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Highlights

• A stabilized mixed FE formula-
tion is presented for double porosi-
ty/permeability model.

• A systematic error analysis is per-
formed on the resulting stabilized
weak formulation.

• The convergence behavior is illus-
trated using numerical convergence
analysis.

• Accuracy of numerical solutions is
assessed using mathematical prop-
erties of the model.

• Steady-state and transient behav-
iors are illustrated using represen-
tative examples.

• Physical instabilities such as vis-
cous fingering are captured under
the framework.

Graphical Abstract

Abstract

The flow of incompressible fluids through porous media plays a crucial role in many technological applications such as enhanced
oil recovery and geological carbon-dioxide sequestration. The flow within numerous natural and synthetic porous materials
that contain multiple scales of pores cannot be adequately described by the classical Darcy equations. It is for this reason that
mathematical models for fluid flow in media with multiple scales of pores have been proposed in the literature. However, these
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models are analytically intractable for realistic problems. In this paper, a stabilized mixed four-field finite element formulation is
presented to study the flow of an incompressible fluid in porous media exhibiting double porosity/permeability. The stabilization
terms and the stabilization parameters are derived in a mathematically consistent manner, and the computationally convenient
equal-order interpolation of all the field variables is shown to be stable. A systematic error analysis is performed on the resulting
stabilized weak formulation. Representative problems, patch tests and numerical convergence analyses are performed to illustrate
the performance and convergence behavior of the proposed mixed formulation in the discrete setting. The accuracy of numerical
solutions is assessed using the mathematical properties satisfied by the solutions of this double porosity/permeability model.
Moreover, it is shown that the proposed framework can perform well under transient conditions and that it can capture well-known
instabilities such as viscous fingering.
© 2018 Elsevier B.V. All rights reserved.
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1. Introduction

Fluid flow in porous media has been extensively studied, both theoretically and computationally, because of
its broad applications in different branches of science and engineering. The most popular model of flow of an
incompressible fluid in rigid porous media is the Darcy model, which is based on the assumption that the domain
contains only one pore-network. Due to the restricting assumptions in the classical Darcy model [1–3], its application
has been limited and several modifications and alternative models have been proposed that predict more realistic flow
behaviors. In particular, due to the complexity of the pore-structure in many geo-materials such as shale, many studies
have focused on developing mathematical models and computational frameworks that consider the presence of two
(or more) dominant pore-networks exhibiting different hydro-mechanical properties. Some representative studies on
multiple pore-networks include [4–6].

The mathematical models pertaining to the flow in porous media with multiple pore-networks are complex and
involve numerous field variables. It is not always possible to derive analytical solutions to these mathematical models,
and one has to resort to numerical solutions for realistic problems. Different approaches are available for developing
formulations for multi-field mathematical models. Mixed finite element formulations, which offer the flexibility
of using different approximations for different field variables, are particularly attractive for multi-field problems.
Accurate numerical solutions have been obtained using mixed finite element for various porous media models; for
example, see [2,5,7–9]. Moreover, many of the mathematical models pertaining to the multiple pore-networks, and
in particular, the mathematical model considered in this paper, cannot be written in terms of a single-field variable.
Although mixed methods are considered a powerful tool, especially for modeling flow problems in porous media,
they suffer from some restrictions. To obtain stable and convergent solutions, a mixed formulation should satisfy the
Ladyzhenskaya–Babuš ka–Brezzi (LBB) stability condition [10,11]. Numerical instability of the solution and probable
spurious oscillations in the profile of unknown variables are the main consequences of the violation of this condition.
Such drawbacks are observed in many of the existing formulations and highlight the need for developing more robust
computational frameworks. In order to resolve numerical instabilities resulting from violation of the LBB condition,
computational approaches are divided broadly into two classes [12]: those that satisfy the LBB condition and those
that circumvent it.

In the former approach, elements are developed by placing restrictions on the interpolation spaces so as to satisfy
the LBB condition under the classical mixed (Galerkin) formulation. Such elements are collectively referred to as
the H(div) elements [11,13]. Two popular works of this type are Raviart–Thomas (RT) spaces [14], and Brezzi–
Douglas–Marini (BDM) spaces [15,16]. The class of stabilized methods, which falls under the latter approach, is an
attractive way of circumventing the LBB condition. In a stabilized formulation, stabilization terms are augmented to
the classical mixed formulation to avoid a saddle-point problem as well as mathematical instabilities [17]. Various
stabilized formulations have been published for flow problems (e.g., see [18–21]) and for flow problems in porous
media, in particular (e.g., see [5,7–9]).

Herein, we develop a stabilized mixed formulation of the double porosity/permeability model proposed by
Nakshatrala et al. [22]. The stabilization terms and the stabilization parameter are derived in a mathematically
consistent manner by appealing to the variational multiscale formalism [23]. It is noteworthy that the nodal-based
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equal-order interpolation for all the field variables is stable under the proposed stabilized mixed formulation. Such a
feature for interpolations is particularly desirable for studies in porous media for two reasons. The obvious reason
is that the equal-order interpolation is computationally the most convenient. The second reason is that, in many
porous media applications, the flow and transport equations are coupled (Section 9 of this paper deals with such
a coupled problem). But many existing formulations (including the stabilized formulations) produce non-physical
negative solutions for the transport equations (i.e., a negative value for concentration fields), especially when the
diffusion/dispersion is anisotropic [24]. The known robust non-negative finite element based formulations for the
transport equations are nodal-based (e.g., refer to [24,25]). By choosing nodal-based unknowns even for the flow
problem, one can avoid projections from nodal to non-nodal interpolation spaces and vice-versa.

To determine whether a computational framework is robust, systematic convergence and error analyses are
required. To this end, we first perform a mathematically rigorous stability analysis of the proposed stabilized mixed
formulation. Since the proposed formulation is residual-based, consistency is shown quite easily. We also present patch
tests and representative numerical results to show that the obtained numerical results are stable. After establishing
the stability of the proposed formulation, we perform a thorough accuracy assessment of the approximations by
estimating the error associated with the numerical solutions. Specifically, we perform both a priori and a posteriori
error estimations, which individually serve different purposes [26]. A posteriori error estimations monitor different
forms of the error in the numerical solution [27,28] and using the computed approximate solution, they provide an
estimate of the form ∥uuh∥ ≤ ϵ, where u is the solution, uh is the finite element solution for a mesh with mesh size
h, ∥ · ∥ denotes an appropriate norm, and ϵ is a constant (real) number. On the other hand, a priori error estimations
provide us with the order of convergence of a given finite element method [29].

Shabouei and Nakshatrala [30] have shown that porous media models such as those defined by the Darcy and
Darcy–Brinkman equations satisfy certain mechanics-based properties, and they have utilized these properties to
construct solution verification procedures. Recently, Nakshatrala et al. [22] have shown that the double porosity/per-
meability model also enjoys properties with strong mechanics underpinning. These include the minimum dissipation
theorem and a reciprocal relation. Herein, we utilize these mechanics-based properties to construct a posteriori
solution verification procedures to assess the accuracy of numerical solutions obtained under the proposed formulation
for the double porosity/permeability model.

Another type of numerical instability, known as Gibbs phenomenon, can also be observed in the numerical
solutions of problems associated with flow through porous media with disparate properties. In layered porous
domains, conventional continuous finite element methods are not capable of capturing abrupt changes in material
properties and result in overshoots and undershoots in the profiles of numerical solutions along the interface of layers
where there are jump discontinuities. In order to eliminate such erroneous oscillations, one possible approach is
discontinuous Galerkin (DG) methods. DG methods have been successfully employed by Hughes et al. [31] for the
case of Darcy equations. An extension of the proposed framework using discontinuous Galerkin method for double
porosity/permeability model can be obtained using a method similar to the one proposed by Hughes et al. [31].
However, obtaining such an extension and comparison between the performance of continuous and discontinuous
formulations for capturing abrupt changes in material properties are beyond the scope of this paper and will be
addressed in a subsequent one.

A common assumption in models of flow in porous media is that of steady-state conditions. However, many flows
occurring in porous media such as aquifers and oil-bearing strata are transient or unsteady in nature. In this paper,
we extend the proposed stabilized mixed formulation for the double porosity/permeability mathematical model to the
transient case, and we illustrate this extension can accurately capture the transient flow characteristics.

Recently, it has been shown that some stabilized methods (which are primarily designed to suppress numerical
instabilities) when applied to solve problems with physical instabilities, suppress both types of instabilities [32].
Therefore, a good test of the proposed stabilized mixed formulation for a coupled flow and transport problem
involves a problem that exhibits a physical instability similar to the classical Saffman–Taylor instability [33]. Using
numerical simulations we show that the proposed formulation suppresses only the spurious numerical instabilities
while capturing the underlying physical instability.

The rest of this paper is organized as follows. After an outline of the governing equations of the double
porosity/permeability model in Section 2, the corresponding stabilized mixed formulation is presented in Section 3
with a derivation provided in Appendix A. The theoretical convergence analysis for the proposed stabilized mixed
formulation is presented in Section 4, followed by the numerical convergence behavior of the elements presented
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in Section 5 where patch tests in one- and three-dimensional spaces are described. The representative numerical
results are used to showcase the performance of the proposed mixed formulation in Section 6. Section 7 provides the
mechanics-based assessment of the numerical accuracy. The transient analysis and the capability of the computational
framework for modeling coupled problems and capturing well-known physical instabilities in fluid mechanics are
discussed in Sections 8 and 9. Finally, conclusions are drawn in Section 10.

Throughout this paper, repeated indices do not imply summation. The terms classical mixed formulation and
Galerkin formulation are used interchangeably.

2. Governing equations for double porosity/permeability

For convenience to the reader and for future referencing, we document the equations that govern the double
porosity/permeability mathematical model considered in [22]. Let Ω ⊂ Rnd be a bounded domain, where “nd”
denotes the number of spatial dimensions. The boundary of the domain ∂Ω is assumed to be piecewise smooth.
Mathematically, ∂Ω ≡ Ω − Ω , where the superposed bar denotes the set closure [34]. A spatial point is denoted by
x ∈ Ω . The gradient and divergence operators with respect to x are denoted by grad[·] and div[·], respectively. The
unit outward normal to the boundary is denoted by n̂(x).

The porous domain is assumed to consist of two dominant pore-networks, which will be referred to as the macro-
pore and micro-pore networks and are, respectively, denoted by subscripts 1 and 2. These pore-networks are connected
with the possibility of mass exchange between them. The pressure field and the discharge (or Darcy) velocity in the
macro-pore network are, respectively, denoted by p1(x) and u1(x), and the corresponding ones in the micro-pore
network are denoted by p2(x) and u2(x). The governing equations under the double porosity/permeability model take
the following form:

µK−1
1 u1(x) + grad[p1] = γ b(x) in Ω (2.1a)

µK−1
2 u2(x) + grad[p2] = γ b(x) in Ω (2.1b)

div[u1] = +χ (x) in Ω (2.1c)

div[u2] = −χ (x) in Ω (2.1d)

u1(x) · n̂(x) = un1(x) on Γ u
1 (2.1e)

u2(x) · n̂(x) = un2(x) on Γ u
2 (2.1f)

p1(x) = p01(x) on Γ
p

1 (2.1g)

p2(x) = p02(x) on Γ
p

2 (2.1h)

where b(x) is the specific body force. The true density and coefficient of viscosity of the fluid are, respectively,
denoted by γ and µ. Ki (x) denotes the permeability tensor for macro-pore (i = 1) and micro-pore (i = 2) networks.
Γ u

i denotes the part of the boundary on which the normal component of the velocity is prescribed in the macro-pore
(i = 1) and micro-pore (i = 2) networks. Similarly, Γ p

i is that part of the boundary on which the pressure is prescribed
in the macro-pore (i = 1) and micro-pore (i = 2) networks. p01(x) and p02(x) denote the prescribed pressures on
Γ

p
1 and Γ

p
2 , respectively. un1(x) and un2(x) denote the prescribed normal components of the velocities on Γ u

1 and Γ u
2 ,

respectively. χ (x) is the rate of volume exchange of the fluid between the two pore-networks per unit volume of the
porous medium, and we model it as follows [35]:

χ (x) = −
β

µ
(p1(x) − p2(x)) (2.2)

where β is a dimensionless characteristic of the porous medium. In the rest of the paper, as is commonly done in the
literature, χ (x) will be simply referred to as the mass transfer. For mathematical well-posedness, we assume that

Γ u
1 ∪ Γ

p
1 = ∂Ω , Γ u

1 ∩ Γ
p

1 = ∅, Γ u
2 ∪ Γ

p
2 = ∂Ω and Γ u

2 ∩ Γ
p

2 = ∅. (2.3)

3. A stabilized mixed weak formulation

In this section, we present the proposed stabilized mixed formulation for the double porosity/permeability model.
A derivation of the proposed formulation is provided in Appendix A. The proposed formulation is built upon the
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stabilization ideas put forth in a pioneering paper by Masud and Hughes [7]. The proposed formulation for double
porosity/permeability model can be obtained by adding a stabilization term, similar to the one proposed by Masud
and Hughes [7] for the case of single-pore network Darcy equations, to each pore-network. The stabilization terms are
based on the residual of the balance of linear momentum in each pore-network. The stability can be achieved without
adding residual-based stabilization terms related to the mass balance equations for any of the pore-networks. We also
present an extension of the proposed formulation for enforcing the velocity boundary conditions weakly, which will
be convenient for problems involving curved boundaries. This extension is achieved by employing a procedure similar
to the one proposed by Nitsche [36].

We define the relevant function spaces, which will be used in the rest of this paper. We denote the set of all
square-integrable functions on Ω by L2(Ω ). For mathematical well-posedness, we assume that

γ b(x) ∈ (L2(Ω ))nd , p01(x) ∈ H 1/2(Γ p
1 ) and p02(x) ∈ H 1/2(Γ p

2 ) (3.1)

where H 1/2(·) is a non-integer Sobolev space [37]. The function spaces for the velocity and pressures fields are defined
as follows:

U1 :=

{
u1(x) ∈ (L2(Ω ))nd

⏐⏐⏐ div[u1] ∈ L2(Ω ), u1(x) · n̂(x) = un1(x) ∈ H−1/2(Γ u
1 )

}
(3.2a)

U2 :=

{
u2(x) ∈ (L2(Ω ))nd

⏐⏐⏐ div[u2] ∈ L2(Ω ), u2(x) · n̂(x) = un2(x) ∈ H−1/2(Γ u
2 )

}
(3.2b)

W1 :=

{
w1(x) ∈ (L2(Ω ))nd

⏐⏐⏐ div[w1] ∈ L2(Ω ), w1(x) · n̂(x) = 0 on Γ u
1

}
(3.2c)

W2 :=

{
w2(x) ∈ (L2(Ω ))nd

⏐⏐⏐ div[w2] ∈ L2(Ω ), w2(x) · n̂(x) = 0 on Γ u
2

}
(3.2d)

P :=

{
(p1(x), p2(x)) ∈ L2(Ω ) × L2(Ω )

⏐⏐⏐ (∫
Ω

p1(x)dΩ
) (∫

Ω

p2(x)dΩ
)

= 0
}

(3.2e)

Q :=

{
(p1(x), p2(x)) ∈ H 1(Ω ) × H 1(Ω )

⏐⏐⏐ (∫
Ω

p1(x)dΩ
) (∫

Ω

p2(x)dΩ
)

= 0
}

(3.2f)

where H 1(Ω ) is a standard Sobolev space, and H−1/2(·) is the dual space corresponding to H 1/2(·) [37]. The standard
L2 inner-product over a set K is denoted as

(a; b)K ≡

∫
K

a(x) · b(x) dK . (3.3)

For convenience, the subscript K will be dropped if K = Ω . Moreover, the action of a linear functional on a vector
from its associated vector space is denoted by ⟨·; ·⟩.

A few remarks are needed regarding the following condition on the pressures in the function spaces P and Q:(∫
Ω

p1(x)dΩ
) (∫

Ω

p2(x)dΩ
)

= 0.

This condition of vanishing mean pressure in one of pore-networks is a mathematically elegant way of fixing the datum
for the pressure. Without fixing the datum for the pressure (which will be the case when only the velocity boundary
conditions are prescribed on the entire boundary), one can find the pressures only up to an arbitrary constant, which
will be the case even under Darcy equations [9]. Herein, we introduced the vanishing mean pressure condition into the
function spaces to ensure uniqueness of the solutions, which will be established later in this paper. However, it should
be emphasized that vanishing mean pressure in one of the pore-networks is not necessary for all the problems under
the double porosity/permeability model. One can fix the datum for the pressure under the double porosity/permeability
model by prescribing the pressure in at least one of the pore-networks on a portion of the boundary, which is a set of
non-zero measure. To put it differently, for problems with pressure boundary conditions, the datum for the pressure is
automatically fixed through the prescribed boundary condition, and hence, for those problems, one does not include
the zero mean pressure condition in the function spaces P and Q. For example, see the problem in Section 5.1, which
deals with prescribed pressure boundary conditions.

The classical mixed formulation, which is based on the Galerkin formalism, reads as follows: Find (u1(x), u2(x)) ∈

U1 × U2 and (p1(x), p2(x)) ∈ P such that we have

BGal(w1, w2, q1, q2; u1, u2, p1, p2) = LGal(w1, w2, q1, q2)
∀ (w1(x), w2(x)) ∈ W1 × W2, (q1(x), q2(x)) ∈ P (3.4)
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where the bilinear form and the linear functional are, respectively, defined as follows:

BGal(w1, w2, q1, q2; u1, u2, p1, p2) := (w1; µK−1
1 u1) − (div[w1]; p1) + (q1; div[u1])

+ (w2; µK−1
2 u2) − (div[w2]; p2) + (q2; div[u2])

+ (q1 − q2; β/µ(p1 − p2)) (3.5)
LGal(w1, w2, q1, q2) := (w1; γ b) + (w2; γ b) − ⟨w1 · n̂; p01⟩Γp

1
− ⟨w2 · n̂; p02⟩Γp

2
. (3.6)

In a subsequent section, we will show that the equal-order interpolation for all the variables, which is computation-
ally the most convenient, is not stable under the classical mixed formulation. Of course, one could use divergence-free
elements (e.g., Raviart–Thomas spaces [14]) but they need special data structures and computer implementations. We,
therefore, present a stabilized mixed formulation, which is stable under the equal-order interpolation for all the field
variables.

The proposed stabilized mixed formulation reads as follows: Find (u1(x), u2(x)) ∈ U1 × U2 and
(p1(x), p2(x)) ∈ Q such that we have

Bstab(w1, w2, q1, q2; u1, u2, p1, p2) = Lstab(w1, w2, q1, q2)
∀ (w1(x), w2(x)) ∈ W1 × W2, (q1(x), q2(x)) ∈ Q (3.7)

where the bilinear form and the linear functional are, respectively, defined as follows:

Bstab(w1, w2, q1, q2; u1, u2, p1, p2) := BGal(w1, w2, q1, q2; u1, u2, p1, p2)

−
1
2

(
µK−1

1 w1 − grad[q1];
1
µ

K1(µK−1
1 u1 + grad[p1])

)
−

1
2

(
µK−1

2 w2 − grad[q2];
1
µ

K2(µK−1
2 u2 + grad[p2])

)
(3.8)

Lstab(w1, w2, q1, q2) := LGal(w1, w2, q1, q2) −
1
2

(
µK−1

1 w1 − grad[q1];
1
µ

K1γ b
)

−
1
2

(
µK−1

2 w2 − grad[q2];
1
µ

K2γ b
)

(3.9)

In subsequent sections, we show that the proposed stabilized mixed formulation is consistent, stable and accurate.

3.1. Weak enforcement of velocity boundary conditions

In the previous derivations made earlier in this section, the pressure boundary conditions (i.e., Eqs. (2.1g) and
(2.1h)) are enforced weakly under the proposed stabilized mixed formulation and the classical mixed formulation.
However, the velocity boundary conditions in which the normal components of the velocities are prescribed
(i.e., Eqs. (2.1e) and (2.1f)) are enforced strongly. For domains with curved boundaries, which are commonly
encountered in subsurface modeling, it is desirable to even prescribe the velocity boundary conditions weakly. We,
therefore, provide a possible extension of the proposed stabilized mixed formulation for weak enforcement of the
velocity boundary conditions. To this end, we follow the approach proposed by Nitsche [36]. The Nitsche’s method
is a powerful tool for weakly enforcing Dirichlet boundary conditions without the use of Lagrange multipliers, and
has been utilized by several works such as [38–41]. The Nitsche’s method is sometimes referred to as a variationally
consistent penalty method to enforce Dirichlet boundary conditions [42]. We extend the Nitsche’s method to the
proposed four-field stabilized formulation to enforce the prescribed normal components of the velocities in the macro-
and micro-pore networks.

The stabilized mixed formulation that enforces the velocity boundary conditions weakly can be obtained as
follows: Find (u1(x), u2(x)) ∈ H (div,Ω ) × H (div,Ω ) and (p1(x), p2(x)) ∈ Q such that we have

Bweak B.C.
stab (w1, w2, q1, q2; u1, u2, p1, p2) = Lweak B.C.

stab (w1, w2, q1, q2)
∀ (w1(x), w2(x)) ∈ H (div,Ω ) × H (div,Ω ), (q1(x), q2(x)) ∈ Q (3.10)
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where the bilinear form and the linear functional are, respectively, defined as follows:

Bweak B.C.
stab (w1, w2, q1, q2; u1, u2, p1, p2) := Bstab(w1, w2, q1, q2; u1, u2, p1, p2)

+ (w1 · n̂; p1)Γu
1

+ (w2 · n̂; p2)Γu
2

+ (q1; u1 · n̂)Γu
1

+ (q2; u2 · n̂)Γu
2

+
η

h
(w1 · n̂; u1 · n̂)Γu

1
+

η

h
(w2 · n̂; u2 · n̂)Γu

2
(3.11a)

Lweak B.C.
stab (w1, w2, q1, q2) := Lstab(w1,w2, q1, q2) + (q1; un1)Γu

1
+ (q2; un2)Γu

2

+
η

h
(w1 · n̂; un1)Γu

1
+

η

h
(w2 · n̂; un2)Γu

2
(3.11b)

where h is the mesh size and η is the penalty parameter. In this paper, we have taken h to be the maximum edge length
in the mesh, and have taken the penalty parameter to be 10. In the above statement of the weak formulation, since the
velocity boundary conditions are enforced weakly, the appropriate function space for the velocities and the associated
weighting functions will be H (div,Ω ), which can be mathematically defined as follows:

H (div,Ω ) :=

{
u(x) ∈ (L2(Ω ))nd

⏐⏐⏐ div[u] ∈ L2(Ω )
}

. (3.12)

The function spaces for the pressures and their weighting functions, however, remain same as before (i.e., the Q
space).

4. A theoretical analysis of the proposed mixed formulation

In this section, we present a systematic mathematical analysis (i.e., existence, uniqueness and well-posedness) and
error analysis (i.e., consistency, stability, order of convergence) of the proposed stabilized mixed formulation. For
convenience, we define the following product spaces:

U = U1 × U2 × Q, and W = W1 × W2 × Q. (4.1)

We group the field variables as follows:

U = (u1(x), u2(x), p1(x), p2(x)) ∈ U (4.2a)

W = (w1(x), w2(x), q1(x), q2(x)) ∈ W. (4.2b)

Then, the proposed mixed formulation in Eq. (3.7) can be compactly written as: Find U ∈ U such that we have

Bstab(W, U) = Lstab(W) ∀W ∈ W. (4.3)

We shall establish the stability of the formulation under the following norm:

∥W∥
2
stab := Bstab(W, W) =

1
2

√
µK−1/2

1 w1

2
+

1
2

 1
√

µ
K1/2

1 grad[q1]
2

+
1
2

√
µK−1/2

2 w2

2

+
1
2

 1
√

µ
K1/2

2 grad[q2]
2

+


√(

β

µ

)
(q1 − q2)


2

∀W ∈ W (4.4)

where ∥ · ∥ denotes the norm corresponding to the standard L2 inner-product. We need to first show that ∥ · ∥stab is in
fact a norm on W and U. To this end, the following lemma will be used.

Lemma 4.1 (A Property of Semi-norms). If ∥ · ∥1 and ∥ · ∥2 are semi-norms, then ∥ · ∥3 :=

√
∥ · ∥

2
1 + ∥ · ∥

2
2 is also a

semi-norm.

Proof. The homogeneity of ∥ · ∥3 directly stems from the homogeneity of the semi-norms ∥ · ∥1 and ∥ · ∥2. To wit,

∥αx∥3 =

√
∥αx∥

2
1 + ∥αx∥

2
2 =

√
|α|

2
∥x∥

2
1 + |α|

2
∥x∥

2
2 = |α|

√
∥x∥

2
1 + ∥x∥

2
2 = |α|∥x∥3. (4.5)
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The non-negativity of ∥ · ∥3 is straightforward; that is, ∥x∥3 ≥ 0 ∀x. The triangle inequality for the semi-norms ∥ · ∥1

and ∥ · ∥2 implies that

∥a + b∥1 ≤ ∥a∥1 + ∥b∥1, and ∥a + b∥2 ≤ ∥a∥2 + ∥b∥2. (4.6)

These inequalities imply that

∥a + b∥
2
3 = ∥a + b∥

2
1 + ∥a + b∥

2
2

≤ ∥a∥
2
1 + ∥a∥

2
2 + ∥b∥

2
1 + ∥b∥

2
2 + 2 {∥a∥1∥b∥1 + ∥a∥2∥b∥2}

≤

(√
∥a∥

2
1 + ∥a∥

2
2

)2

+

(√
∥b∥

2
1 + ∥b∥

2
2

)2

+ 2
√

∥a∥
2
1 + ∥a∥

2
2

√
∥b∥

2
1 + ∥b∥

2
2. (4.7)

We have employed the AM–GM inequality in obtaining Eq. (4.7), which further implies that

∥a + b∥3 ≤

√
∥a∥

2
1 + ∥a∥

2
2 +

√
∥b∥

2
1 + ∥b∥

2
2 = ∥a∥3 + ∥b∥3. (4.8)

This establishes the triangle inequality for ∥ · ∥3. The homogeneity, non-negativity and triangle inequality imply that
∥ · ∥3 is a semi-norm. □

Proposition 4.1 (Stability Norm). ∥ · ∥stab is a norm on W and U.

Proof. We first note that K1 and K2 are symmetric and positive definite tensors. The square root of a symmetric
and positive definite tensor exists, and is itself a symmetric and positive definite tensor [43]. This implies that the
following individual terms form semi-norms on W and U:

1
√

2

√
µK−1/2

1 w1

 ,
1

√
2

 1
√

µ
K1/2

1 grad[q1]
 ,

1
√

2

√
µK−1/2

2 w2

 ,

1
√

2

 1
√

µ
K1/2

2 grad[q2]
 , and


√(

β

µ

)
(q1 − q2)

 . (4.9)

Then, Lemma 4.1 implies that ∥ · ∥stab is a semi-norm. It is easy to show that ∥W∥stab = 0 implies that

w1(x) = 0, w2(x) = 0 and q1(x) = q2(x) = c (4.10)

where c is a constant. Noting that (q1(x), q2(x)) ∈ Q and utilizing the following condition in the definition of Q:(∫
Ω

q1(x)dΩ
) (∫

Ω

q2(x)dΩ
)

= 0 (4.11)

we conclude that c = 0. With this, we have established that ∥W∥stab = 0 implies that W = 0. Hence, ∥ · ∥stab is a
norm. □

Theorem 4.1 (Uniqueness of Weak solutions). The weak solution under the proposed mixed formulation is unique.

Proof. On the contrary, assume that U1 and U2 are both (weak) solutions of the weak formulation. This implies that

Bstab(W, U1) = Lstab(W) ∀W ∈ W, and Bstab(W, U2) = Lstab(W) ∀W ∈ W. (4.12)

By subtracting the above two equations and noting the linearity in the second slot, we obtain

Bstab(W, U1 − U2) = 0 ∀W ∈ W. (4.13)

Since U1 − U2 ∈ W, we can choose W = U1 − U2. This particular choice implies that

Bstab(U1 − U2, U1 − U2) = ∥U1 − U2∥
2
stab = 0. (4.14)

Using Proposition 4.1 (which establishes that ∥ · ∥stab is a norm on W) we conclude that U1 = U2. □
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Theorem 4.2 (Boundedness). The bilinear form is bounded. That is,⏐⏐⏐Bstab(W, U)
⏐⏐⏐ ≤ C∥W∥stab∥U∥stab (4.15)

where C is a constant.

Proof. A direct application of the triangle inequality of the absolute value on real numbers implies that⏐⏐⏐Bstab(W, U)
⏐⏐⏐ ≤

1
2

⏐⏐⏐ (w1; µK−1
1 u1

) ⏐⏐⏐ +
1
2

⏐⏐⏐ (w2; µK−1
2 u2

) ⏐⏐⏐ +
1
2

⏐⏐⏐ (w1; grad[p1])
⏐⏐⏐ +

1
2

⏐⏐⏐ (w2; grad[p2])
⏐⏐⏐

+
1
2

⏐⏐⏐ (grad[q1]; µ−1K1grad[p1]
) ⏐⏐⏐ +

1
2

⏐⏐⏐ (grad[q2]; µ−1K2grad[p2]
) ⏐⏐⏐

+

⏐⏐⏐ (q1 − q2; β/µ(p1 − p2))
⏐⏐⏐. (4.16)

Cauchy–Schwarz inequality on L2 inner-product implies that⏐⏐⏐Bstab(W, U)
⏐⏐⏐ ≤

1
2

√
µK−1/2

1 w1

 √
µK−1/2

1 u1

 +
1
2

√
µK−1/2

2 w2

 √
µK−1/2

2 u2


+

1
2

√
µK−1/2

1 w1

  1
√

µ
K1/2

1 grad[p1]
 +

1
2

√
µK−1/2

2 w2

  1
√

µ
K1/2

2 grad[p2]


+
1
2

 1
√

µ
K1/2

1 grad[q1]
  1

√
µ

K1/2
1 grad[p1]

 +
1
2

 1
√

µ
K1/2

2 grad[q2]
  1

√
µ

K1/2
2 grad[p2]


+


√

β

µ
(q1 − q2)



√

β

µ
(p1 − p2)

 . (4.17)

By applying Cauchy–Schwarz inequality on n-tuple real numbers (i.e., on Euclidean spaces) we obtained the
following:⏐⏐⏐Bstab(W, U)

⏐⏐⏐ ≤√√
µK−1/2

1 w1

2
+

√
µK−1/2

2 w2

2
+

1
2

 1
√

µ
K1/2

1 grad[q1]
2

+
1
2

 1
√

µ
K1/2

2 grad[q2]
2

+


√

β

µ
(q1 − q2)


2

√1
2

√
µK−1/2

1 u1

2
+

1
2

√
µK−1/2

2 u2

2
+

 1
√

µ
K1/2

1 grad[p1]
2

+

 1
√

µ
K1/2

2 grad[p2]
2

+


√

β

µ
(p1 − p2)


2

≤ 2

√1
2

√
µK−1/2

1 w1

2
+

1
2

√
µK−1/2

2 w2

2
+

1
2

 1
√

µ
K1/2

1 grad[q1]
2

+
1
2

 1
√

µ
K1/2

2 grad[q2]
2

+


√

β

µ
(q1 − q2)


2

√1
2

√
µK−1/2

1 u1

2
+

1
2

√
µK−1/2

2 u2

2
+

1
2

 1
√

µ
K1/2

1 grad[p1]
2

+
1
2

 1
√

µ
K1/2

2 grad[p2]
2

+


√

β

µ
(p1 − p2)


2

. (4.18)

That is, we have established that⏐⏐⏐Bstab(W, U)
⏐⏐⏐ ≤ 2∥W∥stab∥U∥stab (4.19)

which completes the proof. □

Theorem 4.3 (Coercivity). The bilinear form is coercive. That is, the bilinear form is bounded below.

Proof. The coercivity of the bilinear form can be established from the definition of ∥ · ∥stab and Proposition 4.1
(i.e., ∥ · ∥stab is a norm on W) as

∥W∥
2
stab = Bstab(W, W) ∀W ∈ W □ (4.20)

Given the coercivity and boundedness of the bilinear form and the continuity of the linear functional, one can
conclude that the proposed mixed weak formulation is well-posed by invoking the Lax–Milgram theorem [44].
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4.1. Convergence and error analysis of the finite element formulation

We decompose the computational domain into “Nele” subdomains (which will be the elements in the context of
the finite element method) such that

Ω =

Nele⋃
e=1

Ω
e

(4.21)

where a superposed bar indicates the set closure. We denote the finite element solution by Uh . That is,

Uh
= (uh

1(x), uh
2(x), ph

1 (x), ph
2 (x)). (4.22)

Likewise,

Wh
= (wh

1(x), wh
2(x), qh

1 (x), qh
2 (x)). (4.23)

If we denote the set of all polynomials up to and including mth order over a set K by Pm(K ), and the set of all
continuous functions defined on Ω (which is the set closure of Ω ) by C0(Ω ), then the following finite-dimensional
spaces can be defined:

Uh
1 :=

{
uh

1(x) ∈ U1

⏐⏐⏐ uh
1(x) ∈

(
C0(Ω )

)nd
; uh

1(x)|Ωe ∈
(
Pk(Ω e)

)nd
; e = 1, . . . , Nele

}
(4.24a)

Uh
2 :=

{
uh

2(x) ∈ U2

⏐⏐⏐ uh
2(x) ∈

(
C0(Ω )

)nd
; uh

2(x)|Ωe ∈
(
Pk(Ω e)

)nd
; e = 1, . . . , Nele

}
(4.24b)

Wh
1 :=

{
wh

1(x) ∈ W1

⏐⏐⏐ wh
1(x) ∈

(
C0(Ω )

)nd
; wh

1(x)|Ωe ∈
(
Pk(Ω e)

)nd
; e = 1, . . . , Nele

}
(4.24c)

Wh
2 :=

{
wh

2(x) ∈ W2

⏐⏐⏐ wh
2(x) ∈

(
C0(Ω )

)nd
; wh

2(x)|Ωe ∈
(
Pk(Ω e)

)nd
; e = 1, . . . , Nele

}
(4.24d)

Qh
:=

{(
ph

1 , ph
2

)
∈ Q

⏐⏐⏐ ph
1 (x), ph

2 (x) ∈ C0(Ω ); ph
1 (x), ph

2 (x)|Ωe ∈ P1(Ω e); e = 1, . . . , Nele
}

. (4.24e)

We define the corresponding product spaces as follows:

Uh
= Uh

1 × Uh
2 × Qh, and Wh

= Wh
1 × Wh

2 × Qh . (4.25)

It is important to note that Wh and Uh are closed linear subspaces of W and U, respectively. The finite element
formulation corresponding to the proposed stabilized mixed formulation reads: Find Uh

∈ Uh such that we have

Bstab(Wh
; Uh) = Lstab(Wh) ∀Wh

∈ Wh . (4.26)

In a given coordinate system, we denote x = (x1, . . . , xnd ). For a given multi-index (i.e., tuple) of non-negative
integers, α = (α1, . . . , αnd ), with order |α| = α1 + · · · + αnd , the corresponding partial derivative of a scalar field,
p(x), can be written as follows:

Dα p(x) =
∂ |α| p(x)

∂xα1
1 ∂xα2

2 · · · ∂xαnd
nd

. (4.27)

Using the above notation, the s th Sobolev semi-norm, |·|s , for scalar and vector fields can be compactly written as
follows:

|p|
2
s = |p|

2
H s (Ω;L) =

∑
|α|=s

∫
Ω

(
Ls Dα p(x)

)2dΩ (4.28)

|u|
2
s = |u|

2
H s (Ω;L) =

∑
|α|=s

nd∑
i=1

∫
Ω

(
Ls Dαui (x)

)2dΩ (4.29)

where
∑

|α|=s denotes the summation over all the possible tuples of non-negative integers with order s, and L denotes
the characteristic length of the domain.

Remark 4.1. Although the notation introduced in Eq. (4.27) is common in the theory of partial differential equations
(e.g., [34]), it may not be that common in the engineering literature. For the benefit of the reader, we provide the
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following few examples to make the notation more apparent:

if nd = 2, x = (x1, x2), α = (2, 1) then |α| = 3 and Dα p(x) =
∂3 p(x)
∂x2

1∂x2

if nd = 3, x = (x1, x2, x3), α = (3, 0, 6) then |α| = 9 and Dα p(x) =
∂9 p(x)
∂x3

1∂x6
3

.

We now show the consistency of the formulation, and then establish the stability. We also obtain the rates of
convergence with the mesh refinement and the order of interpolation. To this end, the error E is defined as

E = Uh
− U. (4.30)

We employ the following standard decomposition of error (e.g., see [44]):

E = Uh
− U = Uh

− Ũh  
approximation error

+ Ũh
− U  

interpolation error

= Eh
+ H (4.31)

where Ũh denotes the interpolate of U onto Uh , Eh is the approximation error and H denotes the interpolation error.
The interpolation error H satisfies the following standard inequality [11]:

∥H∥stab ≤ C1

(
h
L

)k+1

|u1|k+1 + C2

(
h
L

)l+1

|u2|l+1 + C3

(
h
L

)m

|p1|m+1 + C4

(
h
L

)n

|p2|n+1. (4.32)

In the above inequality, h is the characteristic mesh parameter, L is a characteristic dimension of the domain Ω , and
k, l, m and n are natural numbers. As mentioned earlier, we have taken h to be the maximum edge length in the mesh.
However, the results presented herein are equally valid for other choices of h; for example, the maximum element
diameter. The constants C1, C2, C3 and C4 are defined as follows:

C1 = C0 sup
x∈Ω

(
µ(x)k−1

1 (x)
) 1

2 , C2 = C0 sup
x∈Ω

(
µ(x)k−1

2 (x)
) 1

2 ,

C3 =
C0

L
sup
x∈Ω

(
1

µ(x)
k1(x)

) 1
2

and C4 =
C0

L
sup
x∈Ω

(
1

µ(x)
k2(x)

) 1
2

(4.33)

where C0 is a non-dimensional constant. Note that C1, C2, C3 and C4 are independent of h, u1, u2, p1 and p2.

Theorem 4.4 (Consistency). The error in the finite element solution satisfies

Bstab(Wh
; E) = 0 ∀Wh

∈ Wh
⊂ W. (4.34)

Proof. The finite element solution satisfies

Bstab(Wh, Uh) = Lstab(Wh) ∀Wh
∈ Wh . (4.35)

The exact solution clearly satisfies

Bstab(Wh, U) = Lstab(Wh) ∀Wh
∈ Wh . (4.36)

By subtracting the above two equations and using the linearity of the bilinear form Bstab(·, ·) in the second slot, we
obtain the desired result. □

Theorem 4.5 (Convergence). For all Ũh
∈ Uh , the error satisfies

∥E∥stab ≤ C∥H∥stab (4.37)

where C is a non-dimensional constant.
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Proof. Noting the decomposition of error mentioned in Eq. (4.31) (i.e., E = Eh
+ H), we proceed as follows:

∥E∥
2
stab = Bstab(E; E) (definition of ∥ · ∥stab norm)

= Bstab(Eh
+ H; E) (standard decomposition of E)

= Bstab(Eh
; E) + Bstab(H; E) (bilinearity)

= Bstab(H; E) (consistency). (4.38)

We now estimate Bstab(H; E). To this end, we denote the components of E and H as follows:

E =
{
eu1 , eu2 , ep1 , ep2

}
, and H =

{
ηu1

, ηu2
, ηp1 , ηp2

}
.

By repeated use of Cauchy–Schwarz and Peter–Paul inequalities [45], we estimate Bstab(H; E) as follows:

Bstab(H; E) = Bstab(ηu1
, ηu2

, ηp1 , ηp2; eu1 , eu2 , ep1 , ep2 )

= (ηu1
; µK−1

1 eu1 ) − (div[ηu1
]; ep1 ) + (ηp1; div[eu1 ])

+ (ηu2
; µK−1

2 eu2 ) − (div[ηu2
]; ep2 ) + (ηp2; div[eu2 ])

−
1
2

(
ηu1

; µK−1
1 eu1

)
−

1
2

(
ηu1

; grad[ep1 ]
)
+

1
2

(
grad[ηp1 ]; eu1

)
+

1
2

(
grad[ηp1 ];

1
µ

K1grad[ep1 ]
)

−
1
2

(
ηu2

; µK−1
2 eu2

)
−

1
2

(
ηu2

; grad[ep2 ]
)
+

1
2

(
grad[ηp2 ]; eu2

)
+

1
2

(
grad[ηp2 ];

1
µ

K2grad[ep2 ]
)

+ ((ηp1 − ηp2 ); β/µ(ep1 − ep2 ))

≤
1
2

{
ε1∥

√
µK−1/2

1 ηu1
∥

2
+

1
ε1

∥
√

µK−1/2
1 eu1∥

2
+ ε2∥

√
µK−1/2

1 ηu1
∥

2

+
1
ε2

∥
1

√
µ

K1/2
1 grad[ep1 ]∥2

+ ε3∥
1

√
µ

K1/2
1 grad[ηp1 ]∥2

+
1
ε3

∥
√

µK−1/2
1 eu1∥

2

+ ε4∥
√

µK−1/2
2 ηu2

∥
2
+

1
ε4

∥
√

µK−1/2
2 eu2∥

2
+ ε5∥

√
µK−1/2

2 ηu2
∥

2

+
1
ε5

∥
1

√
µ

K1/2
2 grad[ep2 ]∥2

+ ε6∥
1

√
µ

K1/2
2 grad[ηp2 ]∥2

+
1
ε6

∥
√

µK−1/2
2 eu2∥

2

+
ε7

2
∥
√

µK−1/2
1 ηu1

∥
2
+

1
2ε7

∥
√

µK−1/2
1 eu1∥

2
+

ε8

2
∥
√

µK−1/2
1 ηu1

∥
2

+
1

2ε8
∥

1
√

µ
K1/2

1 grad[ep1 ]∥2
+

ε9

2
∥

1
√

µ
K1/2

1 grad[ηp1 ]∥2
+

1
2ε9

∥
√

µK−1/2
1 eu1∥

2

+
ε10

2
∥

1
√

µ
K1/2

1 grad[ηp1 ]∥2
+

1
2ε10

∥
1

√
µ

K1/2
1 grad[ep1 ]∥2

+
ε11

2
∥
√

µK−1/2
2 ηu2

∥
2

+
1

2ε11
∥
√

µK−1/2
2 eu2∥

2
+

ε12

2
∥
√

µK−1/2
2 ηu2

∥
2
+

1
2ε12

∥
1

√
µ

K1/2
2 grad[ep2 ]∥2

+
ε13

2
∥

1
√

µ
K1/2

2 grad[ηp2 ]∥2
+

1
2ε13

∥
√

µK−1/2
2 eu2∥

2
+

ε14

2
∥

1
√

µ
K1/2

2 grad[ηp2 ]∥2

+
1

2ε14
∥

1
√

µ
K1/2

2 grad[ep2 ]∥2
+ ε15∥(β/µ)1/2(ηp1 − ηp2 )∥2

+
1

ε15
∥(β/µ)1/2(ep1 − ep2 )∥2

}
(4.39)

where εi , i = 1, . . . , 15 are positive constants. By choosing

2ε1 = 2ε3 = 2ε4 = 2ε6 = ε7 = ε9 = ε11 = ε13 = 10 and

2ε2 = 2ε5 = ε8 = ε10 = ε12 = ε14 = 6, ε15 = 1 (4.40)
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we obtain the following inequality:

Bstab(H; E) ≤
1
2

{
∥E∥

2
stab + 16∥

√
µK−1/2

1 ηu1
∥

2
+ 13∥

1
√

µ
K1/2

1 grad[ηp1 ]∥2

+ 16∥
√

µK−1/2
2 ηu2

∥
2
+ 13∥

1
√

µ
K1/2

2 grad[ηp2 ]∥2
+ ∥(β/µ)1/2(ηp1 − ηp2 )∥2

}
≤

1
2
∥E∥

2
stab + 16∥H∥

2
stab. (4.41)

Noting Eq. (4.38) we have

Bstab(H; E) = ∥E∥
2
stab ≤ 32∥H∥

2
stab (4.42)

which gives the following estimate of the total error in terms of the interpolation error:

∥E∥stab ≤ 4
√

2∥H∥stab. (4.43)

This completes the proof. □

The set of choices made for constants, εi (i = 1, . . . , 15), is one of many such ones to obtain an upper bound
for Bstab(H; E) in terms of the total error, E, and the interpolation error, H. We do not claim that this selection of
constants is optimal. Certainly, the estimate (4.41) and the subsequent ones are not sharp. Although obtaining sharp
estimates is of theoretical significance in mathematical analysis, it is not crucial to establish the convergence of the
proposed stabilized formulation. We, therefore, do not pursue further with respect to obtaining the optimal choices for
the constants εi , and for obtaining a sharp estimate for Bstab(H; E).

5. Patch tests and numerical convergence analysis

In order to assess the convergence behavior of a numerical (finite element) formulation and to determine whether
it is programmed correctly, patch tests are commonly used. In this section, we first illustrate the performance of
the proposed stabilized mixed formulation under the equal-order interpolation for all the field variables using one-
dimensional and three-dimensional constant-flow patch tests. We also compare the results obtained under the proposed
stabilized mixed formulation with that of the classical mixed formulation (which is based on the Galerkin formalism).
We then perform a systematic numerical convergence analysis of the proposed stabilized mixed formulation under h-
and p-refinements, and compare the obtained rates of convergence with the theory.

Under our studies on patch tests and numerical convergence analysis, we often use the term machine precision,
which is the smallest difference between two numbers that the computing machine recognizes [46]. Mathematically,
the machine precision of a computing machine, ϵmach, satisfies

(1 + ϵ) − 1 = 0 ∀ϵ < ϵmach

and (1 + ϵ) − 1 = ϵ ̸= 0 ∀ϵ > ϵmach.

It is important to note that the machine precision depends on the underlying hardware of the computer, and hence, its
value can vary from one computer to another. It is also important to note that the machine precision of a computer is
not the smallest number that the computer can represent. To put the things quantitatively, the machine precision on
a 32-bit machine is approximately 10−7 and on a 64-bit machine, it is approximately 10−16 [47]. On the other hand,
the smallest positive numbers that a 32-bit machine and a 64-bit machine can represent are approximately 10−38 and
10−308, respectively [47].

5.1. One-dimensional constant flow patch test

The purpose of solving the one-dimensional example is to provide a simple numerical tool for testing whether the
proposed mixed formulation satisfies the LBB condition. Fig. 1(a) provides a pictorial description of the problem, and
Table 1 provides the data-set for this problem. The domain is a line of unit length along x direction. On the left end
of the domain, pressures pL

1 and pL
2 are prescribed in macro- and micro-pore networks, respectively. Similarly, on the

right end of the domain, pR
1 and pR

2 are, respectively, prescribed in the macro- and the micro-pore networks. Since
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(a) (b)

Fig. 1. Patch tests: The left figure provides a pictorial description of the 1D patch test and the right one shows the domain and the boundary
conditions in 3D patch test. In 3D test, pressures are prescribed on the left and right faces and on the other faces, the normal component of velocity
is zero in both pore-networks.

Table 1
Data-set for one-dimensional constant flow patch test and 1D numerical
convergence analysis.

Parameter Value

γ b 0.0
L 1.0
µ 1.0
β 1.0
k1 1.0
k2 0.01
pL

1 10.0
pR

1 1.0
pL

2 10.0
pR

2 1.0

a pressure boundary condition is prescribed for at least one of the pore-networks, the condition of vanishing mean
pressure in one of pore-networks in the function space Q (which is defined in Eq. (3.2f)) is not appropriate for this
problem. See the discussion in Section 3.

The governing equations can be written as follows:

µk−1
1 u1(x) +

dp1

dx
= 0 in (0, L) (5.1a)

µk−1
2 u2(x) +

dp1

dx
= 0 in (0, L) (5.1b)

du1

dx
= +χ (x) in (0, L) (5.1c)

du2

dx
= −χ (x) in (0, L) (5.1d)

p1(x = 0) = pL
1 , p1(x = L) = pR

1 (5.1e)

p2(x = 0) = pL
2 , p2(x = L) = pR

2 . (5.1f)

It should be noted that the quantities used in Eqs. (5.1a)–(5.1f) are non-dimensional. More details on non-
dimensionalization procedure can be found in [22]. In this boundary value problem, k1 and k2 are assumed to be
independent of x and the mass transfer between the two pore-networks takes the following form:

χ (x) = − (p1(x) − p2(x)) . (5.2)
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(a) (b)

(c) (d)

Fig. 2. 1D patch test: Pressure and velocity in pore-networks under Galerkin and proposed formulations. For velocity fields, the values match
with the analytical solution up-to machine precision under both formulations. For pressure fields, spurious oscillations are observed under Galerkin
formulation, even for equal-order interpolation. Under stabilized mixed formulation, such oscillations are eliminated.

The analytical solution for this simple 1D problem includes constant velocities and linearly varying pressures (from
pL

i to pR
i ) at each pore-network along the x direction.

Fig. 2 shows the numerical results for pressure and velocity profiles in the two pore-networks under Galerkin and
the proposed stabilized mixed formulations. The values of velocity vector fields in the two pore-networks match the
analytical solutions under both proposed the stabilized mixed formulation and the Galerkin formulation. As can be
seen in Figs. 2(c) and 2(d), under the stabilized mixed formulation, pressures in the two pore-networks vary linearly
from the prescribed value at the left end (pL

i , i = 1, 2) to the prescribed one at the right end (pR
i , i = 1, 2). These

results are in agreement with the corresponding analytical solutions up to the machine precision, thus showing that the
proposed formulation performs well and that it satisfies the 1D patch test. However, under the Galerkin formulation,
spurious oscillations are observed in the pressure fields in both macro- and micro-networks even for equal-order
interpolation.

5.2. Three-dimensional constant flow patch test

Previous research studies have shown that many existing numerical formulations cannot perform well when they
are extended to 3D settings [9,31]. Herein, using the 3D constant flow patch test we will show that the proposed
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Table 2
Data-set for three-dimensional constant flow patch test.

Parameter Value

γ b {0.0, 0.0, 0.0}

Lx 1.0
L y 1.0
µ 1.0
β 1.0
k1 1.0
k2 0.01
pL

1 10.0
pR

1 1.0
pL

2 10.0
pR

2 1.0

stabilized mixed formulation performs well even in 3D settings and it is capable of satisfying the LBB condition.
To illustrate this, we consider the unit cube computational domain shown in Fig. 1(b). On the left and right faces,
pressures pL

i , i = 1, 2 and pR
i , i = 1, 2 are prescribed respectively where i = 1 denotes the macro-pore network and

i = 2 represents the micro-pore network. On the other faces, the velocity boundary condition is prescribed in the two
pore-networks (i.e., ui · n̂ = 0, i = 1, 2). Table 2 provides the parameter values for this test problem.

The analytical solution pair for this constant flow patch test includes constant velocity along x direction and
pressure linearly varying along x direction at each pore-network. Fig. 3 shows the numerical results for pressure
profiles associated with the two pore-networks under Galerkin and the stabilized mixed formulations. It is observed
that the Galerkin formulation produces spurious oscillations in micro- and macro-pressures even for equal-order
interpolation. This indicates that Galerkin formulation cannot accurately predict pressure variations and that the
results are not stable. These oscillations are completely eliminated by the proposed stabilized mixed formulation,
thus illustrating the stability of the solution. This verifies that the proposed numerical formulation performs well and
satisfies the 3D constant flow patch test.

5.3. Numerical convergence under h- and p-refinements

In this subsection, the convergence behavior of the proposed stabilized mixed formulation is evaluated. For this
purpose, the convergence analysis is performed in 1D and 2D settings. The convergence rates are obtained under two
different approaches. The first method is called h-refinement where the number of elements is increased and hence the
size of elements (denoted by “h”) in the domain is decreased. The convergence rates under h-refinement are obtained
for various polynomial orders. In the second approach, the so-called p-refinement, the convergence rate is calculated
by changing the order of polynomial while the total number of elements in the domain is kept fixed (nx = 5).

5.3.1. 1D numerical convergence analysis
For the convergence analysis in the 1D setting, we select the previously defined one-dimensional patch test

(Section 5.1). In Figs. 4 and 5, the convergence rates under h- and p-refinements are shown for the L2-norm of the
velocity fields in the macro- and micro-pore networks (denoted by “L2 u1” and “L2 u2”, respectively), the L2-norm
of the pressure fields in the macro- and micro-pore networks (denoted by “L2 p1” and “L1 p2”, respectively), and the
H 1-norm of the pressure fields in the macro- and micro-pore networks (denoted by “H 1 p1” and “H 1 p2”,
respectively). As can be seen in these figures, the rate of convergence for h-refinement is polynomial and for
p-refinement is exponential, which are in accordance with the theory.

5.3.2. 2D numerical convergence analysis
The convergence analysis in the 2D setting is performed on the unit square domain shown in Fig. 6. The macro-

and micro-pressures are prescribed on the four sides of the computational domain. Table 3 provides the parameter
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Fig. 3. 3D patch test: Pressure profiles in the micro-pores and macro-pores in 3D constant flow patch test under Galerkin and the proposed
stabilized mixed formulations. Under Galerkin formulation, spurious oscillations are observed in pressure fields, even for equal-order interpolation,
which implies that the results are unstable. Such oscillations are eliminated from the pressure profiles under the proposed mixed formulation.

values for the 2D convergence analysis. For convenience, let us define

η :=

√
β

k1 + k2

k1k2
. (5.3)

Then the analytical solution for the velocity fields can be defined as

u1(x, y) = −k1

(
exp(πx) sin(πy)
exp(πx) cos(πy)

)
+

⎛⎝ 0
η

β
exp(ηy)

⎞⎠ (5.4)
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Fig. 4. 1D numerical convergence analysis: This figure illustrates the numerical convergence of the proposed stabilized mixed formulation
under h-refinement for various polynomial orders. The rate of convergence is polynomial, which is in accordance with the theory.

u2(x, y) = −k2

(
exp(πx) sin(πy)
exp(πx) cos(πy)

)
−

⎛⎝ 0
η

β
exp(ηy)

⎞⎠ . (5.5)

The analytical solution for the pressure fields can then be obtained as follows:

p1(x, y) =
µ

π
exp(πx) sin(πy) −

µ

βk1
exp(ηy) (5.6)

p2(x, y) =
µ

π
exp(πx) sin(πy) +

µ

βk2
exp(ηy). (5.7)
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Fig. 5. 1D numerical convergence analysis: This figure illustrates the numerical convergence of the proposed stabilized mixed formulation
under p-refinement for a fixed mesh size (h = 0.2). The number of degrees-of-freedom corresponds to p = 1 to 14. The rate of convergence is
exponential, which is in accordance with the theory.

Fig. 6. 2D numerical convergence analysis: This figure provides a pictorial description of the boundary value problem employed in the 2D
numerical convergence analysis.

Fig. 7 provides the convergence rates under h-refinement for the L2-norm and the H 1-norm of the pressure fields in
the macro- and micro-pore networks. The results under p-refinement for the L2-norm of the pressure fields are also
provided in Fig. 8. The rates of convergence for h- and p-refinements are respectively polynomial and exponential,
which are in accordance with the theory. As can be seen, the error under p-refinement flattened out around 10−16 for
larger number of degrees-of-freedom. This is expected as the machine precision on a 64-bit machine is around 10−16.
The results obtained from the one-dimensional and two-dimensional problems verify that the proposed stabilized
mixed formulation is convergent.

6. Representative numerical results

In the previous section, the convergence behavior of the proposed mixed formulation has been assessed using
patch tests and numerical convergence analysis. In this section, using representative problems with relevance to
technological applications, the flow characteristics in the porous media exhibiting double porosity/permeability are
studied. The performance of the Nitsche’s method is illustrated using two-dimensional candle filter problem and
three-dimensional hollow sphere problem. Moreover, the robustness of the proposed formulation is assessed using an
extension of the well-known “quarter five-spot” problem to the double porosity/permeability model.
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Table 3
Data-set for 2D numerical convergence analysis.

Parameter Value

γ b {0.0, 0.0}

Lx 1.0
L y 1.0
µ 1.0
β 1.0
k1 1.0
k2 0.1
η

√
11 ≃ 3.3166

pleft
i , i = 1, 2 Obtained by evaluating

pright
i , i = 1, 2 The analytical solution

ptop
i , i = 1, 2 (Eqs. (5.6) and (5.7))

pbottom
i , i = 1, 2 On the respective boundaries.

Table 4
Data-set for two-dimensional candle filter problem.

Parameter Value

γ b {0.0, 0.0}

ro 1.0
ri 0.3
µ 1.0
β 1.0
k1 1.0
k2 0.01
p1(r = 0.3) 1.0
p1(r = 1.0) 0.0
un2(r = 0.3) 0.0
un2(r = 1.0) 0.0

6.1. Two-dimensional candle filter problem

The aim of this problem is to show how the velocity boundary conditions can be enforced weakly in two-
dimensional settings using Nitsche’s method. This two-dimensional boundary value problem is a model of water
flow in candle filters which are commonly used for purifying drinking water. The domain consists of a circular disc
of inner radius of ri = a and outer radius of ro = 1. For the macro-pore network, the inner surface is subjected to
a pressure (p1(r = ri ) = 1.0 atm), and the outer surface is exposed to the atmosphere (p1(r = ro) = 0). For the
micro-pore network, no discharge is allowed from the inner and outer surfaces (i.e. u2 · n̂ = 0). Fig. 9 shows the
computational domain for this problem as well as the boundary conditions. Considering the underlying symmetry in
the problem, the velocities and pressures in the two pore-networks are assumed to be functions of r only. Parameter
values for this test problem are provided in Table 4.

The relevant governing equations in the polar coordinates can be summarized as follows:
µ

k1
u1 +

dp1

dr
= 0,

1
r

d(ru1)
dr

+ (p1 − p2) = 0, ∀r ∈ (a, 1) (6.1a)

µ

k2
u2 +

dp2

dr
= 0,

1
r

d(ru2)
dr

− (p1 − p2) = 0, ∀r ∈ (a, 1) (6.1b)

p1(r = a) = 1, p1(r = 1) = 0, u2(r = a) = 0, u2(r = 1) = 0. (6.1c)

Figs. 10(a) and 10(b) show the pressure and velocity profiles under the extended framework for weak enforcement of
velocity boundary conditions. The micro-velocity profile implies that although there is no discharge from the micro-
pore network on the boundary, there is discharge in the micro-pore network within the domain. It can be concluded
that the surface pore-structure is not the only factor that characterizes the flow throughout the domain and that the
internal pore-structure plays a significant role.
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Fig. 7. 2D numerical convergence analysis: This figure shows the numerical convergence under h-refinement for various polynomial orders.
The rate of convergence is polynomial, which is in accordance with the theory.

6.2. Three-dimensional hollow sphere problem

The hollow sphere problem is used to examine the weak enforcement of the velocity boundary conditions in 3D
settings using Nitsche’s method. The computational domain consists of a sphere of radius ro = 1.0, at the center of
which is a spherical hole of radius ri = a. At the inner surface of the hole, the macro-pore network is subjected to
a pressure p1(r = ri ) = 1, and at the outer surface of the sphere, the macro-pore network is subjected to a pressure
p1(r = ro) = 0. For the micro-pore network, there is no discharge from the inner and outer surfaces (i.e., u2 · n̂ = 0).
Table 5 provides the parameter values for this problem.
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Fig. 8. 2D numerical convergence analysis: This figure shows the numerical convergence under p-refinement for a fixed mesh size (h = 0.2).
The number of degrees-of-freedom corresponds to p = 3 to 7. The rate of convergence is exponential, which is in accordance with the theory. Note
that the error flattened out around 10−16 for larger number of degrees-of-freedom. This is expected as the machine precision on a 64-bit machine is
around 10−16.

Fig. 9. Two-dimensional candle filter problem: This figure provides a pictorial description of the candle filter problem which is used to study
weak enforcement of velocity boundary conditions. There is no discharge on the inner and outer surfaces of the micro-pore network. For the
macro-pore network, the inner surface is subjected to a pressure of unity, and the outer surface is subjected to zero pressure.

Similar to the candle filter problem, all the variables can be considered to be functions of r only due to the
symmetry. Therefore, the governing equations can be written as follows:

µ

k1
u1 +

dp1

dr
= 0,

1
r2

d(r2u1)
dr

= −(p1 − p2), ∀r ∈ (a, 1) (6.2a)

µ

k2
u2 +

dp2

dr
= 0,

1
r2

d(r2u2)
dr

= +(p1 − p2), ∀r ∈ (a, 1) (6.2b)

p1(r = a) = 1, p1(r = 1) = 0, u2(r = a) = 0, u2(r = 1) = 0. (6.2c)

The numerical results for the pressures and velocity fields are shown in Figs. 11(a) and 11(b). It is seen that under
the extended framework for weak enforcement of velocity boundary conditions, the results are stable and although
no discharge is considered for the micro-pore network on the boundary, there is discharge in the micro-pore network
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(a) Pressure fields.

(b) Velocity vector fields.

Fig. 10. Two-dimensional candle filter problem: This figure shows the contours of pressures and velocities in macro- and micro-pore networks
under the extended framework for weak enforcement of velocity boundary conditions. Although there is no discharge from the micro-pore network
on the boundary, there is discharge in the micro-pore network within the domain.

Table 5
Data-set for three-dimensional hollow sphere problem.

Parameter Value

γ b {0.0, 0.0, 0.0}

ro 1.0
ri 0.3
µ 1.0
β 1.0
k1 1.0
k2 0.01
p1(r = 0.3) 1.0
p1(r = 1.0) 0.0
un2(r = 0.3) 0.0
un2(r = 1.0) 0.0

within the domain. The important role of the internal pore-structure in such complex porous domains pitches a case
for using advanced characterization tools like X-ray micro-computed tomography (i.e., µ-CT) [48].

It should be noted that in order to provide a proper visualization of the velocity fields within the domain, it has been
clipped and put in a perspective view. Since an unstructured mesh has been used for this 3D domain, the visualization
software (i.e., ParaView) cuts through the elements and interpolates the values to draw the contours. This introduces
some dependence on the angular coordinates (see Fig. 11(b)). But one does not find this angular dependence in the
raw data for various angles for a given radius.
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(a) Pressure fields.

(b) Velocity vector fields.

Fig. 11. Three-dimensional hollow sphere problem: This figure shows the contours of pressures and velocities in the two pore-networks under
the extended framework for weak enforcement of velocity boundary conditions. On the inner and outer surfaces, pressure is prescribed for the
macro-pore network while there is no discharge for the micro-pore network. Although there is no discharge from the micro-pore network on the
boundary, there is discharge in the micro-pore network within the domain.

6.3. Quarter five-spot problem

A standard test problem which is widely used to evaluate the performance and robustness of numerical formulations
is the five-spot problem. In many applications associated with the enhanced oil recovery, an injection well is
surrounded by four production wells, located at the four corners of a square domain. Due to the underlying symmetry
of the problem, it is common to only consider the top right quadrant, which is implemented as a “quarter five-spot”
problem.

Herein, we provide an extension of the standard five-spot problem to the double porosity/permeability model. The
computational domain, as shown in Fig. 12, is a unit square with injection and production wells placed at two opposite
corners along one of the diagonals. In this problem, elliptic singularities are observed near the injection and production
wells. The normal component of micro-velocity is assumed to be zero on the entire boundary. In the macro-network,
however, we prescribe zero normal velocity on the entire boundary except at the production and injection wells located
on corners C1 and C2, respectively. The non-zero macro-velocity at these opposite corners is prescribed by applying
the source/sink term. The source and sink strengths at injection and production wells are, respectively, equal to +1 and
−1. No volumetric source/sink is considered (i.e., b(x) = 0). Table 6 provides the parameter values for this problem.

It should be noted that in the code implementation, instead of applying a pointwise sink/source on corners C1 and
C2, an equivalent distribution of normal velocity along the external edges of two corner elements in x- and y-directions
is considered. Such a distribution is shown in Fig. 12.
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Fig. 12. Quarter five-spot problem: This figure shows the computational domain and the boundary conditions for the quarter five-spot problem.
The normal component of micro-velocity is equal to zero on the entire boundary. In the macro-network, however, we prescribe zero normal velocity
on the entire boundary except at the production (corner C1) and injection (corner C2) wells. The non-zero macro-velocity at these opposite corners
is prescribed by applying the source/sink term. In this figure, h denotes the element size.

Table 6
Data-set for the quarter five-spot problem.

Parameter Value

γ b {0.0, 0.0}

Lx 1.0
L y 1.0
µ 1.0
β 1.0
k1 1.0
k2 0.01
un1 0.0 on ∂Ω − {C1 & C2}

un2 0.0 on ∂Ω

Source and sink strength −1 at C1 & + 1 at C2

Figs. 13 and 14 provide the pressure and velocity profiles within the domain for both pore-networks. As can be seen,
steep gradients are captured in the pressure profiles under the proposed formulation. In Fig. 14, the flow concentration
at both wells are shown using arrows.

7. Mechanics-based assessment of numerical accuracy

For all the problems presented in the previous sections (including the ones under the numerical convergence
analysis), analytical solutions are known. For such problems, the accuracy of numerical solutions can be easily
quantified by comparing them with the analytical solutions (either point-wise or in some appropriate norm). But
for practical problems, analytical solutions are seldom known. The question then will be how to assess the accuracy
of numerical solutions for those problems with no available analytical solution. The source of possible error in the
numerical solutions could be either due to the formulation itself or in the computer implementation. Even if the
formulation is known to be a converging scheme, there could be errors in the computer implementation or in setting
up the problem to obtain the numerical solutions (e.g., wrong input data).

Fortunately, the solutions under the double porosity/permeability model enjoy several important mathematical
properties, which can serve as a posteriori error measures. More importantly, these mathematical properties have
strong mechanics underpinning and can be applied to any problem; in particular, they are effective for those problems
without known analytical solutions. Thus, it is appropriate to refer to such an approach as mechanics-based solution
verification method. Such a study has been undertaken for Darcy and Darcy–Brinkman equations by Shabouei and
Nakshatrala [30]. Herein, we extend the approach to the double porosity/permeability model and illustrate its utility
and performance to assess the accuracy of numerical solutions under the proposed stabilized mixed formulation.
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(a) Macro-pressure. (b) Micro-pressure.

Fig. 13. Quarter five-spot problem: This figure shows the macro- and micro-pressure profiles. Steep gradients are captured in the pressure
contours under the proposed formulation.

(a) Macro-velocity. (b) Micro-velocity.

Fig. 14. Quarter five-spot problem: This figure shows the macro- and micro-velocity profiles under the proposed formulation. The flow
concentration at both wells are shown using arrows.

However, it needs to be emphasized that the mechanics-based solution verification method can be applied to any
numerical formulation (which necessarily need not be based on the finite element method) and to any problem.

Recently, Nakshatrala et al. [22] have shown that the exact solutions under the double porosity/permeability satisfy
minimum dissipation theorem, Betti-type reciprocal relations and minimum total power theorem. A numerical solution
need not satisfy these mathematical properties, but the associated errors can be quantified, which can serve as measures
to assess the accuracy of numerical solutions. We now utilize the minimum dissipation theorem and the reciprocal
relation to illustrate the approach to assess the accuracy.

7.1. A posteriori criterion based on the minimum dissipation theorem

Under the double porosity/permeability model, the dissipation functional takes the following form [22]:

Φ [u1, u2] :=

2∑
i=1

(∫
Ω

µK−1
i ui · ui dΩ +

1
2

∫
Ω

µ

β
div [ui ] div [ui ] dΩ

)
. (7.1)

Under the minimum dissipation theorem, it is assumed that γ b(x) is a conservative vector field and the velocity
boundary conditions are prescribed on the entire boundary for both pore-networks (i.e., ∂Ω = Γ u

1 = Γ u
2 ). Moreover,
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a pair of vector fields (̃u1, ũ2) will be referred to as kinematically admissible if it satisfies the prescribed velocity
boundary conditions and the following condition:

div [̃u1] + div [̃u2] = 0 in Ω . (7.2)

Of course, the pair of velocity fields under the exact solution is kinematically admissible. The minimum dissipation
theorem states that the pair of velocity fields under the exact solution achieves the minimum dissipation among the
set of all kinematically admissible vector fields [22].

Before we discuss how the minimum dissipation theorem can be utilized as a posteriori criterion, it is important to
highlight the following three points regarding the relation between numerical solutions and this theorem:

(i) A numerical solution need not be the minimizer of dissipation functional. That is, in the strict sense, a numerical
solution does not satisfy the minimum dissipation theorem.

(ii) More importantly, the pair of velocity fields under a numerical solution may not even be kinematically
admissible.

(iii) It is not computationally attractive to find a numerical solution by solving the constrained optimization problem
that results from the minimum dissipation theorem, as such a solution procedure will be very expensive;
especially, for large-scale practical problems.

A description of the proposed a posteriori criterion based on the minimum dissipation theorem is as follows: Solve
the given boundary value problem under h- or p-refinements. For each case of refinement, evaluate the total dissipation
(7.1) using the obtained numerical solution. Plot the values of the dissipation with respect to characteristic mesh size
h for the case of h-refinement or degrees-of-freedom in the case of p-refinement. The values of the total dissipation
under the obtained numerical solutions should decrease monotonically and reach a plateau upon refinements. We
provide numerical results towards the end of this section which support this trend.

A plausible reasoning for the aforesaid trend can be constructed as follows: Although the pair of velocity fields
under a converging numerical formulation does not strictly satisfy the condition (7.2), the error in meeting this
condition will be small upon adequate h- or p-refinement. Assuming that the velocity boundary conditions are
accurately implemented, the minimum dissipation theorem implies that the obtained total dissipation under the
numerical solution should be higher than the corresponding value under the exact solution. Moreover, for a converging
formulation and under a proper computer implementation of the formulation, a numerical solution should approach
the exact solution upon refinement, and hence, the values of the total dissipation should decrease monotonically upon
refinement. But these values are bounded below by the total dissipation under the exact solution, which again stems
from the minimum dissipation theorem. The mentioned lower bound will be the plateau that the values of the total
dissipation under numerical solutions reach.

The above reasoning also reveals that if the convergence of the total dissipation is not monotonic with refinement,
then one of the hypotheses of the minimum dissipation theorem should have been violated. To put it differently, if
the convergence is not monotonic or there is no convergence at all, one should suspect that there could be significant
errors in satisfying the local mass balance condition (7.2) or in the implementation of boundary conditions.

7.2. A posteriori criterion based on reciprocal relations

Under the reciprocal relation of the double porosity/permeability model, if (u′

1, p′

1, u′

2, p′

2) and (u∗

1, p∗

1, u∗

2, p∗

2) are,
respectively, the exact solutions under prescribed data-sets (b′, u′

n1, p′

01, u′

n2, p′

02) and (b∗, u∗

n1, p∗

01, u∗

n2, p∗

02), then the
pair of exact solutions and the pair of prescribed data-sets satisfy the following relation [22]:∫

Ω

γ b′(x) · u∗

1(x) dΩ −

∫
Γ

p
1

p′

01(x)u∗

1(x) · n̂(x) dΓ −

∫
Γu

1

p′

1(x)u∗

n1(x) dΓ

+

∫
Ω

γ b′(x) · u∗

2(x) dΩ −

∫
Γ

p
2

p′

02(x)u∗

2(x) · n̂(x) dΓ −

∫
Γu

2

p′

2(x)u∗

n2(x) dΓ

=

∫
Ω

γ b∗(x) · u′

1(x) dΩ −

∫
Γ

p
1

p∗

01(x)u′

1(x) · n̂(x) dΓ −

∫
Γu

1

p∗

1(x)u′

n1(x) dΓ

+

∫
Ω

γ b∗(x) · u′

2(x) dΩ −

∫
Γ

p
2

p∗

02(x)u′

2(x) · n̂(x) dΓ −

∫
Γu

2

p∗

2(x)u′

n2(x) dΓ . (7.3)
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Fig. 15. Pipe bend problem: In case 1, for the macro-pore network, an inflow parabolic velocity is enforced on Γ u
inflow while an outflow parabolic

velocity is applied on Γ u
outflow. In case 2, an inflow constant velocity is enforced on Γ u

inflow while an outflow constant velocity is applied on Γ u
outflow

for the macro-pore network. On the other parts of the boundary, normal component of velocity is assumed to be zero.

Unlike the minimum dissipation theorem, the reciprocal relation does not require the velocity boundary conditions
to be prescribed on the entire boundary of the two pore-networks. However, the domain, Ω , and the boundaries, Γ u

1 ,
Γ

p
1 , Γ u

2 , and Γ
p

2 , are considered to be the same for prescribed data-sets. Also the reciprocal relation under the double
porosity/permeability model does not require the set of solutions to be kinematically admissible.

It is important to note that numerical solutions do not possess reciprocal relations. There will always be an error
under numerical solutions with respect to the reciprocal relation (7.3). However, this error can be quantified, and a
way to achieve this is by defining the following scalar quantity, which is a form of relative error:

εreciprocal :=
|l.h.s of Eq. (7.3) − r.h.s of Eq. (7.3)|

l.h.s of Eq. (7.3)
. (7.4)

For exact solutions, we will have εreciprocal = 0. For those problems in which left hand side of Eq. (7.3) vanishes, one
can use an absolute error measure instead of this relative error measure. Thus, the magnitude of εreciprocal will serve as
a measure to assess the accuracy of a numerical formulation.

A description of the proposed a posteriori criterion based on the reciprocal relation is as follows: Solve the given
boundary value problem under h- or p-refinements. For each case of refinement, evaluate the relative error εreciprocal

using the obtained numerical solution. Plot the values of εreciprocal with respect to characteristic mesh size h for the
case of h-refinement or degrees-of-freedom in the case of p-refinement. The values of εreciprocal under the obtained
numerical solutions should decrease monotonically and reach a plateau upon refinements. Similar to the case of a
posteriori criterion based on the minimum dissipation theorem, the numerical results provided at the end of this
section support this trend.

One can construct a plausible reasoning for the mentioned trend in εreciprocal similar to the reasoning provided under
the minimum dissipation theorem. Since the reciprocal relation does not require the velocity fields to be kinematically
admissible (specifically, the velocity fields need not satisfy the local mass balance condition (7.2)), it is reasonable to
conclude that if εreciprocal does not decrease monotonically with refinement, then one should suspect that there could
be significant errors in the implementation of boundary conditions.

7.3. Representative numerical results

To illustrate the performance and utility of the mentioned mechanics-based a posteriori criteria, we employ the
pipe bend problem, which is widely used as a benchmark problem for flow through porous media [49–51]. A pictorial
description of the problem is shown in Fig. 15. The computational domain is a unit square (L = 1.0). For the velocity
boundary conditions, two different cases are considered. For the macro-pore network in case 1, an inflow parabolic
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Table 7
Data-sets for the pipe bend problem.

Case 1 Case 2

L
′

x = 1.0 L∗
x = 1.0

L
′

y = 1.0 L∗
y = 1.0

µ
′

= 1.0 µ∗
= 1.0

β
′

= 1.0 β∗
= 1.0

k
′

1 = 1.0 k∗

1 = 1.0
k

′

2 = 0.01 k∗

2 = 0.01
γ b′

= {1.0, 1.0} γ b∗
= {0.0, 0.0}

u
′

n1 = 100(y − 0.6)(0.8 − y) on Γ u
inflow u∗

n1 = 1.0 on Γ u
inflow

u
′

n1 = −100(x − 0.6)(0.8 − x) on Γ u
outflow u∗

n1 = −1.0 on Γ u
outflow

u
′

n1 = 0 on the other parts of ∂Ω u∗

n1 = 0 on the other parts of ∂Ω

u
′

n2 = 0 on ∂Ω u∗

n2 = 0 on ∂Ω

(a) Dissipation. (b) Error in reciprocal relation.

Fig. 16. Pipe bend problem: The left figure shows the variation of dissipation with mesh refinement for both cases shown in Fig. 15. As can
be seen, the dissipation decreases monotonically with mesh refinement which is in accordance with the theory for this problem. The right figure,
shows the variation of εreciprocal with mesh refinement using the two cases for different orders of interpolation. The numerical error in the reciprocal
relation decreases monotonically with mesh refinement for this test problem which shows the monotonic convergence of numerical solutions.

velocity is enforced on a portion of the left boundary (denoted as Γ u
inflow) while an outflow parabolic velocity is

applied on a portion of the bottom boundary (denoted as Γ u
outflow). In case 2, an inflow constant velocity is enforced

on Γ u
inflow while an outflow constant velocity is applied on Γ u

outflow for the macro-pore network. For both cases, the
normal component of macro-velocity is prescribed to be zero on the rest of the boundary (i.e., un(x) = 0). The normal
component of micro-velocity in both data-sets (u′

n2 and u∗

n2) is zero in the data-sets on the entire boundary. These
sample data-sets are provided in Table 7.

Fig. 16(a) shows how the deviation in dissipation varies with mesh refinement for the numerical solutions obtained
using both data-sets. Under h-refinement, as the mesh size h decreases (or the total number of the elements increases),
the deviation in the dissipation value decreases for both cases and the convergence is monotonic. This deviation can be
further quantified using εreciprocal under the double porosity/permeability model for the sample data-sets as shown in
Fig. 16(b). For different orders of interpolation, the error in reciprocal relation for the two sets of numerical solutions
decreases monotonically with mesh refinement for this test problem which implies that the numerical solutions
converge monotonically. As can be seen, by increasing the order of interpolation for the primary variables, the value
of error is decreased and the numerical solutions get closer to the exact solutions of the model.
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8. An extension to transient analysis

The discussions and the results presented in the previous sections neglected transient flow behavior within the
porous domain. However, unsteady flow characteristics are indispensable in a wide variety of applications such as
the ones observed in aquifers and oil-bearing strata [52], and composite manufacturing applications based on resin
transfer molding [9,53] where two different fibers are usually used, providing two different pathways for the fluid.
In this section, the proposed mixed formulation is extended to the transient case. We first document the governing
equations in a transient setting, which will have an unsteady term in the balance of momentum equation for each
pore-network. A stabilized mixed formulation is then derived for the transient case. Finally, the performance of the
proposed formulation in the transient case will be illustrated using a representative example.

8.1. Unsteady governing equations

Same as before, we consider a bounded domain, Ω ⊂ Rnd , with a piecewise smooth boundary denoted by ∂Ω .
The time is denoted by t ∈ [0, T ], where T is the total time of interest. Darcy velocity (vector) fields in macro- and
micro-pores at any spatial point x are denoted by u1(x, t) and u2(x, t) respectively, while macro- and micro-pressure
(scalar) fields are denoted by p1(x, t), and p2(x, t). The specific body force can also depend on time and is denoted
by b(x, t). Assuming that the porosities in the two pore-networks do not change with time, the transient governing
equations can be written as follows:

ρ1
∂u1

∂t
+ µK−1

1 u1 + grad[p1] = γ b in Ω × (0, T ) (8.1a)

ρ2
∂u2

∂t
+ µK−1

2 u2 + grad[p2] = γ b in Ω × (0, T ) (8.1b)

div[u1] = +χ in Ω × (0, T ) (8.1c)
div[u2] = −χ in Ω × (0, T ) (8.1d)
u1(x, t) · n̂(x) = un1(x, t) on Γ u

1 × (0, T ) (8.1e)
u2(x, t) · n̂(x) = un2(x, t) on Γ u

2 × (0, T ) (8.1f)
p1(x, t) = p01(x, t) on Γ

p
1 × (0, T ) (8.1g)

p2(x, t) = p02(x, t) on Γ
p

2 × (0, T ) (8.1h)
u1(x, 0) = u01(x) in Ω (8.1i)
u2(x, 0) = u02(x) in Ω (8.1j)

where u01(x) and u02(x) are the prescribed initial velocities within the domain. The definitions for the other symbols
remain the same as before. It is understood that the quantities corresponding to these symbols will now depend on the
time, expect for the unit outward normal, as the domain is fixed and does not evolve with respect to the time. We now
derive a stabilized formulation for the mentioned transient governing equations under the double porosity/permeability
model.

8.2. A stabilized mixed formulation for the transient case

We employ the method of horizontal lines (also known as the Rothe’s method) [54], which is different from the
semi-discrete method (also known as the method of vertical lines) [55]. Under the method of horizontal lines, a given
partial differential equation (which depends on both space and time) is discretized temporally using a time-stepping
scheme. This gives rise to another partial differential equation which depends only on the spatial coordinates, and
can be further discretized spatially using the finite element method, the finite difference method or the finite volume
method. On the other hand, under the semi-discrete method, the given spatially and temporally dependent partial
differential equation is first spatially discretized, say, using the finite element method, giving rise to a system of
ordinary differential equations; which can be numerically solved by employing a convenient time-stepping scheme.

Herein, we employ the backward Euler time stepping scheme for the temporal discretization of the transient
governing equations under the method of horizontal lines. However, one can employ any other time-stepping scheme
with a straightforward modification. The backward Euler is first-order accurate and unconditionally stable when
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applied to a linear system of ordinary differential equations [56]. The time interval of interest is discretized into
N + 1 time levels denoted as tn (n = 0, . . . , N ) by assuming uniform time steps (∆t = tntn1); however, one can
consider non-uniform time steps by applying simple modifications. For a given quantity z(x, t), the time discretized
version at the instant of time tn can be written as follows:

z(n)(x) ≈ z(x, tn), n = 0, . . . , N . (8.2)

The resulting time discretized equations at time level t = tn+1 under the method of horizontal lines using the
backward Euler time-stepping scheme take the following form:

ρ1
u(n+1)

1 − u(n)
1

∆t
+ µK−1

1 u(n+1)
1 + grad[p(n+1)

1 ] = γ b(n+1) in Ω (8.3a)

ρ2
u(n+1)

2 − u(n)
2

∆t
+ µK−1

2 u(n+1)
2 + grad[p(n+1)

2 ] = γ b(n+1) in Ω (8.3b)

div[u(n+1)
1 ] = +χ (n+1) in Ω (8.3c)

div[u(n+1)
2 ] = −χ (n+1) in Ω (8.3d)

u(n+1)
1 (x) · n̂(x) = un1(x, t = tn+1) on Γ u

1 (8.3e)

u(n+1)
2 (x) · n̂(x) = un2(x, t = tn+1) on Γ u

2 (8.3f)

p(n+1)
1 (x) = p(n+1)

01 (x) = p01(x, t = tn+1) on Γ
p

1 (8.3g)

p(n+1)
2 (x) = p(n+1)

02 (x) = p02(x, t = tn+1) on Γ
p

2 (8.3h)

u(0)
1 (x) = u01(x) in Ω (8.3i)

u(0)
2 (x) = u02(x) in Ω (8.3j)

Eqs. (8.3a) and (8.3b) can be rearranged as follows:( ρ1

∆t
I + µK−1

1

)
u(n+1)

1 + grad[p(n+1)
1 ] = γ

(
b(n+1)

+
φ1

∆t
u(n)

1

)
in Ω (8.4a)( ρ2

∆t
I + µK−1

2

)
u(n+1)

2 + grad[p(n+1)
2 ] = γ

(
b(n+1)

+
φ2

∆t
u(n)

2

)
in Ω (8.4b)

where the (modified) drag coefficients and (modified) body forces can be written as follows:

α̂1 =

( ρ1

∆t
I + µK−1

1

)
(8.5a)

α̂2 =

( ρ2

∆t
I + µK−1

2

)
(8.5b)

b̃(n+1)
1 =

(
b(n+1)

+
φ1

∆t
u(n)

1

)
(8.5c)

b̃(n+1)
2 =

(
b(n+1)

+
φ2

∆t
u(n)

2

)
(8.5d)

where φ1 and φ2 are, respectively, the volume fractions associated with the two pore-networks, relating the bulk
density and the true density as ρi = φiγ (i = 1, 2).

The stabilized mixed formulation for the unsteady condition at time level t = tn+1 reads as: Find
(

u(n+1)
1 (x),

u(n+1)
2 (x)

)
∈ Ū1,t=tn+1 × Ū2,t=tn+1 , and

(
p(n+1)

1 (x), p(n+1)
2 (x)

)
∈ Q̄ such that we have

Bstab(w1, w2, q1, q2; u(n+1)
1 , u(n+1)

2 , p(n+1)
1 , p(n+1)

2 ) = Ltran
stab(w1, w2, q1, q2)

∀ (w1(x), w2(x)) ∈ W̄1 × W̄2, (q1(x), q2(x)) ∈ Q̄. (8.6)

The linear functional under the transient condition Ltran
stab(w1, w2, q1, q2) is slightly different from the one under the

steady-state condition. Under the steady-state condition, the body forces, denoted by b(x), are similar in both pore-
networks. However, for the transient case, body forces in the macro- and micro-pore networks (b̃(n+1)

1 and b̃(n+1)
2 ) are

different and one should substitute b(x) in the Lstab(w1, w2, q1, q2) by the associated value in each pore-network in
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Fig. 17. Transient 2D flow problem: This figure shows the computational domain, initial and boundary conditions for the transient problem.

order to obtain Ltran
stab(w1, w2, q1, q2). It should also be noted that in the bilinear form and the linear functional of the

proposed formulation provided in Eqs. (3.8) and (3.9) , µK−1
i should be replaced by α̂i , (i = 1, 2).

A systematic numerical implementation of the proposed formulation is outlined in Algorithm 1. It should be noted
that, we need not evaluate all the terms in the variational form, especially the terms in Bstab, at each time step since
most of them do not depend on the temporal variable. Therefore, it is enough to only evaluate the terms involving
b̃(n+1)

i , i = 1, 2 in the Ltran
stab repeatedly.

Algorithm 1 Implementation of the proposed formulation.

1: Inputs: Initial conditions u01 and u02, time period of integration T , maximum allowable time step ∆tmax

2: Set u(n)
1 = u01 and u(n)

2 = u02
3: Set t = 0
4: while t < T do
5: ∆t = min[∆tmax, T − t], t = t + ∆t
6: Using u(n)

1 and u(n)
2 , solve Eq. (8.6) to obtain

u(n+1)
1 , u(n+1)

2 , p(n+1)
1 , and p(n+1)

2
7: Set u(n)

1 = u(n+1)
1 and u(n)

2 = u(n+1)
2

8: end while

The relevant function spaces for the velocity and pressure fields and their corresponding weighting functions under
the transient case are defined as follows:

Ū1,t :=

{
u1(x) ∈ (L2(Ω ))nd

⏐⏐⏐ div[u1] ∈ L2(Ω ), u1(x) · n̂(x) = un1(x, t) on Γ u
1

}
(8.7a)

Ū2,t :=

{
u2(x) ∈ (L2(Ω ))nd

⏐⏐⏐ div[u2] ∈ L2(Ω ), u2(x) · n̂(x) = un2(x, t) on Γ u
2

}
(8.7b)

W̄1 :=

{
w1(x) ∈ (L2(Ω ))nd

⏐⏐⏐ div[w1] ∈ L2(Ω ), w1(x) · n̂(x) = 0 on Γ u
1

}
(8.7c)

W̄2 :=

{
w2(x) ∈ (L2(Ω ))nd

⏐⏐⏐ div[w2] ∈ L2(Ω ), w2(x) · n̂(x) = 0 on Γ u
2

}
(8.7d)

Q̄ :=

{
(p1(x), p2(x)) ∈ H 1(Ω ) × H 1(Ω )

⏐⏐⏐ (∫
Ω

p1(x)dΩ
) (∫

Ω

p2(x)dΩ
)

= 0
}

. (8.7e)

8.3. A representative numerical example

We now illustrate the performance of the proposed stabilized mixed formulation for studying transient flow
problems using a two-dimensional problem. Moreover, some unique features of flows in porous media exhibiting
two distinct pore-networks are illustrated.

The computational domain Ω is chosen to be the region in-between a rectangle of length 10.0 and height 1.0 and
two square holes each of length 0.4. Zero-flux boundary conditions for both macro-pore and micro-pore networks
are prescribed at the holes as well as top and bottom edges of the rectangular domain. At the right end, pressure is
prescribed at both pore-networks. At the left end, however, zero-flux boundary condition is prescribed for the micro-
pore network and pressure is prescribed for the macro-pore network. The initial velocities for both fluid constituents
are assumed to be zero. A pictorial description of the domain as well as the initial and boundary conditions are
illustrated in Fig. 17. Table 8 provides the parameter values for the two-dimensional transient flow problem.
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Table 8
Data-set for two-dimensional transient flow problem.

Parameter Value

γ b {0.0, 0.0}

Lx 10.0
L y 1.0
Lhole 0.4
µ 1.0
β 1.0
k1 10 000
k2 1.0
pL

1 10 sin(0.4(y + 2.0t))
pR

1 10.0
pR

2 10.0
uL

n2 0.0
u R

n2 0.0
u01 0.0
u02 0.0
∆t 5e−11
T 6e−8

Fig. 18. Transient 2D flow problem: This figure shows a comparison between macro- and micro-velocities at different time steps. As can be seen,
the rate of decay of the solution in the macro-pore network is slower than that of the micro-pore network which is due to the higher permeability of
the macro-pore network. Hence, the micro-velocity reaches the steady state faster than the macro-velocity.

Fig. 18 shows a comparison between macro-velocity (u1) and micro-velocity (u2) at selected time steps. As can
be seen in this figure, the rate of decay of the solution in the macro-pore network (which has a higher permeability
than the micro-pore network) is slower than that of the micro-pore network, and hence, the micro-velocity reaches the
steady-state faster than the macro-velocity. This is not counterintuitive if one realizes that the rate of dissipation in a
pore-network is inversely proportional to the permeability of the pore-network. Specifically, the rates of dissipation
in macro- and micro-pore networks under the double porosity/permeability model are, respectively, defined as
follows [22]:

µK−1
1 u1 · u1 and µK−1

2 u2 · u2

It is also noteworthy to recall the definition of permeability of a porous medium, which is a measure of the ability of
the porous medium to transmit fluids through it. To put it differently, the greater is the permeability the lesser will be
resistance offered by the pore-network, and hence the greater will be the ease with which a fluid flows through the
pore-network.



S.H.S. Joodat et al. / Comput. Methods Appl. Mech. Engrg. 337 (2018) 632–676 665

9. Coupled problems

Experimental studies on Darcy flow coupled with transport problem have revealed the possibility of occurrence of
certain physical instabilities called Saffman–Taylor instability [33,57]. In the miscible displacement of fluids in porous
media with a single pore-network, a more viscous fluid is displaced by a less viscous fluid within the domain [58,59].
Imposing any disturbance or perturbation on the interface of the two fluids leads to appearance of finger-like patterns
at the interface of the two fluids due to the penetration of the less viscous fluid into the more viscous one. This type of
physical instability, which is commonly observed in a wide variety of industrial and environmental applications such
as carbon-dioxide sequestration and secondary and tertiary oil recovery, is also referred to as viscous fingering (VF)
instability [59–61].

All the existing theoretical and numerical studies in the literature are available for the classical Saffman–Taylor
instability. The questions remaining are whether similar physical instabilities can be captured under the double
porosity/permeability model and if so, how the flow model can affect the mechanism of the instabilities and their
characteristics (i.e., number of fingers, their characteristic length, growth rate, scaling laws, etc.). Herein, we cannot
provide an exhaustive study on such well-known instabilities in fluid mechanics and many important areas of research
associated with viscous fingering are not included in our discussion. Therefore, we only address the former question
by studying the possibility of occurrence of Saffman–Taylor-type instabilities under the double porosity/permeability
model. The proposed stabilized formulation will be employed for modeling double porosity/permeability model
coupled with transport problem to illustrate the capability of the proposed computational framework for capturing
Saffman–Taylor-type instabilities within a porous domain exhibiting double pore-networks. However, studying the
effects of the flow model (double porosity/permeability model versus Darcy model) on the mode and patterns of the
instabilities is beyond the scope of this paper and will be addressed in a separate paper.

9.1. Governing equations: coupled flow and transport problem

Viscous fingering can be considered as a two-way coupled flow and transport problem and is studied in the Hele-
Shaw cell. The governing equations can be written as follows:

µK−1
1 u1(x, t) + grad[p1(x, t)] = γ b(x, t) in Ω × (0, T ) (9.1a)

µK−1
2 u2(x, t) + grad[p2(x, t)] = γ b(x, t) in Ω × (0, T ) (9.1b)

div[u1(x, t)] = +χ (x, t) in Ω × (0, T ) (9.1c)

div[u2(x, t)] = −χ (x, t) in Ω × (0, T ) (9.1d)

u1(x, t) · n̂(x) = un1(x, t) on Γ u
1 × (0, T ) (9.1e)

u2(x, t) · n̂(x) = un2(x, t) on Γ u
2 × (0, T ) (9.1f)

p1(x, t) = p01(x, t) on Γ
p

1 × (0, T ) (9.1g)

p2(x, t) = p02(x, t) on Γ
p

2 × (0, T ) (9.1h)

∂c(x, t)
∂t

+ div
[
u(x, t)c(x, t) − D(x, t)grad[c(x, t)]

]
= f (x, t) in Ω × (0, T ) (9.1i)

c(x, t) = cp(x, t) on Γ D
× (0, T ) (9.1j)

n̂(x) · (u(x, t)c(x, t) − D(x, t)grad[c(x, t)]) = q p(x, t) on Γ N
× (0, T ) (9.1k)

c(x, t = 0) = c0(x) in Ω (9.1l)

where Eqs. (9.1a)–(9.1h) represent the flow equations under the double porosity/permeability model, and Eqs. (9.1i)
and (9.1l) represent the transient advection–diffusion problem. Herein, c(x, t) denotes the concentration and D(x, t)
is the diffusivity tensor.

In order to assure the proper coupling between flow problem and the transient advection–diffusion problem, the
viscosity is assumed to exponentially depend on the concentration as follows:

µ(c(x, t)) = µ0exp [Rc(1 − c(x, t))] (9.2)
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Fig. 19. Hele-Shaw cell: This figure shows the pictorial description of the coupled flow-transport problem including initial and boundary
conditions.

Table 9
Data-set for coupled flow and transport problem.

Parameter Value

γ b {0.0, 0.0}

f 0.0
Lx 1.0
L y 0.4
µ0 0.001
Rc 3.0
D 2e−6
β 1.0
K1 [1.0, 0.0; 0.0, 0.5]
K2 [0.05, 0.0; 0.0, 0.01]
c0 0.0
cinj 1.0
patm 1.0
uinj 0.004
∆t 0.5
T 150

where µ0 is the base viscosity and Rc denotes the log-mobility ratio in an isothermal miscible displacement. Fig. 19
represents the computational domain as well as the assigned initial and boundary conditions for this boundary value
problem. Parameter values for this coupled flow and transport problem are provided in Table 9. The perturbation on
the interface of the two fluids is imposed by considering heterogeneous material properties for the porous domain,
such as heterogeneous permeabilities. Moreover, the initial condition for the transport problem is defined using a
random function throughout the domain.

Fig. 20 shows the concentration profile under the double porosity/permeability model. Two main inferences
can be drawn from this figure. First, Saffman–Taylor-type physical instability can also occur under the double
porosity/permeability model. As discussed earlier, the classical Saffman–Taylor instability has been shown to occur
under the Darcy model. However, a further systematic study needs to be conducted to find out the similarities and
differences between the classical Saffman–Taylor instability and the one under the double porosity/permeability
model. Second, the proposed stabilized formulation is capable of eliminating the spurious numerical instabilities
without suppressing the underlying physical instability. Achieving this important attribute under the proposed
stabilized formulation is one of the main contributions of this paper, as it has been shown recently that some stabilized
formulations (for example, the Streamline/Upwind Petrov Galerkin (SUPG), and Galerkin Least-Squares (GLS)
formulations) which are commonly used to suppress spurious numerical instabilities, may also suppress physical
instabilities in some cases [32].

To facilitate readers to be able to reproduce the results presented in this section for the coupled problem, we
provided a FEniCS-based computer code in Appendix B.
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Fig. 20. Coupled flow-transport problem: This figure shows that Saffman–Taylor-type physical instabilities can also occur in a porous domain
exhibiting double porosity/permeability. As can be seen, the proposed stabilized formulation is capable of eliminating the spurious numerical
instabilities without suppressing the underlying physical instability.

10. Concluding remarks

This paper has made several contributions to the modeling of fluid flow in porous media with dual pore-networks
and possible mass transfer across the pore-networks. First, a stabilized mixed finite element formulation has been
presented for the double porosity/permeability mathematical model. Second, a systematic error analysis has been
performed on the proposed stabilized weak formulation. Numerical convergence analysis and patch tests have been
used to illustrate the convergence behavior and accuracy of the proposed mixed formulation in the discrete setting.
Third, the mathematical properties that the solutions of the double porosity/permeability model enjoy have been
utilized to construct mechanics-based a posteriori error measures to assess the accuracy of the numerical solutions.
Last but not least, the performance of the proposed stabilized mixed formulation for modeling the transient flow
as well as coupled problems has been illustrated using representative numerical examples. Some of the significant
findings of this paper can be summarized as follows:

(C1) Equal-order interpolation for all the field variables (pressure and velocity vector fields), which is computation-
ally the most convenient, is stable under the proposed stabilized mixed formulation.

(C2) Patch tests revealed that the classical mixed formulation produces spurious node-to-node oscillations in the
pressure fields under equal-order interpolation for all the field variables. The proposed stabilized mixed
formulation was able to eliminate such unphysical oscillations in the pressure fields, and passed the patch
tests up to the machine precision.

(C3) The numerical convergence rates obtained using the proposed stabilized formulation were in accordance with
the theory for both h- and p-refinements.

(C4) The accuracy of numerical solutions was assessed using the mechanics-based a posteriori error measures
for the pipe bend problem. The errors decreased monotonically with mesh refinement for different orders of
interpolation. This implies that the stabilized formulation is convergent and the computer implementation is
correct. It should be noted that the mechanics-based solution verification method can be applied to any problem
with any boundary condition.
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(C5) An extension of the proposed formulation to the transient case has performed well, as it was able to predict
accurately that the rate of decay of the response (e.g., the velocity front) in the macro-pore network is slower
than that of the micro-pore network. Physically, this phenomenon of slower decay can be attributed to the higher
permeability (which implies lower dissipation, as dissipation is inversely proportional to the permeability) in
the macro-pore network.

(C6) The proposed stabilized mixed formulation suppressed the unphysical numerical instabilities but yet captured
the underlying physical instability when applied to a coupled flow and transport problem in porous media with
dual pore-networks. The captured physical instability, is similar to the classical Saffman–Taylor instability
that has been shown to exist for coupled Darcy and transport equations. The proposed formulation will
be particularly attractive for studying physical instabilities, as it has been shown recently that some well-
known stabilized formulations which are designed to suppress numerical instabilities also suppressed physical
instabilities.

The research presented herein can be extended on three fronts.

(R1) One can develop a hierarchy of mathematical models by incorporating other processes into the double
porosity/permeability model. For example, the flow of multi-phase fluids in porous media exhibiting double
porosity/permeability, and the incorporation of deformation of porous solid.

(R2) One can perform a theoretical study on the Saffman–Taylor-type instabilities under the double porosity/perme-
ability model. In particular, one can address whether there are additional instability modes under the double
porosity/permeability model when compared with the classical Saffman–Taylor instability (which is based on
the Darcy model). One can also obtain scaling laws.

(R3) Heterogeneity of material properties and discontinuous distribution of permeability are very common in
subsurface formations. Studies for the case of Darcy equations have shown that continuous formulations
cannot properly handle abrupt changes in material properties, as the numerical solutions suffer from Gibbs
phenomenon (which manifests as spurious oscillations in the numerical solution fields) [31]. Thus one can
develop a stabilized mixed discontinuous Galerkin formulation for the double porosity/permeability model that
does not suffer from the Gibbs phenomenon in the solution fields when applied to problems with disparate
medium properties.

Appendix A. Derivation of the proposed stabilized formulation

We provide a formal mathematical derivation of the proposed stabilized mixed weak formulation. We employ the
variational multiscale paradigm [23], and obtain the stabilization terms and the stabilization parameter in a consistent
manner. Such an approach has been successfully employed to develop stabilized formulations for porous media models
with single pore-network; for example, see [7,9,31]. The basic idea is to decompose the solution into resolved and
unresolved components, estimate the unresolved component, and substitute the estimated component into the weak
form to obtain the proposed stabilized mixed formulation. By a resolved component, we refer to that part of the
solution that is captured by the underlying formulation (which, in our case, is the classical mixed formulation). The
unresolved component can be interpreted as the difference between the exact solution and the resolved component. To
improve the accuracy of the numerical solution, the unresolved components need to be estimated accurately, which
can be achieved using the variational multiscale paradigm.

We start our derivation by decomposing the macro-scale and micro-scale velocities into resolved and unresolved
components. Mathematically,

u1(x) = u1(x)  
resolved

+ u′

1(x)  
unresolved

and u2(x) = u2(x)  
resolved

+ u′

2(x)  
unresolved

(A.1)

where the resolved components are denoted by over-lines, and the primed quantities represent the unresolved
components. Similarly, the weighting functions corresponding to these velocities are decomposed as follows:

w1(x) = w1(x) + w′

1(x) and w2(x) = w2(x) + w′

2(x). (A.2)

In principle, one could perform a similar decomposition to the macro- and micro-pressure fields. Herein, we assume
that the pressure fields will be adequately resolved. Therefore, we do not decompose the pressure fields (i.e., p1(x)
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and p2(x)) and the corresponding weighting functions (i.e., q1(x) and q2(x)). In Sections 4 and 5, we have illustrated,
through stability analysis and numerical simulations, that such an assumption is still able to provide a stable and
accurate formulation. To localize the unresolved components, we enforce the closure conditions that the unresolved
components of the velocities and their weighting functions vanish on the element boundaries. That is,

u′

1(x) = 0, u′

2(x) = 0, w′

1(x) = 0 and w′

2(x) = 0 on ∂Ω e
; e = 1, . . . , Nele. (A.3)

By substituting the multiscale decompositions given by Eqs. (A.1) and (A.2) into the classical mixed formulation
given in Eq. (3.4), invoking the arbitrariness of the weighting functions ( w(x) and w′(x)), and enforcing the closure
conditions given by Eq. (A.3), we obtain two subproblems for each pore-network. The two subproblems corresponding
to the macro-pore network can be written as follows:

(w1; µK−1
1 u1 + µK−1

1 u
′

1) − (div[w1]; p1) + (q1; div[u1] + div[u
′

1]) + (q1; β/µ(p1 − p2)) =

(w1; γ b) − ⟨w1 · n̂; p01⟩Γp
1

(A.4a)

(w
′

1; µK−1
1 u1 + µK−1

1 u
′

1)Ωe − (div[w
′

1]; p1)Ωe = (w
′

1; γ b)Ωe ∀e = 1, . . . , Nele. (A.4b)

The two subproblems corresponding to the micro-pore network can be written as follows:

(w2; µK−1
2 u2 + µK−1

2 u
′

2) − (div[w2]; p2) + (q2; div[u2] + div[u
′

2]) − (q2; β/µ(p1 − p2)) =

(w2; γ b) − ⟨w2 · n̂; p02⟩Γp
2

(A.5a)

(w
′

2; µK−1
2 u2 + µK−1

2 u
′

2)Ωe − (div[w
′

2]; p2)Ωe = (w
′

2; γ b)Ωe ∀e = 1, . . . , Nele. (A.5b)

We enforce the closure conditions using bubble functions, which vanish on the boundary of the domain on which
they are defined [62]. We, therefore, mathematically write the unresolved quantities as follows:

u′

1(x) = be(x)ξ 1, w′

1(x) = be(x)ζ 1, u′

2(x) = be(x)ξ 2 and w′

2(x) = be(x)ζ 2 ∀x ∈ Ω e (A.6)

where ξ 1, ξ 2, ζ 1 and ζ 2 are constant vectors independent of x, and be(x) is a bubble function defined on the element
Ω e. By substituting Eq. (A.6) into the subproblems given by Eqs. (A.4b) and (A.5b), and noting that ζ 1 and ζ 2 are
arbitrary vectors; we estimate the unresolved velocities as follows:

u
′

1(x) = −be(x)
(∫

Ωe

(
be(x)

)2dΩ
)−1 ∫

Ωe
be(y)r1(y)dΩy (A.7a)

u
′

2(x) = −be(x)
(∫

Ωe

(
be(x)

)2dΩ
)−1 ∫

Ωe
be(y)r2(y)dΩy (A.7b)

where the residuals of the resolved quantities for the macro and micro pore-networks are, respectively, defined as
follows:

r1(x) = u1(x) +
1
µ

K1 (grad[p1] − γ b(x)) (A.8)

r2(x) = u2(x) +
1
µ

K2 (grad[p2] − γ b(x)) . (A.9)

Since in a finite element setting, the residuals (r1(x) and r2(x)) are essentially constant over an element in the limit of
an adequately refined mesh, the velocities in Eqs. (A.7a) and (A.7b) can be written as follows:

u′

1(x) = −τ (x)r1(x) and u′

2(x) = −τ (x)r2(x) (A.10)

where the stabilization parameter τ (x) takes the following form:

τ (x) = be(x)
(∫

Ωe

(
be(x)

)2dΩ
)−1 (∫

Ωe
be(x)dΩ

)
(A.11)

One can employ the above stabilization parameter for obtaining a stabilized formulation. However, for the double
porosity/permeability model it is adequate to employ a representative value for the stabilization parameter, which is
justified by the convergence analysis we presented in this paper. To obtain a representative value for the stabilization
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parameter, we consider the average of τ (x), which can be written as follows:

τavg =
1

meas(Ω e)

∫
Ωe

τ (x)dΩ =

(∫
Ωe

(
be(x)

)2dΩ
)−1(∫

Ωe
be(x)dΩ

)2

(A.12)

where meas(Ω e) denotes the measure of Ω e (By measure we mean length in 1D, area in 2D and volume in 3D.) It
has been shown in [9] that it is possible to construct a bubble function that gives a value of one-half for τavg for a
given Ω e. We thus take one-half to be the representative value for the stabilization parameter. We then approximate
the unresolved components of the velocities as follows:

u′

1(x) ≈ −
1
2

r1(x) and u′

2(x) ≈ −
1
2

r2(x). (A.13)

By substituting the above expressions into the subproblems given by Eqs. (A.4a) and (A.5a), and noting the definitions
for r1(x) and r2(x), we obtain a stabilized formulation of the following form:

BGal(w1, w2, q1, q2; u1, u2, p1, p2) −
1
2

(
µK−1

1 w1 − grad[q1]; u1 +
1
µ

K1grad[p1]
)

−
1
2

(
µK−1

2 w2 − grad[q2]; u2 +
1
µ

K2grad[p2]
)

= LGal(w1, w2, q1, q2)

−
1
2

(
µK−1

1 w1 − grad[q1];
1
µ

K1γ b
)

−
1
2

(
µK−1

2 w2 − grad[q2];
1
µ

K2γ b
)

(A.14)

where BGal and LGal are defined in Eqs. (3.5) and (3.6), respectively. It should be noted that all the quantities in
the above equation are resolved components. We therefore drop the over-lines for convenience, and write the above
stabilized mixed formulation in the following compact form:

Bstab(w1, w2, q1, q2; u1, u2, p1, p2) = Lstab(w1, w2, q1, q2)

∀ (w1(x), w2(x)) ∈ W1 × W2, (q1(x), q2(x)) ∈ Q (A.15)

where the bilinear form and the linear functional are, respectively, defined as follows:

Bstab(w1, w2, q1, q2; u1, u2, p1, p2) := BGal(w1, w2, q1, q2; u1, u2, p1, p2)

−
1
2

(
µK−1

1 w1 − grad[q1];
1
µ

K1(µK−1
1 u1 + grad[p1])

)
−

1
2

(
µK−1

2 w2 − grad[q2];
1
µ

K2(µK−1
2 u2 + grad[p2])

)
(A.16)

Lstab(w1, w2, q1, q2) := LGal(w1, w2, q1, q2) −
1
2

(
µK−1

1 w1 − grad[q1];
1
µ

K1γ b
)

−
1
2

(
µK−1

2 w2 − grad[q2];
1
µ

K2γ b
)

. (A.17)

It is important to note that the stabilization terms are residual-based. Moreover, the stabilization terms are of
adjoint-type and are not of least-squares-type.

Appendix B. FEniCS project

The FEniCS Project [63,64] is a python-based open-source library that enables automated solution of partial
differential equations using the finite element method. It is built upon several scientific packages and can employ
parallel computing tools to obtain the solution. Two of its components which we have used in our work are the Unified
Form Language (UFL) [65] (which is used to declare finite element discretizations of variational forms), and the
DOLFIN library [66,67] (which is used for the automated assembly of the finite element discrete formulations). The
mesh can either be generated internally or imported from third party mesh generators like GMSH [68]. To facilitate
readers to be able to reproduce the results presented in this paper, we provided some useful FEniCS-based computer
code below.
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Listing 1: FEniCS code for solving the coupled problem
1 from dolfin import *
2 import numpy
3 import random
4

5 #== Create mesh ==
6 nx, ny = 400, 160
7 Lx, Ly = 1.0, 0.4
8 mesh = RectangleMesh(Point(0,0), Point(Lx,Ly), nx, ny,"left/right")
9

10 #== Function spaces ==
11 #−−−Double porosity/permeability flow problem−−−

12 velSpace = VectorFunctionSpace(mesh,"CG",1)
13 pSpace = FunctionSpace(mesh,"CG",1)
14 wSpace = MixedFunctionSpace([velSpace,pSpace,velSpace,pSpace])
15

16 #−−−Advection−diffusion problem−−−

17 uSpace = FunctionSpace(mesh,"CG",1)
18

19 #== Material properties ==
20 mu0, Rc, D = Constant(1e−3), Constant(3.0), Constant(2e−6)
21 k1 = as matrix([[1.0,0.],[0.,0.5]]) #macro−permeability
22 k2 = as matrix([[0.05,0.],[0.,0.01]]) #micro−permeability
23 k1 inv = inv(k1)
24 k2 inv = inv(k2)
25

26 #== Boundary and initial conditions ==
27 v inj = Constant(4e−3)
28 p atm = Constant(−1.0)
29 c inj = Constant(1.0)
30

31 #== Perturbation function for initial concentration ==
32 #−−−Needed to trigger the instability−−−

33 class c 0(Expression):
34 def eval(self, values, x):
35 if x[0] < 0.010*Lx:
36 values[0] = abs(.10*exp(−x[0]*x[0]) * random.random())
37 else:
38 values[0] = 0.0
39

40 #== Define trial and test functions ==
41 #−−−DPP flow problem−−−

42 (v1,p1,v2,p2) = TrialFunctions(wSpace)
43 (w1,q1,w2,q2) = TestFunctions(wSpace)
44 DPP solution = Function(wSpace)
45

46 #−−−AD problem−−−

47 c1 = TrialFunction(uSpace)
48 u = TestFunction(uSpace)
49 conc = Function(uSpace)
50 conc k = interpolate(c 0(),uSpace)
51

52 #== Time parameters ==
53 T = 150.0 # Total simulation time
54 dt = .50 # Time step
55

56 #== Define boundaries ==
57 class Topbottom(SubDomain):
58 def inside(self, x, on boundary):
59 return on boundary and x[1] < DOLFIN EPS or x[1] > Ly − DOLFIN EPS
60

61 class Left(SubDomain):
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62 def inside(self, x, on boundary):
63 return on boundary and x[0] < DOLFIN EPS
64

65 class Right(SubDomain):
66 def inside(self, x, on boundary):
67 return on boundary and x[0] > Lx − DOLFIN EPS
68

69 #−−−Initialize sub−domain instances−−−

70 topbottom = Topbottom()
71 left = Left()
72 right = Right()
73

74 #−−−Initialize mesh function for interior domains−−−

75 domains = CellFunction("size t", mesh)
76 domains.set all(0)
77

78 #−−−Initialize mesh function for boundary domains−−−

79 boundaries = FacetFunction("size t", mesh)
80 boundaries.set all(0)
81

82 topbottom.mark(boundaries,1)
83 left.mark(boundaries,2)
84 right.mark(boundaries,3)
85

86 #== Boundary conditions ==
87 #−−−DPP velocity BCs−−−

88 bctopbottom v1 = DirichletBC(wSpace.sub(0).sub(1),Constant(0.0),boundaries,1)
89 bcleft v1 = DirichletBC(wSpace.sub(0).sub(0),v inj,boundaries,2)
90 bctopbottom v2 = DirichletBC(wSpace.sub(2).sub(1),Constant(0.0),boundaries,1)
91 bcleft v2 = DirichletBC(wSpace.sub(2).sub(0),Constant(0.0),boundaries,2)
92

93 bcDPP = [bctopbottom v1,bcleft v1,bctopbottom v2,bcleft v2]
94

95 #−−−AD concentration BCs−−−

96 bcleft c = DirichletBC(uSpace,c inj,boundaries,2)
97

98 bcAD = [bcleft c]
99

100 #== Define domain and boundary measures ==
101 dx = Measure("dx")[domains]
102 ds = Measure("ds")[boundaries]
103

104 #== Define source terms ==
105 #−−−DPP model−−−

106 rhob = Expression(("0","0"))
107

108 #−−−AD problem−−−

109 f = Constant(0.0)
110

111 #== Specify model parameters ==
112 #−−−DPP flow parameters−−−

113

114 def alpha1(c):
115 return mu0 * exp(Rc * (1.0 − c)) * k1 inv
116

117 def invalpha1(c):
118 return inv(alpha1(c))
119

120 def alpha2(c):
121 return mu0 * exp(Rc * (1.0 − c)) * k2 inv
122

123 def invalpha2(c):
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124 return inv(alpha2(c))
125

126 #−−−Normal vectors−−−

127 n left = Expression(("−1.0","0.0"))
128 n right = Expression(("1.0","0.0"))
129

130 #−−−Normal components in DPP flow model−−−

131 w1 dot nl = dot(w1,n left)
132 w1 dot nr = dot(w1,n right)
133

134 w2 dot nl = dot(w2,n left)
135 w2 dot nr = dot(w2,n right)
136

137 #== Define variational forms ==
138

139 #−−−DPP stabilized mixed formulation−−−

140 aDPP = inner(alpha1(conc k)*v1,w1)*dx + inner(alpha2(conc k)*v2,w2)*dx \

141 − div(w1)*p1*dx − div(w2)*p2*dx + div(v1)*q1*dx + div(v2)*q2*dx \

142 + q1 * (p1 − p2) * dx − q2 * (p1 − p2) * dx \

143 − 0.5*inner(invalpha1(conc k)*(alpha1(conc k)*v1 + grad(p1)),
144 alpha1(conc k)*w1 − grad(q1))*dx \

145 − 0.5*inner(invalpha2(conc k)*(alpha2(conc k)*v2 + grad(p2)),
146 alpha2(conc k)*w2 − grad(q2))*dx
147

148 LDPP = dot(rhob,w1)*dx + dot(rhob,w2)*dx −\

149 dot(p atm,w1 dot nr) * ds(3) − dot(p atm,w2 dot nr) * ds(3) − \

150 0.5*inner(invalpha1(conc k)*rhob, alpha1(conc k)*w1 − grad(q1))*dx −\

151 0.5*inner(invalpha2(conc k)*rhob, alpha2(conc k)*w2 − grad(q2))*dx
152

153

154 #−−−AD formulation with SUPG Stabilization−−−

155 h = CellSize(mesh)
156 vnorm = sqrt(dot((DPP solution.sub(0)+DPP solution.sub(2)),\

157 (DPP solution.sub(0)+DPP solution.sub(2))))
158

159 taw = h/(2*vnorm)*dot((DPP solution.sub(0)+DPP solution.sub(2)),\

160 grad(u))
161

162 a r = taw*(c1 + dt*(dot((DPP solution.sub(0)+DPP solution.sub(2)),\

163 grad(c1)) − div(D*grad(c1))))*dx
164

165 L r = taw*(conc k + dt*f)*dx
166

167 #−−−Weak form (GL + SUPG)−−−

168 aAD = a r + u*c1*dx + dt*(u*dot((DPP solution.sub(0)+DPP solution.sub(2)),\

169 grad(c1))*dx + dot(grad(u),D*grad(c1))*dx)
170

171 LAD = L r + u*conc k*dx + dt*u*f*dx
172

173

174 #== Create files for storing solution ==
175 cfile = File("Concentration.pvd")
176 v1file = File("Macro Velocity.pvd")
177 p1file = File("Macro Pressure.pvd")
178 v2file = File("Micro Velocity.pvd")
179 p2file = File("Micro Pressure.pvd")
180

181 #== March the solution over time ==
182 t = dt
183 while t ≤ T:
184 print '=============================='
185 print ' time =', t
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186 print '=============================='
187 c 0.t = t
188

189 #−−−Compute DPP model−−−

190 solve(aDPP == LDPP,DPP solution,bcDPP)
191

192 #−−−Compute AD problem−−−

193 solve(aAD == LAD,conc,bcAD)
194 conc k.assign(conc) # update for next iteration
195

196 #−−−Dump solutions for each time step−−−

197 if (t % 5 ≤ dt + DOLFIN EPS):
198 cfile << (conc, t)
199 v1file << (DPP solution.sub(0), t)
200 p1file << (DPP solution.sub(1), t)
201 v2file << (DPP solution.sub(2), t)
202 p2file << (DPP solution.sub(3), t)
203 t += dt
204

205 print "total time = ", t
206

207 (v1sol, p1sol, v2sol, p2sol) = DPP solution.split()
208

209 #== Dump solution fields to file in VTK format ==
210 file = File("Concentration.pvd")
211 file << conc
212

213 file = File('Macro Velocity.pvd')
214 file << v1sol
215

216 file = File('Macro Pressure.pvd')
217 file << p1sol
218

219 file = File('Micro Velocity.pvd')
220 file << v2sol
221

222 file = File('Micro Pressure.pvd')
223 file << p2sol

Appendix C. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.cma.2018.04.004.
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