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Molecular dynamics has been used to simulate the uniaxial compression of single crystal silicon nano-
spheres using the Tersoff potential. The resulting yield behavior is shown to vary with changes in tem-
perature, sphere size, and crystallographic orientation with respect to the loading direction. Only
compression along the [1 0 0] crystallographic direction resulted in the formation of the B-Sn phase. A
temperature dependent hardening response is observed in all orientations independent of the f-Sn phase
transformation. Dislocation activity is detected at elevated temperatures in the largest sphere indicating
a critical temperature and size for nucleation. Consequences of these dislocations to simulating strength
properties at the nanoscale are discussed.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Much work has been done examining material behaviors at the
nano-scale due to their differences from bulk properties. In partic-
ular, spherical silicon nanoparticles were shown by Gerberich et al.
[1] to be harder than bulk silicon under compression. The work
proposed that the hardening was the result of dislocation loops
forming in the spheres at the contact points. The experimental evi-
dence supported this by showing displacement excursions occur-
ring in the load vs. displacement curves indicative of dislocation
formation. That paper also contains the first attempt to simulate
the behavior of the spheres in compression using molecular
dynamics and the MEAM potential. However, only amorphous
damage was observed at the contact points most likely due to
the low simulated temperature, the high displacement rate, and
perhaps the small sphere size of 12 nm in diameter.

In 2007, Valentini et al. [2] performed simulations of Si sphere
compression along the [1 0 0] crystalline direction using the Ters-
off potential at 0 K. The center of the spheres was shown to under-
go a transformation from the diamond cubic (DC) crystal structure
to the B-Sn structure. Measurements of the applied load and result-
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ing contact stresses during the compression showed extensive
hardening of the spheres, which was attributed to the phase trans-
formation. Repeated loading allowed the plastic behavior to accu-
mulate resulting in the majority of the sphere transforming to
B-Sn. Annealing of the deformed spheres at an elevated tempera-
ture allowed for a reverse phase change to occur and the spheres
returned close to their original shape.

For the present work, the Tersoff potential was used to further
study the deformation behavior of silicon nanospheres. The Tersoff
potential was originally developed to match the thermodynamic
properties of silicon in all of its known solid phases [3]. As such,
it gives the correct cohesive energies for the different phases along
with the conditions that favor each phase making it ideal for study-
ing the relationship between phase transformations and hardening
behavior.

By examining the effects of varying the compression orientation
and simulation temperature, a wide range of yielding behaviors
was observed. In particular, the formation of the p-Sn phase was
shown to be highly dependent on the crystallographic orientation
of the compressive loading. Large hardness values were also ob-
served, but were shown to be independent of the amount of -Sn
present within the spheres. An alternative explanation for these
high hardness values observed during simulations using the Ters-
off potential is proposed. The simulation results are compared to
the previous experimental results providing a useful direction for
further work.
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2. Computational procedure

All work was done using the LAMMPS molecular dynamics sim-
ulation code [4] with a timestep of 0.001 ps. Three sphere sizes
were used with 5, 10 and 20 nm diameters (3265, 26,167, and
2,09,121 atoms respectively). Using a Nose-Hoover thermostat
[5], the 5 nm sphere was analyzed at 0, 300 and 600 K, while the
10 nm and 20 nm spheres were studied at 0 and 300 K. All spheres
were compressed along the [1 0 0] crystal direction. During sepa-
rate simulations the 5 and 10 nm spheres were also compressed
along [110] and [1 1 1] directions. The particular version of the
Tersoff potential used here is the third of the originally published
parameters [6], which were chosen to give the best fit to the elastic
properties of the diamond cubic phase. For these reasons, this
potential is widely used for MD simulations of mechanically
deformed silicon.

Initial sphere creation was done by generating all of the perfect
bulk crystal lattice positions within a geometrically defined sphere.
Following this, the sphere was annealed at 400 K for 1000 ps to re-
lax the surface atoms before quenching down to 0 K.

Two planar indentation potentials were used to compress the
spheres, one placed above the sphere (related to the direction of
the y-axis) and the other equidistant below. This potential applies
a force onto atoms according to their coordinates as given by

Fy(y) = ck(y - y;)° (1)

where F,, is the force in the y direction that the indenter applies onto
each atom, k is a constant (taken to be 10.0 eV/A), y is the y-coordi-
nate for that atom, and y; is the y-coordinate of the indenter. To in-
sure that both indenters apply a repulsive force when they contact
the sphere, for the upper indenter c= -1 when y > y; and c=0
when y <y;, whereas for the lower indenter c=1 when y < y; and
c¢=0 when y > y;. The total applied load of the indenter, P, can be
easily calculated by summing all of the forces it applies onto the
atoms of the sphere: P = >"F,.

In comparison to using a rigid plane of atoms for the indenter,
the planar potential is computationally more efficient by reducing
the total number of atoms in the system and allows for the applied
load and the contacted atoms to be easily identified. However, the
indenter potential lacks the slight attraction just before contact
and the atomic roughness associated with a plane of atoms. This
roughness and attraction are both small in scale relative to the to-
tal displacements and the resulting loads that their effects are neg-
ligible except at the initial contact/detachment of the indenters
with the sphere.

Both indenters utilized inward velocities of 0.003125 A/
ps = 0.3125 m/s, resulting in a total displacement rate that is dou-
ble this value. The indenters were allowed to compress the spheres
until an engineering compressive strain (total displacement/diam-
eter) between 0.4 and 0.6 before the spheres were unloaded at the
same rate. During compression, the linear and rotational momenta
of the total sphere were subtracted from each atom to prevent the
sphere from rotating and drifting before and during compression.

Phase identification was aided using a parameter related to the
angles between the bonds of all of the nearest neighbors. This
“angular” parameter was taken to be

1
Ny

:
1M

N
> (cos Oy — cos Opc)’ 2)
k=j+1

where N is the number of nearest neighbors that atom i has, 0y is
the angle between atoms i, j, and k, Opc is the bond angle for bulk
diamond cubic, and N, is the number of bond angles that have been
summed over. In essence, the difference in the cosine of the bond
angle with respect to the perfect diamond cubic structure is
squared, and then averaged for all bond pairs around a given atom.

For the results presented here, a cutoff of 3 A was used to determine
the nearest neighbors included in this expression. This angular
parameter is dependent on each atom'’s coordination number, but
is advantageous as it can distinguish between multiple phases
and defects that have the same coordination number. The parame-
ter’s formulation is related to the three-body term of the Stillinger-
Weber potential [7].

Dislocation activity was monitored primarily with the slip vec-
tor parameter [8], given by

N

S= -y 3 (8- R) 3)

J#i

where N is the total number of nearest neighbors to atom i, N; is the
number of neighbors that are on an adjacent slip plane to atomi (e.g.,
N =1 if slip occurs on an {11 1} diamond cubic lattice), ﬁ?j is the
vector from atom i to its neighbor j at an initial unstrained reference
configuration, and & j is the corresponding vector at the current con-
figuration. By finding the relative displacement of the nearest neigh-
bor atoms j with respect to a given atom i, it can be determined if a
plane neighboring atom i has slipped and in what direction. Dividing
by —N; scales the vector’s magnitude so that it will be equal to the
Burgers vector of the dislocation that caused the slip.

3. Results and discussion

The load vs. displacement curves obtained from the 10 nm
diameter spheres are shown in Fig. 1. Similar compression behav-
ior is observed in the 5 and 20 nm diameter spheres, which are not
shown. For a given orientation, the load at small displacements is
nearly identical at the different measuring temperatures corre-
sponding to the spheres behaving elastically. Following this, the
higher temperature runs deviate from the 0 K curve (e.g., for the
10 nm spheres the 300 K load is less than the 0 K load for displace-
ments greater than 1-2 nm.) This indicates that yielding has oc-
curred in the higher temperature runs resulting in a substantial
change in the loading rate. For the 0 K curves, the [1 0 0] compres-
sion shows a similar drop in slope indicating yielding followed by a
sharp peak in the applied load at high displacements, whereas the
[110]and[11 1] compressions continue to increase fairly steadily
throughout the loading with the occasional drop indicating some
form of yielding. These two behaviors result in the maximum load
at 0K being approximately 2 times greater than the maximum
loads at the higher temperatures for all three orientations.

The radius of the contact area, a, between the spheres and the
plates was calculated by identifying the atoms (N,) that were with-
in 0.1 A from each of the indenters. By identifying the center of
mass (Xcu. and Zc ) for that collection of atoms, the contact radius
was found with a formula given by Vergeles et al. [9]

2 2 Na X 2 7 2 4
a =N, ; {(Xl —Xem)” +(Zi —Zem.) ] (4)

This measured contact radius is shown in Fig. 2a for the 20 nm
sphere and Fig. 2b for the 10 nm spheres at 0 K. Along with mea-
sured contact radius squared are the predicted values for both
the elastic Hertzian model [10] and the Geometric intersection be-
tween a sphere and a plane that are calculated from the displace-
ment, 4, and sphere radius, R

a = %Ré Hertz; (5)
52
a® =Ro— vy Geometric. (6)

These two models are examined here as they are heavily used
with the experimental results in estimating the contact radius, as
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Fig. 1. The load vs. displacement curves for all 10 nm simulations.
temperature simulations.
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Fig. 2. The squared contact radius vs. displacement. (a) At low displacements for the 20 nm diameter spheres (0 K shown), the contact area jumps due to the surface steps
resulting in discontinuous behavior, but still loosely follows the Hertz model. (b) As seen with the 10 nm diameter data at 0 K, at moderate displacements, the curves fall
directly between the elastic and the Geometric models. At high displacements, the contact area begins to increase at a higher rate deviating from both models. The high
displacement deviation is more profound for the 300 K compressions (not shown here). (¢) The contact radius squared for all of the data shown with the new model fit from

Eq. (7).

direct measurements of this value are difficult to obtain with par-
ticles of this size. As the formulation in Eq. (4) allows for a direct
measurement of the contact areas during these simulations, it of-
fers an opportunity to study the accuracy of the two models.

Initially, at low loads the contact radius shows a discrete nature
as its value stays constant for a number of steps before jumping to
a larger value. See Fig. 2a. This appears to be nothing but a geomet-
rical artifact of the sphere design and indenter potential used. The
top and bottom-most atomic planes of the spheres consist of only a
handful of atoms resulting in the initial contact area being rela-
tively small. On continued loading, the outermost atomic layers
are pushed far enough into the sphere that the indenters then
come into contact with the next inward planes of atoms. When this
occurs, the contact area suddenly increases. The effects of this
jump in contact area decreases with increasing sphere size and
displacement.

Fig. 2a shows that for the 20 nm diameter sphere at small dis-
placements, the contact radius behavior still contains the discon-
tinuous jumps, but is smooth enough to show a general trend
following the Hertzian model. This is the expected behavior as only
elastic behavior is seen within the sphere during this period. At

moderate displacements (~1-3.5nm for the 10 nm spheres in
Fig. 2b), the measured values for all three orientations lie between
the Hertzian and Geometric values, with the change in contact ra-
dius with displacement closer to the Geometric model. While nei-
ther model gives a “best fit” to the measured contact radius, they
can be seen to offer an upper and lower bound during this displace-
ment range. The largest displacements (Fig. 2b) reveal that the
spheres no longer follow either model as the contact area begins
to increase at a greater rate than either model predicts due to nei-
ther model accounting for expansion of the sphere in the uncom-
pressed directions.

From these comparisons, it is possible to develop a more accu-
rate, but yet still simple model for the contact area behavior. One
method would be to linearly mix the two theoretical models. This
results in an expression such as

2 _ (D — (3)(1%8112 _ - Ri(sz _ i
=" D ~2%%3p 3D @)
where D is a fitting constant with units of distance. This equation is

a third-order polynomial fit containing only one unknown that gi-
ven the appropriate choice of D fits the previously mentioned

éat, 1

+
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behavior of the measured contact area for all displacements
observed here.

Conceptually, at first glance Eq. (7) appears to increase the rel-
ative amount of plastic to elastic behavior as the displacement in-
creases. However, as neither of the base models accounts for the
sphere’s incompressibility at large displacements, this conceptual
argument is faulty. This new model gives an empirical fit to the
data even though it is derived from the two mathematical models.

As seen in Fig. 2c, there is considerable variation in the values
measured for the contact area under the different conditions stud-
ied here. However, comparing Eq. (7) to the measured values re-
veals that a D value of 0.8 R offers a decent fit to nearly all of the
data. The only clear exceptions are the [1 1 1] compressions at ele-
vated temperatures, which favor a D value closer to 0.45 R. As the
constant D is fitted to the entire strain range, this variation due to
the loading direction could depend on either changes in the plastic
behavior or anisotropy in the elastic constants and crystal struc-
ture. With either value of D, the general trend given by Eq. (7) bet-
ter predicts the measured contact area than either the Hertzian or
Geometric models for the full displacement range between
0<o<R

The averaged contact stress (P/ma®) was also calculated for all of
the samples and is shown in Fig. 3 for the 10 nm spheres plotted vs.
compressive strain of the sphere (6/2R). The general behavior of the
contact stress on increasing strain was that one large peak or a ser-
ies of smaller peaks would initially appear at low strains corre-
sponding to the jumps in the radius of the contact area
mentioned above. After these peaks, the stress values would drop
before beginning to linearly increase again indicating that the
material is still behaving elastically. Between strains of 0.1 and
0.2, the behaviors of the 0 K and higher temperature simulations
are seen to deviate from each other. The contact stress in the 0 K
runs plateaus and remains close to the maximum value reached,
while the 300 and 600 K runs have stresses that reach a maximum
value before steadily decreasing with additional strain indicating a
softening behavior.

The hardness values reported from the experimental results [1]
were taken to be the maximum load for a given compression
divided by the calculated contact area. This definition is identical
to that of the averaged contact stress here allowing the two values
to be compared directly. Experimentally, for a single load-unload,
the hardness for bulk silicon is around 12 GPa while the reported
hardness values for spheres varying between 19 and 46 nm in

10nm diameter [100]

10nm diameter [110]
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radius and unknown orientations were 10-40 GPa [1]. Repeated
loading showed an increase in hardness suggesting that the
spheres become harder as the load increases, or as the plastic dam-
age increases.

The maximum stress values measured from these simulations
do not vary by much between the temperatures: 16-24 GPa for
the 0 K compressions vs. 14-22 GPa for the 300 and 600 K com-
pressions. However, the contact stress values at the maximum
strain are quite different, with 14-20 GPa at 0 K compared to 7-
9 GPa at 300 K. This matches with the difference in the load vs. dis-
placement curves in Fig. 1, where the maximum load at 0K is
approximately twice what it is at 300 K.

The maximum contact stress values from the simulations are a
decent match to the experimental hardness values, with values
ranging from the bulk silicon value to roughly 2 times the bulk va-
lue. A discrepancy is seen, however, in that from the experiments,
the hardness increases slightly as the load increases, whereas the
300K simulations show a marked decrease in the contact stress
upon increased displacement. This indicates that the simulations
presented here using the Tersoff potential at ambient temperatures fail
to give the appropriate hardening response.

The stiffness was also calculated for the 10 nm diameter
spheres at the maximum displacement by evaluating the initial
slope of the unloading curves from the stress vs. strain plots. At
0K, the values for unloading modulus for the [100], [11 0] and
[11 1] directions respectively were 154, 236, and 252 GPa, while
at 300 K were 103, 117 and 144 GPa. These show that the simula-
tions performed at 0 K were 50%-100% stiffer at their maximum
loadings than the similar runs at 300 K.

3.1. Phase transformations

The B-Sn phase is the first of the high pressure phases that silicon
is known to form during hydrostatic compression [11,12]. The BCT5
phase is not as well known or studied, and was first proposed by
Boyer et al. in 1991 [13]. Initially identified using a Stillinger-We-
ber potential and first principle calculations, BCT5 is a body-cen-
tered-tetragonal structure where every atom has a coordination
number of 5. The presence of BCT5 has been observed in indenta-
tion simulations using a Tersoff potential [14-18], but has not yet
been observed experimentally. Believed to be a metastable state,
the likelihood of BCT5 actually forming is still unknown. The unit
cells of the BCT5 and B-Sn silicon structures are shown in Fig. 4.

10nm diameter [111]
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Fig. 3. The contact stress vs. engineering strain curves of the 10 nm diameter simulations.
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(b)

Fig. 4. Unit cells of (a) BCT5 and (b) p-Sn showing their atomic arrangements.

The lattice and elastic constants for DC, BCT5 and B-Sn were cal-
culated near 0 K and are included in Tables 1-3 respectively. In re-
gards to BCT5, the energy and structure is seen to be slightly closer
to the first principle calculations with the Tersoff potential than
with the Stillinger-Weber potential. Using the Tersoff potential
also produces a very good agreement for the structure of p-Sn. In
addition, it has been previously shown that the Tersoff potential
correctly predicts the pressure and resulting volume changes asso-
ciated with the transition from DC to B-Sn [19].

A study of the ideal positioning of the atoms in different silicon
phases allowed for a determination of appropriate values of the
angular parameter for each phase. From this, diamond cubic,
BCT5 and B-Sn have angular values of 0, 0.12 and 0.18 respectively.

Table 1
The lattice parameter and elastic constants for the diamond cubic structure of silicon.

Tersoff [19] Tersoff (this work) Experimental [19]
a(A) 5.432 5.432 5.429
E (eV/atom) —4.6297 —4.63 —4.63
C11 (GPa) 1425 139.7 167
C12 (GPa) 75.4 74.1 65
C44 (GPa) 69 69.1 81
Table 2
Lattice constants and elastic constants for the BCT5 phase.
Plane wave Stillinger-Weber Tersoff
pseudopotential [13] [13] (this work)
a(A) 3.32 3.3544 3.298
c(A) 5.97 6.5148 6.468
E (eV/atom) -4.41 —4.24 -4.419
C11 (GPa) 144 415 162
C12 (GPa) 124 243 108
C13 (GPa) 45 139 76
C33 (GPa) 160 208 205
C44 (GPa) 35 40 49
C66 (GPa) 63 101 143

Table 3
The lattice constants and elastic constants for the p-Sn phase of silicon.

Tersoff [19] Tersoff (this work) Experimental [11]
a(A) 4.905 4.903 4.686
c(A) 2.57 2.568 2585
E (eV/atom) -4.3027 -43023
C11 (GPa) 297
C12 (GPa) 60
C13 (GPa) 39
€33 (GPa) 378
C44 (GPa) 36
C66 (GPa) 29

It should be noted that this value is but a measure of how far the
bonds around a given atom are from the perfect diamond cubic
structure and elastic strain will affect the value. However, as
phases will have particular bond orientations their ideal structures
will have specific angular values. An atom that has an angular va-
lue similar to the ideal value for a given structure and the correct
coordination number can then be said to have the bonding charac-
teristic of that phase. While the angular value might not be unique
to a given phase, i.e. diamond cubic and hexagonal diamond both
read as 0, it is a useful asset in identifying regions that can be
examined closer for phase confirmation or in obtaining an estimate
of the amount of a given phase that is present.

When compressed along the [1 0 0] crystalline orientation at
0K, the 5 and 10 nm spheres first behaved elastically, then yielded
by disordering at the high stress regions near the contact areas.
Cross sections of the 10 nm sphere are seen in Fig. 5a and b. Further
compression resulted in the disordered region growing outward
and surrounding the core. Small clusters of BCT5 were identified
within the disordered regions. When the displacement was high
enough that the disordered regions created by the top and bottom
plates reached each other, the core region began transforming to -
Sn. The B-Sn core continued to grow up to unloading and remained
after unloading. The final structure was seen to consist of three lay-
ers: a B-Sn core surrounded by a disordered region, which in turn
was surrounded by elastically deformed DC.

Fig. 5c-e shows that for [1 0 0] compression at 300K in the
10 nm sphere, a similar yielding behavior resulted with disordered
regions leading to the formation of B-Sn in the core of the sphere at
large displacements. However, there was a noticeable increase in
the scatter of the atomic behavior throughout both the diamond
cubic and B-Sn regions due to thermal fluctuations. Increasing
the sphere size to 20 nm in diameter still resulted in regions of
B-Sn, but the morphology differed by showing it initially forming
close to one of the contact areas as opposed to the sphere’s center.

Upon unloading, all of the [1 0 0] compressed spheres at 300 K
exhibited extensive relaxation as the B-Sn began to revert to a four
coordination structure, visible in Fig. 5e. To better characterize the
relaxed region, a radial distribution function, RDF, was calculated
for the atoms for the last recorded timestep of the 10 nm sphere
(the same timestep shown in Fig. 5e). RDF was used as it has been
shown to allow for a distinction between DC and the other relaxed
silicon phases commonly referred to as Si-IIl (bc8) and Si-XII (18)
[17]. All three of these phases have a coordination number of 4
(using a cutoff distance of 3 A) but can be distinguished from each
other by having different next nearest neighbor distances which
would show up as distinct peaks within the RDF. Fig. 6 shows
the RDF for only the atoms with a coordination number of 4 reveal-
ing 2 broad peaks that correspond only to DC (2.35, and 3.84 A) and
no distinct peaks characteristic of either Si-IIl or Si-XII (3.2-3.45 A).
The broadness of the peaks suggests that at this timestep, the re-
gion is disordered/deformed classifying it as an amorphous phase
that is close to the DC structure.

Interestingly, almost no B-Sn was seen resulting from compres-
sion in either the [1 1 0] or the [1 1 1] directions. Cross sections of
these compressions in the 10 nm spheres are given in Fig. 7. Be-
sides the lack of B-Sn, the most notable aspect of these results is
the vast difference in behaviors at the two temperatures. For the
[11 0] loading, the 0 K runs (Fig. 7a and b) showed large amounts
of elastic strain prior to the amorphous yielding compared to the
300K runs (Fig. 7c and d). In fact, the elastic strain for the [11 0]
orientation at 0 K was high enough that the effective coordination
number increased to 6 at the high stress regions prior to yield
(Fig. 7a). However, the greatest difference in behavior due to
changing temperatures is seen in the [11 1] compression tests.
At 0 K, the high loads applied while the sphere is still elastic allows
for the resulting yield to occur throughout the entire sphere as
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Fig. 5. Cross sectional images using the angular parameter to highlight the phase changes seen during [1 0 0] compression of 10 nm diameter spheres. (a) 0 K compression at
3.3 nm displacement resulting in green (mid grey) regions of BCT5. (b) 0K after unloading showing a yellow (light grey) p-Sn core. (c) 300 K compression at 2.9 nm
displacement. (d) 300 K compression at the maximum displacement (e) 300 K after unloading revealing that a large amount of the p-Sn had relaxed back to a 4 coordinated
phase colored in blue (dark grey). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Radial Distribution, g(r)
N

2 2I.5 3 3I.5 4
Interatomic distance, r (A)

Fig. 6. Radial distribution function for the 4 coordinate relaxed phase of the final
timestep of the 10 nm [1 0 0] compressed sphere at 300 K. Only peaks for DC at 2.35
and 3.84 A are seen and no distinguishing peaks are seen between 3.2 and 3.45 A
that would indicate one of the other known relaxed silicon phases. The nearest
neighbor cutoff value used to isolate the DC phase was 3 A resulting in the sudden
step at this value.

shown in Fig. 7e. At 300 K, yield occurs almost immediately upon
contact and remains localized near the indenter-sphere interface
leaving the center nearly undeformed shown in Fig. 7f.

The coordination number and the angular parameter values
were also used to quantify the amounts of the different phases
present. This was accomplished by counting the number of atoms
with the correct coordination number for a particular phase along
with an angular value within a range about the ideal value. For in-
stance, B-Sn was taken to be atoms that had 6 nearest neighbors
and an angular value between 0.17 and 0.25. Although this analysis
produces a specific value, it should be considered as a rough esti-
mate as it does not take long range order or elastic strain into
account.

Results in Fig. 8 shows that for [1 0 0] compression, the B-Sn
quickly increases in concentration at the higher strains and ap-
proaches nearly 10% at the maximum strain. During the initial
unloading, the elastic strain is released from the sphere resulting
in the measured B-Sn value increasing for a short period as strained
B-Sn relaxes to its ideal configuration. Following this, the B-Sn in
the 0 K simulation levels out whereas the 300 K simulation shows
a marked decrease due to the reverse phase transformation. The
values calculated for the [11 0] and [1 1 1] orientations show only
1 and 2% respectively for the atoms reaching the criteria for p-Sn, con-
firming the results of the visual analysis.

The concentrations of DC and BCT5, along with B-Sn as a func-
tion of strain are shown in Fig. 9 for the [100] compressed
10 nm sphere at 300 K. Prior to loading, only 90% of the atoms in
the sphere register as DC. The 10% classified as other at this point
is due to the surface atoms being excluded for not having 4 nearest
neighbors. At a strain of 0.2, the fraction of DC is seen to begin to
rapidly decrease, while a small amount of BCT5 begins to form.
The first B-Sn forms soon after this, but appreciable amounts do
not appear until roughly a strain of 0.3. The BCT5 concentration de-
creases slightly when B-Sn forms. After a strain of 0.4, f-Sn contin-
ues to increase steadily while both BCT5 and DC decrease. At the
maximum strain, 45% of the material is not classified as being
one of the three phases with B-Sn occupying roughly 9%, BCT5
roughly 13%, and DC roughly 33%. Upon unloading, an initial in-
crease in all of the values is seen as the sphere elastically relaxes
allowing more atoms to be counted as a particular phase. Further
unloading shows the amount of DC increase and the amount of
B-Sn decrease due to the reverse phase transformation.

Together, the results suggest a different explanation for the
hardening behavior seen by Valentini et al. [2] for Si sphere com-
pression modeled with the Tersoff potential. For all orientations,
the 0 K compressions show that very large contact stresses are
reached and the applied load is steadily increasing all the way up
to unloading. In contrast, the 300 K compressions initially behave
elastically, but then clearly yield with little hardening afterwards.
Furthermore, the B-Sn transformation was seen during the [1 0 0]
compression at both 0K and 300 K, but was not present during
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Fig. 7. Cross section images of 10 nm diameter spheres colored with angular values. (a) 2.5 nm displacement of [1 1 0] compressed sphere at 0 K resulting in regions of high
elastic strain that appear different with the angular parameter due to the measured coordination increasing to 6. (b) Post compression of the [1 1 0] 0 K sphere with no
distinguishable regions of a particular phase. (¢) 1.7 nm displacement of [1 1 0] compressed sphere at 300 K showing that yield occurs much earlier than at 0 K preventing the
extensive elastic behavior seen in (a). (d) Post compression of the [1 1 0] 300 K sphere also with no distinguishable regions of a particular phase. (e) Post compression of the
[111] 0K sphere showing disordered material throughout. (f) Post compression of the [1 1 1] 300 K sphere revealing disorder only at the surface near the contact areas.

compression for the other orientations. This suggests that the high
contact stresses and hardening behavior are independent of the
B-Sn phase transformation. Instead, it appears that these high con-
tact stress values are due to the Tersoff potential having a high
resistance to plastic yielding for 0 K simulations. Since yield stress
generally scales with modulus, this would be consistent with the
observations in Fig. 3 and of the unloading slopes at 0K being
greater than those at 300K for all three orientations even when
little B-Sn is present.

Even though the B-Sn transformation is widely accepted as
occurring experimentally during indentation of flat silicon surfaces
in different orientations [20-23], no direct evidence of the trans-
formation, either as elbows in the unloading curve or the presence
of other phases in a diffraction pattern, has been observed for small
compressed silicon nanoparticles [1,24-26]. This was for spheres
less than about 100 nm in diameter. The simulations presented
here show that -Sn will only form within the nanospheres when
compressed along the [1 0 0] crystallographic direction. From the
experimental results, the particles’ orientations are unknown with
respect to the compression direction and assumed to be random

due to the fabrication technique [1,25]. Therefore, it follows that
many of the nanoparticles will not undergo the B-Sn transforma-
tion as their orientation is not favorable. Conversely, if the orienta-
tion is the only decisive factor, it is possible that some of the
particles would show evidence of the transformation.

As one representation of the B-Sn structure is as a tetrahedral
compression of the DC structure along one of the <1 00> direc-
tions, it makes sense that [1 0 0] compressions result in the forma-
tion of this phase. However, for the other orientations, the behavior
is different within the compressed spheres than it is for indented
bulk silicon suggesting that the spherical geometry is less favorable
to the formation of B-Sn. The most notable difference between the
two geometries is that the sphere is much less constrained in the
directions normal to the applied load than an indented flat surface
is. This allows for the sphere to easily expand in these directions, as
seen with the contact area analysis. Because of this the hydrostatic
pressure within the spheres will be less for a given loading than
bulk indentation potentially making the B-Sn transformation less
likely. As this is a qualitative assessment, future work would be
necessary to determine exactly how these stress states differ.
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Fig. 8. Fraction of B-Sn plotted vs. strain for the 10 nm diameter [1 0 0] compressed
spheres.
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Fig. 9. The progression of the estimated fractions of the different phases as seen
within the 10 nm diameter [1 0 0] compressed sphere at 300 K. The solid vertical
line marks the maximum displacement, after which the sphere is unloaded.

It should also be noted that there are considerable differences
between the simulation and experimental conditions. The largest
simulations presented here are half the size of the smallest parti-
cles that have been experimentally compressed. In addition, the
rate of compression is quite different: Nowak et al. reported an
experimental displacement rate of 10 nm s~ ! resulting in compres-
sion runs around 10s [26], whereas the displacement rate of
6.25 x 108 nm s~ for the simulations resulted in total compres-
sion runs lasting around 10-20 ns. Either of these factors could
greatly influence the mechanical response and make different
yielding mechanisms more favorable.

3.2. Dislocations

In addition to the phase transformations, dislocation yielding
was also observed in three of the simulations: 5 nm 600K [1 0 0]
and [1 1 0] compressions and 20 nm 300 K [1 0 0] compression.

Distinguishing dislocations within the 5 nm 600 K simulations
was difficult due to the small number of atoms and the high ther-
mal scatter. However, hints of dislocation motion were observed
by plotting the direction of the slip vectors of the atoms. By
restricting the plot to only showing atoms with slip vector magni-
tudes around what is expected for perfect dislocations, small pla-

nar regions were seen to contain parallel slip vectors. As the slip
vector indicates the region where a dislocation with a particular
Burgers vector equal to the slip vector has passed through, finding
a planar region where all of the atoms have nearly identical slip
vectors indicates that a dislocation, however short lived, had ex-
isted there. Both of the [1 0 0] and [1 1 0] compressions contained
one of these dislocation hints, with the [1 0 0] shown in Fig. 10.
Since no dislocations were observed in the 5 and 10 nm spheres
at 0K and 300K, a clear temperature dependence on dislocation
nucleation is evident at this size scale.

For the 20 nm diameter 300 K simulation, a total of nine dislo-
cations were observed prior to unloading. The first of these disloca-
tions is shown in Fig. 11. The presence of these dislocations
indicates that there is a cutoff size for dislocation formation be-
tween 10 and 20 nm diameters at 300 K. Close analysis of these
dislocations revealed them to be perfect 1/2<1 1 0> shuffle set dis-
locations. They were seen to form at high strains when there was
already substantial regions that had deformed to an intermediate
state between the DC and B-Sn phases. Slipped planes indicating
the motion of these dislocations appeared at the edge of the disor-
dered regions going to the surface of the sphere.

The fact that dislocations can be observed in these MD simula-
tions of silicon nanospheres allows for a comparison with the hard-
ening theory proposed in the experimental papers. In short, this
theory states that the high hardness values are the result of the
buildup of dislocations confined within the small particle dimen-
sions. Due to the presence of an oxide layer on the surface of the
sphere, any dislocations that form within the sphere are delayed
from terminating on a free surface leading to dislocation pileups.
These pileups potentially result in a back stress opposing the ap-
plied load resulting in high hardness values. As the particle size de-
creases, the volume that the dislocations are confined within also
decreases allowing for higher stresses to be reached [26]. It is also
believed that this behavior will have a lower limit when the particle
passes a critical size that is necessary for dislocations to form [1].

Only the 20 nm diameter sphere compressed at 300 K showed
multiple dislocations, confirming that there is a critical size for dis-
location nucleation. However, no accompanying hardening behav-
ior occurred as the dislocations all formed individually and quickly
disappeared upon reaching the surface as no oxide barrier was
present. There was never more than one dislocation present within
the sphere at any timestep thus no dislocation interactions or
pileups.

Fig. 10. Image of the slip vector direction for atoms with slip magnitudes close to a
perfect dislocation within the [1 0 0] compressed 5 nm diameter sphere at 600 K.
The circle indicates a planar region where the slip vectors are oriented nearly
parallel to each other indicating the presence of a dislocation.
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slip (A)

Fig. 11. Atoms colored with the slip vector magnitude for [1 0 0] compression of a 20 nm diameter sphere at 300 K. The blue (dark) regions of low slip (2-3 A) has a volume
type shape representing phase change-type deformation resulting in regions of BCT5 and B-Sn. The green (light) region shows a plane that has slipped due to a full 1/
2<11 0>{1-11} dislocation. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Witnessing dislocation hardening and interactions using molec-
ular dynamics would require that multiple dislocations be present
within the sphere at the same time. To obtain this, dislocations
must form more readily and/or must be impeded from reaching
and disappearing at the sphere’s surface. The former could be pos-
sible by changing the atomic potential used to one that is more
prone to dislocation behavior, while the latter can be accomplished
by introducing a surface barrier representative of the oxide layer.
Also, increasing the sphere size would accomplish both of these
conditions as only the largest sphere showed dislocation behavior
and further increases in size would mean that any dislocations that
formed would have to travel further to reach the surface. Incorpo-
rating an oxide layer and increasing the sphere size would make
the simulations more comparable to the experimental results,
but doing either would require an increase in the complexity and
computational time. Changing the potential could result in an
overall simulated behavior that is less realistic than what is pre-
sented here, but if it is capable of showing multiple concurrent dis-
locations in sizes comparable to those here, it would offer a simple
and efficient way of studying the dislocation interactions. Further
work is currently being done investigating all of these possibilities.

4. Conclusions

The yielding properties observed within Tersoff modeled silicon
nanospheres showed a high dependence on changes in tempera-
ture, orientation and sphere size. For three temperatures and three
orientations, B-Sn is only seen to appear in substantial amounts
during [1 0 0] compression. Only the simulations near 0 K show
high contact stress values indicating that the chosen atomic poten-
tial fails to accurately model the experimental hardening at ambi-
ent temperatures. As the B-Sn transformation observed in these
simulations forms only for specific compression orientations and
is independent of the hardness behavior seen, it is highly unlikely
for the B-Sn to play a role in the experimentally observed harden-
ing. The observed large contact stress values at 0 K are thus attrib-

uted to a high yielding point, resulting in elastic behavior at large
strains and a stiffening behavior. Dislocation behavior is also iden-
tified and indicates that a critical size and temperature must be ex-
ceeded for dislocations to nucleate. Although no hardening results
from the dislocations in these simulations, it is proposed that the
larger dimensions and the presence of an oxide on the experimen-
tally observed particles would result in a greater number of dislo-
cations to be present within the particle potentially allowing for
dislocation hardening.
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