained using a singular integral equation forlnLll~~tion which in~orp~~r~~t~s 
rigorously the effects oforthotropy, show that the weight function G(.r’, LI’, 11.) depends 
not only on E' but also other stiffness coefficients. However, the numerical calculations 
presented in this paper indicate that for the unbridged cracks in different orthotropic 
strips the CODS are indeed ~~pproxim~tely inversely proportional to their values of 
E’. A wide range of computations for the nonlinear behavior of bridged cracks also 
supports the adoption of simple approximate weight functions which are derived for 
the corresponding isotropic specimen. These results generalize the conclusions made 
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by Bao et cd. to fiber-bridged cracks in long strips. Evidently, this conclusion will 

facilitate the analysis of R-curves for bridged cracks in orthotropic beam specimens. 

2. F~RMULATWN 

Consider an infinite orthotropic plate whose principal material axes coincide with 
the coordinate axes. A unit dislocation with Burgers vector h, = 1 is embedded at 
P(O,J~,). The stresses in the plate are (MILNE-THOMSON, 1960) 

where 

Z, = .u+i,,(~-~o), zz = .r+3_,(~-~~o), (2) 

I?, and ,I2 are two roots of the characteristic equation 

1,,1.4+(21,2+lhh)i”?+/22 = 0 (3) 

with Im (i,) 3 Im (A?) > 0, /1, = -3.,, iv4 = -i2. The I,, are the anisotropic com- 
pliance coefficients which enter the inverse Hooke’s law, 

(2;;) = [;I zOI J~~~~~. (4) 

In (I), the constants A, and Al are determined by 

p,A, +pzAz-cJ,A, -qrA2 = 2/ni, 

6,A, +d2Az-i’,A, -.;?A2 = 0. 
(5) 

where 

pI = I,2+lll~~+i(122+f,Zj~~)/~.,r 

p? = 1,2+111~i+i(/72+/,2~~)/~~2, 

S, = l,,+1,,3ri+i(/22+I,zjl:)/3r,, 

q2 = I,z+I,,lII+i(122+I,2jl:)/EIZ, 

6, = (1 +ii_,)/2, ~3~ = (1 +iR2)/2, 

y, = (1 -iA,)/2, y? = (1 -ii2)/2. (6) 

The first equation in (5) represents the necessary displacement jump condition, while 

the second represents zero net force on the dislocation. 
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FIG. I. Conliguration of the cracked strip 

When the dislocation is located in an orthotropic strip (Fig. I), an additional 
solution must be superposed to satisfy the traction free boundary conditions on the 
surfaces J’ = 0 and ~1 = I?. The stresses from the additional solution, denoted by 
superscript (2), must satisfy 

o~f’(S.0) = -a;;‘(.Y,O), o(,f’(.u, 0) = -a’,(.‘(.U,O), 

CJ;f’(.Y, 12) = - 0+j.‘(.U, A), crt”(x, 12) = -ai;‘(.U, h). (7) 

This part of the solution can be determined using Fourier transformation techniques. 
Its displacement components are expressed as 

v(&y) cos <.u ds, 

with 

U(<,J) = $J B,(l) exp (s,<.r), 
,KI 

V(<,J) = i: cl, B,(S) exp (s,ty), 
i-1 

where 

(1, = [/j+: -</M-ms,l/P?. 
and the S, (,j = 1,2,. . (4) are the roots of the equation 

In (10) and (II) 

(8) 

(9) 

(10) 

(11) 
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where the h, and G, 2 are the stiffness coefficients of the material : 

(13) 

Using condition (7), the coefficients B,(t) (j = 1,2,. . . ,4) can be determined by 
solving the set of linear equations given in the Appendix. 

Along the y-axis the resultant stress o.VI in the strip is 

a,,.(O,y) = fi +WY~YO) (14) 

with 

K = -Re(A,)_, +Azi2)/2. (15) 

The stiffness parameter K plays a crucial role in defining the level of anisotropy of a 
given material system. After comparing it with the relevant quantities E’ and A which 
are adopted by Cox and MARSHALL (1991) and BUDIANSKY and AMAZIGO (1989), 
respectively, it is found that 

where v, is the matrix Poisson’s ratio and E, , the longitudinal composite Young’s 
modulus. Because the crack is now perpendicular to the x-axis, in (16) 

(17) 

This quantity was first introduced by SIH and LIEBOWITZ (1968). 
With (17) the relative in-plane orthotropy is specified through three ratios : lz2/1, ,, 

1, Jl, , and lhh/ll , . Suo (1990a, b) introduced two parameters 

(18) 

as the only two parameters needed to quantify the level of orthotropy. ;1 = Q = 1 
for isotropic solids and )_ = 1 for solids with cubic symmetry. Using LEKHNITSKII’S 
formalism (198 1) he showed that in simply-connected sheets with traction prescribed 
on the boundary, the governing equation for the Airy stress function can be written 
as 
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This suggests that the stresses depend on material properties only through p and ;,. 
Furthermore, by resealing the r-axis by 4 = A ’ ‘.Y the i dependence can be extracted 
explicitly, so that in the transformed plane the stresses depend only on p, i.e. 

Obviously, solution to BVP for the class of materials obeying p = 1 (A # I) can be 
constructed from the solution to the corresponding BVP for the isotropic material. It 
can be shown that 

for a crack in they-direction. The parameters A and p will be considered in subsequent 
calculations. 

Consider a cracked strip shown in Fig. I and introduce parameters t and 7 such 
that 4’ = h+ut/2 and ,)I,, = h+~r/2. The discrete dislocation is replaced with a dis- 
tribution of dislocations 

B,(5) = - ,I: ~7ru(o+.7)--11(0 ,z,J. (23) 

This representation enables one to write the following singular integral equation for 
the traction boundary condition along the crack, with expression (14) being the 
appropriate kernel : 

where K(r, z) is the regular part of the kernel 

K(t,z) = 2; W7+at/2,h+ur/2), 

(23) 

(24) 

and the loading term is given by 

Here aA is the stress caused by the applied load in the crack-free strip and j>(t) is 
the closing stress of the bridging fibers. In general, p(t) = p(u(t)) where u(t) is the 
crack opening displacement at t. For internal cracks, the crack closure condition 

B,(z) dr = 0 (26) 
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should be supplemented to (23). The square root stress singularity at crack tips is 

modeled by expressing B,(z) as 

B,(T) = 4(&l --tZ (27) 

for internal cracks and 

BY(T) = 4wJl --z 

for edge cracks, where 4(z) is a regular function. 

(28) 

It is important to note that unlike the isotropic case, where the kernel of the singular 
integral equation is independent of the elastic constants, the kernel which appears in 
(23) depends on the ratios EZ2/E, ,, G12/E,, and vIZ for the plane stress case and 

&JE, ,, .WE,,, GIJEI ,, v12. r13 and v2) for the plane deformation case. Never- 

theless, from a viewpoint of the orthotropy resealing, in the transformed &plane the 
stress field for a unit dislocation h, = I embedded in a long strip is determined by 

governing equation (20). The corresponding boundary conditions are 

(29) 

at _r = 0 and y = h. On the dislocation, the zero net force condition and the dis- 
placement jump condition are (BAO et al., 1992) 

and 

(30) 

(31) 

respectively, where the symbol [ IL denotes the increment received on passing once 
round a closed curve enclosing the dislocation and x is the auxiliary function defined 

by 

(32) 

Therefore, the kernel of (23), which is equal to (l/ti)(a’U/@‘), depends on elastic 
constants only through the nondimensional parameters i and p. Moreover, because 
in Fig. 1 there is no characteristic length in the x-direction the kernel actually is a 
function of p only. 

The above integral equations are solved numerically. By approximating 4(t) as 
piecewise quadratic polynomials, (23) and (26) are reduced to : 

,g, MdQs,) = - ,: [oA(tJ -_p(dt,))l (33) 

where r, is the integral point, ti is the collocation point and the matrix element M,, 
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consists of the weights given in GERAWULIS (1982). For edge cracks i = I, 2,. , tz, 
and for internal cracks i = 1,2,. , tz ~ I with the t? th equation 

coming from (26). In the following discussion, we only consider edge-cracked and 
center-cracked strips. 

Equation (33) represents a set of nonlinear equations for the unknown dislocation 
distribution. A more efficient iteration procedure is obtained by deriving a compliance 
matrix, as outlined in BALLARINI (1986). 

From (33) and (34), 

4(zi) = - I, i N,,~[cr,(t,)-p(lc(T,))] (,i = 1.2,. ..t?) (35) 
/\ 1 

where N = M ‘T with M ’ denoting the inverse of matrix M, and T is an t? x tt 
matrix which transforms the coordinates from the integral points to the collocation 
points. Following BALLARINI (1986), by substituting (35) into (28) and integrating 
B,(T) from 5, to 1. (35) is cast in the form : 

where the matrix C is known as the compliance matrix of the crack which relates the 
stress on the crack face with the crack opening displacement. Thus. a system of 
nonlinear algebraic equations for crack opening displacement II(?,) is obtained. 

The total stress intensity factor which includes the fiber shielding effects is 

while the so-called shielding stress intensity factor is given by 

K, = tpr,,jnu i N,,,p(u(r,)). (38) 
h=I 

Here fl = 1 for edge cracks and ~1 = I ,‘J2 for center cracks, respectively. It is obvious 

that K, = K,,- KF where K,A is the stress intensity factor due to applied load only. 

3. RESULTS ANU DIS~LJSSION 

To check the numerical procedure, calculations were first performed for the case 
of zero fiber bridging stress. The computed stress intensity factors and crack mouth 
opening displacement (CMOD) for uniform tension and bending, for various values 
of relative orthotropy and crack length, are practically the same as those reported by 
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TABLE 1. Normalized stress intensitjl ,factor us orthotropy 

resealing parameters A and p for zero fiber bridged edge cracks 

149 

A 0th 0 I 2 3 4 5 

0.1 1.241 1.190 1.167 1.154 1.146 1.140 
0.2 0.3 1.725 1.661 1.639 I.627 1.620 1.615 

0.5 2.964 2.833 2.183 2.755 2.738 2.726 

0.1 1.247 1.190 1.167 1.154 1.146 1.140 
0.6 0.3 1.725 1.661 1.639 1.621 1.620 1.615 

0.5 2.964 2.833 2.783 2.155 2.738 2.726 

0.1 1.247 1.190 1.167 I.154 1.146 1.140 
1.0 0.3 I .I25 1.661 I .639 1.627 1.620 1.615 

0.5 2.964 2.833 2.783 2.755 2.738 2.726 

DELALE and ERDOGAN (1977) and KAYA and ERDOCAN (1980), and are not presented 

here. Selected results for plane stress edge cracks under uniform tension are presented 
in Tables 1 and 2 to highlight the significance of material anisotropy. ~~~ 

Tables 1 and 2 show the normalized stress intensity factor K/a, ,,/%a/2 and nor- 
malized crack mouth opening displacement [~]E’/20,h, respectively, as functions of 
the orthotropy resealing factors i and p. It is observed that for a given crack length, 
both the quantities are independent of i. and are weak functions of p. This is because 
the kernel of (23) is a function of Q only. As a result. the parameter p will slightly 
change the proportionality of [u] to l/E’. Such effects also exist on the relation between 
bridging force and relative anisotropy. 

The normalized COD profile for a plane stress edge crack of length equal to one 

TABLE 2. Normalized CMOD z‘s orthotropl~ resealing parameters 
j_ and p,fbr zero,fiher hri&ed edge cracks 

[U]E’/2~. h 

P 

A a,111 0 I 2 

0.1 
0.2 0.3 

0.5 

0.1 
0.6 0.3 

0.5 

0.1 
I.0 0.3 

0.5 

0.355 
1.575 
5.499 

0.355 
1.575 
5.499 

0.355 
1.575 
5.499 

0.309 0.291 0.280 0.273 0.268 
1.406 1.342 1.308 1.286 I.271 
4.947 4.742 4.633 4.564 4.517 

0.309 0.291 0.280 0.213 0.268 
1.406 1.342 1.308 1.286 I.271 
4.947 4.742 4.633 4.564 4.517 

0.309 0.291 0.280 0.273 0.268 
1.406 1.342 1.308 1.286 1.271 
4.947 4.742 4.633 4.564 4.517 

3 4 5 
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FIG. 2. Normalized COD for zero fiber bridged edge crack with difl’erent relative orthotropy 

half the depth of the beam is plotted in Fig. 2 as a function of relative orthotropy 
which is obtained by keeping the values of El2 = E,?, Cl2 = E12/2( I + ~1, ?), 
I’,? = V, 3 = vzi = 0.3 unchanged while varying the value of E, , only. For the cases 
E,,/E,2 = I, 2, 5 and IO, Ef/Ez2 = I, 1.47, 2.43 and 3.55, i = 1.0.5. 0.2andO.l, and 
p = I, I .63, 2.77 and 4.02, respectively. It is seen that, though the material anisotropy 
has significant influence on the COD, the relation between [u]E’/2~-, h and ~.jrr is 
almost independent of the level of relative orthotropy. The largest discrepancy occurs 
at the crack mouth, but even for E, ,,:Ez2 = IO it is less than 8% compared with the 
isotropic case. 

Results are calculated next for bridging fibers whose strength satisfies a two par- 
ameter Weibull distribution and whose sliding is resisted by a constant fricitonal stress 
r. The closing stress can be approximated as (Cox and MARSHALL, I99 I) 

I)(U) = ,f’XU’ 2 exp (- U’“‘+ ‘I ‘), (39) 

where j’ is the volume fraction of fibers. HZ is the Weibull modulus and U is the 
normalized COD : 

c: = “ill,,, II,, = 
x2& 1 -,f’E,, 

4tEsE,, - 

(40) 

with (s) the average fiber strength, F the gamma function, R the fiber radius. and 
E,,,. E( and E, , the moduli of the matrix, fiber and composite in the fiber direction. 

The effects of anisotropy are demonstrated through the specific example of 
two plane strain orthotropic strips: strip I, nearly isotropic with bulk prop- 
erties E,, = 279.6 GPa, Ezz = E,, = 253.9 GPa, G,? = 97.66 GPa, and 
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*r - A=3 
--- A=5 
_____ A=7 4’ 

6- 

0 0.5 1 .o 1.5 2.0 

FIG;. 3. Normalized crack mouth opening displacement vs normalized loading parameter for bridged 
Griffith crack. 

v,> = 1’13 = V?j = 0.3, and strip 2, with all properties equal to those of strip 1, except 
E, , = 1398 GPa. Their resealing parameters are I_ = 0.9163 and p = 1.086 for strip 1 
and /z = 0.1963 and p = 3.048 for strip 2. 

For each strip, three different normalized crack lengths were considered : A = 3, 5, 

7 for uniform tension loading where 

A = ala,, a,, = 
rcCR(1 -,f’)E,,,E’ 

16tJ’EfE,, . (41) 

The dimensionless strip width is H = h/ali = 10. 
In each analysis the crack length is held fixed as the loading is increased. By 

controlling the length of the bridged crack, results are obtained which highlight 
the transition from stable to unstable behavior of the crack. The resulting physical 
parameters are presented in Figs 3-8. These include the square root of the normalized 

4 
- A=3 .’ 
--- A=5 
_____ A=7 

FE. 4. Normalized total stress intensity factor vs normalized loading parameter for bridged Griffith crack. 
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1.5 r - A=3 
--- A=5 
____- A=7 

0 0.5 1 .o 1.5 2.0 

‘is, 

FIG. 5. Normalized shielding stress intensity factor vs normalized loading parameter for bridged Griffith 
crack. 

crack mouth opening displacement JU, = Ju( - l)~,,, square roo_t_s of the nor- 

malized total and shielding stress intensity factors JKT/Ko and JK,/K, as functions 
of normalized loading parameter y’S,,, where 

K<, = 2f’CJ2uJ3n, (42) 

S, = O, i,f‘X for uniform tension under stress o‘-/ 
It should be noted that the nondimensional variables used in equations (B-(42) 

were defined by Cox and MARSHALL (1991). They are adopted in the present analysis 
to drive home the point whether this set of nondimensional parameters are sufficient 
to predict the behaviour of bridged cracks in composite materials which possess 

different levels of anisotropy. 

A=7 
10 

8 

&- 
4 

2 

0 0.2 0.4 0.6 0.8 

FIG. 6. Normalized crack mouth opening displacement vs normalized loading parameter for bridged edge 
crack under uniform tension. 
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A=7 

- strip 1 
--- strip 2 

0 0.2 0.4 0.6 0.6 

Js, 

FIG. 7. Normalized total stress intensity factor vs normalized loading parameter for bridged edge crack 
under uniform tension. 

Notice that for a bridged Griffith crack (h = h/2, a/h -+ 0), the effects of free surfaces 
disappear, and the Fourier transform kernel K(t, z) vanishes. Consequently, the com- 
pliance matrix C in (36) is independent of elastic moduli. As illustrated by Figs 3-5, 
where the Weibull modulus m = 1, the relations between U0 and S,, KT/Ko and S, 
and K,/K,, and S,, are universal for all orthotropic strips with common values of A. 

The stability of the bridged cracks can be viewed either through the fi versus 

JY,, JK,IK, versus JPm S, or $$/K,, versus J’% plots. Figure 3 shows that for 
relatively short cracks an increase in load is needed to increase the crack mouth 
opening displacement (CMOD). For long cracks, on the other hand, as the fibers 
start pulling out the CMOD increases even if the load is decreased. In other words, 
the instability is indicated by a discontinuity in the CMOD. 

Consider next the stress intensity factors. Figure 5 shows that for the stable short 

- strip 1 A=7 

3 
--- Strip2 

1 A=3 

0 0.2 0.4 0.6 0.8 

+Z 

FIG. 8. Normalized shielding stress intensity factor vs normalized loading parameter for bridged edge crack 
under uniform tension. 
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cracks, the shielding produced by the fibers varies stably, while for long cracks there 
is a sharp reduction in shielding as the fibers pull out. This sharp reduction corresponds 
to the discontinuous increase in total stress intensity factor in Fig. 4. 

Of interest is how the normalized qLlantities A and H work when the orthotr~)pic 
strips have finite geometry configurations. Figures 6-8 show the curves Jtii, versus 

,/S,,, &/K,, versus JS‘, and K,IK,, versus JS<, for bridged edge cracks with nl = 0 
under uniform tension. From these figures it is seen that even in finite geometries the 
above normalized quantities can still yield nearly universal results, regardless of the 
level of anisotropy. Although they are not presented here, the results for bending 
loading and for center cracked strips showed similar trends. 

The above results suggest that the regular kernei K(t, z) in (23) can be expressed as 

K”(r, T)[I + Y(p. rr/h. h/h)] where K”(t, r) is the regular kernel of the corresponding 
isotropic cracked strip and Y( p, a//z, h//z) is a higher order perturbation term which is 
a function of p, a/h and h/h with Y( I. u/h, h//z) = 0 and Y(p, 0,0.5) = - 1. To obtain 
the detailed form of Y(p, LI/JZ, h/h) further numerical investigation is needed and is not 
discussed in this paper. 

Here it should be emphasized that although in all the above calculations only the 
bulk moduli enter (4) and (13), for real fiber-reinforced composites the bulk moduli 
are related to the constituent properties. There are many procedures published in the 
literature to perform this homogenization process (MURA, 1987). 

From the foregoing analysis it is seen that the length parameter LI,, is a key parameter 
to define all relevant normalized quantities such as the normalized crack length A, 
normalized strip width H, normalized stress intensity factors &/K, and k;/K,,. Then, 
what role is played by the constituent properties in determining the value of cr,,? To 
this end, the parameter a,, is written as 

where 

(1 -.f’fEn,E 
"=-~.E,E,, 1 

(43) 

(44) 

which comprehensively reflects the influence of the constituent stiffness and the fiber 
volume fraction on u,. 

Consider the following composite whose fibers are aligned along the x-axis with 
Es/E,,, = 10, vs = 0.3 and v,,, = 0.35 where Er and E,,, are Young’s moduli of the fiber 
and matrix, respectively, and \*r and v,,, are their Poisson’s ratios. The well-known 

Mori-Tanaka method (Lvo and WENG, 1989) was used to determine the five effective 
elastic constants of the composite strip. Figure 9 shows u, E’/E,,, and E, JE,, as 
functions of ,f for plane strain. Figure 10 plots x versus f for several values of Es/E,,,. 
Figure 11 shows the variation of K. E’jE,,, and E, JE,,, with respect to EJE,,, for 
,f’ = 0.4. It is observed that when the volume fraction is low, c( sharply decreases with 
an increase in ,f; while beyond this range x changes slowly. Besides, c( decreases with 
increasing Es/E,,,. From the above observations it is clear that, since large values of A 
in general correspond to less stable bridged cracks, then for a given length of bridged 
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15 - 

T ~~~, 

----- E,,/E, 

10 -- 

155 

FIG. 9. Nondimensional parameters c(, E’IE,,, and E, ,/E,,, vs fiber volume fraction f for composite with 
El/Em = 10, v, = 0.3 and v,, = 0.35. 

crack increasing the stiffness ratio EC/E,,, or volume fraction f will reduce the stability 
of the bridged crack. However, this can be compensated for by increasing the fiber 
strength C, fiber radius R and decreasing the interfacial frictional friction stress t. 

4. CONCLUDING REMARKS 

A singular integral equation formulation has been presented for the analysis of 
bridged cracks in orthotropic strips. The exact solutions given in this paper show that 
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FIG. 10. Nondimensional parameter x vs fiber volume fraction .f for several composites with 11~ = 0.3 and 
“, = 0.35. 
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FIG. I I. Nondimensional paramctcrs J, E’/E,,, and E, ,:‘E,,, vs E,/E,,, for composite with v, = 0.3. I‘,,, = 0.35 
and f’ = 0.4. 

in terms of the normalized parameters introduced by Cox and MARSHALL (199 I) the 
nonlinear behavior of bridged cracks can be depicted in a nearly universal form for 
materials possessing different levels of anisotropy. The increase of the ratio of stiffness 
Er/E,,, and volume fraction ,f’ in general reduces the stability of the bridged cracks, 
which can be remedied by increasing the fiber strength and fiber radius and decreasing 
the interfacial frictional friction stress. 
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APPENDIX 

In (9), B,(i) is determined by 

where 

(A.11 

(A.2) 


