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Abstract Fracture modeling at the atomic scale is
currently an intense area of research because the crack
propagation process depends strongly on the descrip-
tion of interatomic interactions. Here we present first
the mode-I plane strain quasi-static fracture toughness
of single crystal silicon, along four orientations, as
obtained using molecular statics simulations with nine
empirical potentials. The “best” potential is determined
by comparing the fracture toughness and trapping range
of the simulations with available experimental data and
with results calculated using first-principles molecular
dynamics. The choice is buttressed by its ability to pre-
dict the effective toughness and propagation direction
of a crack subjected to mode-II loading. The best per-
forming potential is then used to investigate the frac-
ture toughness and the role of bond trapping for a crack
along the boundary of two silicon crystals belonging to
two different tilt families.
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1 Introduction

The fracture toughness of brittle materials, which is a
measure of resistance to crack extension, is an impor-
tant material property dictated by the atomic inter-
actions in the immediate vicinity of the crack front,
see e.g. Bitzek et al. (2015). Therefore, atomic level
modeling of this property and of the deformation pro-
cesses that determine its magnitude has become a sig-
nificant research topic. The most accurate ab initio
computational methods for simulating crack propaga-
tion quickly become computationally prohibitive with
increasing system size, and therefore, most often less
accurate butmore efficient empirical interatomicpoten-
tials are used formolecular dynamics (MD) simulations
that require accounting for relatively largematerial vol-
umes. However, empirical potentials are designed and
fitted to the material properties involved with specific
phenomena (cohesive energy, lattice constant, elastic
constants and basic point defect properties for exam-
ple) and therefore their ability to accurately capture
the material properties related to other phenomena is
questionable. Choosing and using an empirical poten-
tial to simulate fracture is particularly challenging, as
evidenced by the large number of MD studies on crack
growth in silicon (Si), a quintessential brittle material
that cleaves at temperatures below the brittle-ductile
transition (∼814 K), e.g. as demonstrated by Samuels
and Roberts (1989). Representative experimental stud-
ies of the fracture toughness and the fracture energy
of the Si single crystal (SC), which could be used to
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assess the validity of MD predictions, include works
by Samuels and Roberts (1989), Tsai and Mechol-
sky (1991) and George and Michot (1993). The data
suggests that atomistic modeling of quasi-static, see
e.g. Gumbsch and Cannon (2000), Perez and Gumbsch
(2000), Bailey and Sethna (2003), and dynamic, e.g.
Bernstein and Hess (2003), Buehler et al. (2006) and
Sen et al. (2010), crack propagation in Si continues to
represent a very challenging task for the interatomic
potentials not specifically designed for characterizing
the behavior of cracks.

The aim of this work is twofold; first is to test the
most widely used empirical interatomic potentials for
Si on their ability to predict the experimentally mea-
sured direction-dependent values of the mode-I quasi-
static plane strain fracture toughness of the SC, and
second to apply the best performing potential to inves-
tigate the fracture behavior of cracks along selected
grain boundaries (GBs) that separate two SCs.

The paper has the following structure. In Sect. 2 the
chosen empirical potentials are described with empha-
sis on the purposes for which they were designed. This
is followed by the boundary conditions, the simulation
procedure and the computation parameters that quan-
tify the applied loading on a semi-infinite crack and
determine its response. Section 3 presents the simu-
lation results for the fracture behavior and toughness
of a SC for four crack orientations as predicted by all
nine potentials. The best performing potential is deter-
mined as the one whose predictions not only are clos-
est to available experimental measurements and first-
principlesMD simulations, but also by its ability to pre-
dict the effective toughness and crack extension direc-
tion of a mode-II crack that is consistent with the max-
imum hoop stress criterion dictated by Linear Elastic
Fracture Mechanics (LEFM). The selected potential is
then used to simulate crack extension along two fam-
ilies of symmetric tilt GBs. Insights gained from the
simulations are summarized in Sect. 4.

2 Methodology

2.1 Empirical potentials

Empirical interatomic potentials are constructed using
simplified closed-form mathematical expressions that
attempt to describe how the mechanical properties
and energetics of a material are dictated by the com-

plex interactions between its nuclei and electrons. This
approach involves fitting the numerous parameters that
appear in the mathematical representation of a given
potential to accuratelymodel specific phenomena. This
tailoring poses the question of whether the potential
is robust, i.e. for what class of problems for which it
was not specifically designed for can it be applied with
confidence? A thorough review of available (although
developed quite long time ago) potentials for Si is pre-
sented in Balamane et al. (1992); in this section we
briefly review the nine widely used and some more
recent potentials we chose to study its fracture tough-
ness.

The simulations considered in this paper rely on the
fact that at room temperature Si is practically elastic.
This allows the use of a crack modeling approach sim-
ilar to those used for a cracked elastic continuum. Si
possesses cubic symmetry, so the elastic stiffness ten-
sorC that relates the stress tensor σ to the strain tensor
ε according to σ = Cε, has only three independent ele-
ments. Using the Voigt notation these elastic constants
are written asC11,C12, andC44. Table 1 presents some
basic properties of the Si diamond cubic SC for the con-
sidered nine potentials. Specifically, the table contains
the lattice constant a0, binding energy E0, elastic con-
stants Ci j , and the anisotropy coefficient A, defined
as A = 2C44/(C11 − C12). Representative values of
surface energies along the cleavage planes γ(plane) are
also provided because these values reflect the fracture
energies that are used in the simulations to establish the
initial crack loading.

A few words about the selected potentials. The first
potential is an improved many-body bond-order poten-
tial constructed by Tersoff (1988) (usually referred to
as T3) to model covalently bonded Si systems by fit-
ting to ab initio results for several Si structures. It cap-
tures well the elastic properties of Si and the energetics
of point defects, but misses some features of surface
reconstructions and greatly overestimates the melting
temperature. The second MOD potential proposed by
Kumagai et al. (2007) is an improved version of T3 that
relies on a modified angular-dependent term to repro-
duce values of the elastic constants and the melting
temperature more accurately.

The third potential developed by Justo et al. (1998)
is the environment-dependent interatomic potential
(EDIP) for Si, which is approximated by two- and
three-body interaction terms with theoretically moti-
vated functional forms and fitted to ab initio data for
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Table 1 Properties of a diamond cubic Si SC predicted by the nine interatomic potentials, as well as experimentally measured

Name Expt. 1 2 3 4 5 6 7 8 9

T3 MOD EDIP SW mSW MEAM MEAM1 MEAM2 MEAM3

a0 5.431a 5.432 5.429 5.430 5.431 5.431 5.431 5.431 5.431 5.431

E0 −4.629 −4.630 −4.650 −4.337 −4.337 −4.630 −4.607 −4.631 −4.630

C11 165.6b 142.5 166.4 172.0 151.4 201.4 162.4 163.3 139.4 161.3

C12 63.9b 75.4 65.3 64.7 76.4 51.4 65.2 80.6 75.7 81.3

C44 79.5b 69.0 77.1 72.8 56.4 90.5 73.3 71.7 58.8 60.2

A 1.56 2.06 1.53 1.36 1.51 1.21 1.51 1.73 1.85 1.50

γ(010) 2.13c 2.27 1.77 2.12 2.36 2.36 2.66 2.27 1.99 2.52

γ(110) 1.51c 1.52 1.08 1.31 1.67 1.67 1.90 1.51 1.22 1.78

γ(111) 1.24d 1.20 0.89 1.05 1.36 1.36 1.64 1.24 1.00 1.45

Lattice constant a0 is given in Å, binding energy E0 is in eV/atom, elastic constants Ci j are in GPa, A reflects the degree of anisotropy,
and surface energies γ are measured in J/m2

Superscripts refer to the following experimental works a Windisch and Becker (1990), b Hall (1967), c Jaccodine (1963), d Gilman (1960)

different bulk phases and defects. The EDIP provides
better descriptions of the local structures such as point
defects and dislocation cores, as well as disordered
structures and phase transitions.

The fourth potential introduced by Stillinger and
Weber (1985) (SW), which consists of two- and three-
body terms, was constructed to model solid and liquid
forms of Si by fitting to the experimentally obtained
properties. Because of unsatisfactory predictions of
fracture behavior, ad hocmodification of the SWpoten-
tial was proposed and tested in Holland and Marder
(1998b, a). Modified SW (mSW), the fifth considered
potential, is obtained by increasing by the factor of
two the parameter λ, which governs the stiffness of
angle-dependent forces. This modification provides
the desired brittle fracture response at the expense of
noticeable changes in elastic constants (seeTable 1) and
a significant (roughly two times) increase in themelting
temperature. Consequently, there are still opportunities
for further enhancements of SW-like potentials for Si.

The modified embedded-atom method (MEAM)
potential, denoted by number six in Table 1, was
devised by Baskes (1992) for a variety of materials
including Si. It is constructed by modifying a well
established EAM potential that was developed for met-
als, which consists of pair potential interaction and an
embedding energy term that is a function of distance-
dependent atomic electron density. The MEAM poten-
tial is obtained by introducing angular terms in the elec-
tron density function that allow it to account for bond

directionality in covalent solids such as Si. The seventh
potential MEAM1 developed by Lenosky et al. (2000)
is constructed by using the MEAM functional form.
But instead of restricting the potential functions to
closed-form expressions, they are represented by cubic
splines fitted to a larger database of first principles and
experimental results for Si. MEAM1 provides accurate
description of elastic properties and defect energetics,
especially for dislocation reconstruction and intersti-
tial complexes. Using the same fitting procedure as
for MEAM1, but changing the database to incorpo-
rate various Si interstitial structures, theMEAMpoten-
tial MEAM2, eighth here, was developed by Du et al.
(2011). MEAM2 was specifically designed to achieve
more accurate predictions of tetra-interstitial defects in
Si than other potentials which cannot characterize them
sufficiently well. Finally, the ninth potentials labeled
as MEAM3 refers to the spline-based MEAM poten-
tial with an additional generalized SW energy term that
was originally developed for bcc transition metals by
Nicklas (2013) and then applied to Si.

2.2 Boundary conditions

The elastic analysis of a finite-sized cracked contin-
uum requires the solution of a boundary value prob-
lem, and the results are applicable to the considered
geometry and loading. However, asymptotic solutions
of the elasticity problem have shown that in the vicin-
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ity of a crack front the functional form of the stress,
strain and displacement fields are universal and domi-
nated by the so-called stress intensity factors. Closed-
form expressions of the functional forms, which are
typically expressed using polar coordinates, involve a
power-law singularity with respect to the distance of a
material point from the crack front, and trigonometric
functions with respect to its angular position. Solutions
are available for cracks in isotropic and anisotropic
materials, and for cracks along the perfectly bonded
interfaces between isotropic and/or anisotropic mate-
rials. The stress intensity factors, which depend on the
details of the specimen geometry and applied loading,
represent the relative levels of crack surface opening
and crack surface sliding displacements, and the mag-
nitudes of the singular stress and strain fields they pro-
duce in the immediate vicinity of the crack front. The
importance of the asymptotic solution lies in the fact
that as long as the nonlinear material response that
develops to eliminate the unphysical stress singularity
is limited to a sufficiently small region near the crack
front (small-scale-yielding conditions), then the stress
intensity factors alone dictate whether a crack remains
stationary or extends. This is the basis of LEFM, a frac-
ture theory that assumes a crack will extend when the
combination of the stress intensity factors reaches a
critical value that is proportional to what is referred
to as the fracture toughness. A summary of the elastic
fields produced by the cracks considered in this paper
is provided in “Appendices A and B”.

The universal nature of the asymptotic fields near
the crack front also eliminate the need to model finite
geometry specimens and specific loadings when study-
ing the near-crack front region. The dominance of the
asymptotic solution allows a boundary layer analy-
sis involving only the near-front region, to which the
specifics of the loading and specimen geometry are
transmitted by prescribing to its boundary the displace-
ment field from this elastic solution and the associated
stress intensity factors. The boundary layer analysis
thus greatly reduces the simulation volume size, and
allows the results to be applied to finite geometry con-
figurations whose near-crack front regions are domi-
nated by their own (known) stress intensity factors.

In the spirit of the continuumanalyses, Fig. 1a shows
the schematic of the boundary layer that will be simu-
lated usingmolecular statics calculations. The cylindri-
cal region of radius R is in general comprised of upper
and lower portions representing two Si grains, and it
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Fig. 1 a Schematics of the simulation setup. Here PBCs are
applied only along the z-axis. b Imposed displacements, pre-
dicted by elasticity and given in Eq. (B.6), for the Si SC
(111)[112̄] crack system at r = 100Å loaded with KI =
0.61 MPa

√
m for SW potential. Here the solid lines represent

the elasticity solution for anisotropic Si SC, while the dashed
lines show the solution for isotropic material, keeping C11 and
C12 and assuming that C44 = (C11 − C12)/2

contains an initial tilt GB crack whose front is placed at
the center. For the general case C(1) and C(2) represent
the elastic stiffness tensors of the distinct grains shown
by different colors and obtained by θ1 and θ2 rotations
about the z-axis. The coordinate system is chosen such
that the crack propagation direction, crack plane nor-
mal, and crack front direction are oriented along the
x , y, and z axes, respectively. Periodic boundary con-
ditions (PBCs), mimicking plane strain conditions, are
imposed along the crack front direction using the min-
imal periodic unit cell size. An atomically sharp crack
is constructed by displacing the atoms according to the
asymptotic plane strain solution for mode-I loading of
a crack in an anisotropic material. A similar approach
was used for an anisotropic material containing a SC
crack by Perez and Gumbsch (2000) (to study cleav-
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age in silicon using ab initio calculations); Möller and
Bitzek (2014a) (to investigate fracture in α-iron with
available interatomic potentials) and for an interface
crack between two anisotropic crystals, i.e. GB crack,
byMöller and Bitzek (2014b) (to model brittle fracture
behavior in tungsten using interatomic potentials).

2.2.1 Asymptotic solution for anisotropic crystals and
bicrystals

The elastic fields near the front of a crack in an
anisotropic plate subjected to plane strain conditions
predicts the standard inverse square root stress singu-
larity and can be found in Sih et al. (1965). However,
the stress field produced near the front of an interfacial
crack in generally anisotropic elastic solids behaves
as r−1/2+iε , where ε represents the oscillatory index
whose magnitude depends on the level of elastic mis-
match, see e.g. Suo (1990); Gao et al. (1992). In addi-
tion, the oscillatory nature of the singularity couples the
loading phases, so that a puremode-I andmode-II stress
intensity factors cannot be defined. In other words,
all loading types produce both crack surface opening
and crack surface sliding displacements. The oscil-
latory response implies interpenetration of the upper
and lower crack surfaces within a very small region
near the front of a crack within a finite-sized structure.
This physically unrealistic result has been discussed
for decades in the literature. In this paper the oscilla-
tory index is not an issue because attention is limited
to cracks in Si SC and GBs for which the oscillatory
index is null.

The complications associated with the oscillatory
index are removed by considering the class of inter-
faces satisfying the non-oscillatory condition (ε = 0)
identified for anisotropic materials in Qu and Bassani
(1989). For this case matrix W, defined in Eq. (B.4),
that depends solely on the elastic properties of two
anisotropic solids, must be equal to zero. In addition,
it was shown that a tilt GB having the crack front
along the tilt axis also satisfies the non-oscillatory con-
dition when in-plane and anti-plane deformations are
decoupled. This condition requires the high symme-
try orientation of the tilt axis, as shown in Qu and
Bassani (1989). In this work we study the class of tilt
GB interfaces that satisfy the non-oscillatory condition
(W = 0). We use the asymptotic linear elastic solution
based on the Stroh formalism for the displacement and
stress fields of the interface crack derived by Bassani

and Qu (1989) and given in Eqs. (B.5) and (B.6) of
“Appendix B”.

Alternatively, since the non-oscillatory condition
implies that the crack-tip solutions in both materials
are independent of each other, the linear elastic solu-
tion for a crack in one anisotropic media given in Sih
et al. (1965) with corresponding elastic properties for
each region can be used. In particular, for the interfa-
cial crack in a bicrystal schematically shown in Fig. 1a,
i.e. GB crack, regions 1 and 2 correspond to two grains
which possess different crystallographic orientations.
Due to cubic anisotropy of Si, grains in general have
different stiffness matrices C(1) and C(2), as denoted
in Fig. 1a. These matrices are obtained by applying the
rotation transformations defined by the grains’ orien-
tations to the original fourth order stiffness tensor C(0)

according to the procedure described in “Appendix A”.
C(0) shown in matrix form in Eq. (A.1), that satisfy
cubic symmetry, is constructed for each potential using
the elastic constants data presented in Table 1.

For the initial comparison of the performance of the
potentials the applied loading is limited to a mode-I
stress intensity factor denotedby KI.Mode-II loading is
applied only for the “short list” of potentials fromwhich
the best potential is chosen. According to the Griffith
energy criterion of brittle fracture, the critical stress
intensity factor, or equivalently the fracture toughness
KIc, can be calculated in terms of the critical energy
release rate Gc and the effective elastic modulus E ′
dictated by the orientations as follows

KIG = √
GcE ′. (1)

In our case, in agreementwith themore general form for
the energy release rate given in Eq. (B.8) in “Appendix
B”, E ′ = 4/D22, where D22 is the 22 component of
matrix D defined in Eq. (B.4). Gc corresponds to the
energy of the traction-free surfaces created by crack
extension, and in case of crack propagating along an
arbitrary tilt GB it writes as

Gc = γ1 + γ2 − γGB, (2)

where γ1 and γ2 are the surface energies of grains 1
and 2, γGB is the GB interface energy.

It is recognized thatGriffith’s energy criterion devel-
oped for crack propagation in continuous media does
not account for the discrete nature of crack propaga-
tion at the atomic level, where extension is the result of
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the breaking of individual bonds along the crack front,
a phenomenon defined as lattice (or bond) trapping,
see e.g. Thomson et al. (1971) and Gumbsch and Can-
non (2000). It implies that a crack remains stable until
the upper trapping limit K+

I , which is higher than the
theoretical value KIG , is reached, i.e. KIc = K+

I and
K+
I > KIG . Similarly, K−

I defines the lower trapping
limit, below which a crack starts to heal. The trapping
range is usually defined as ΔKI = K+

I /K−
I − 1.

2.3 Simulation setup and computation parameters

In this section we focus on modeling of the fracture
behavior in Si under mode-I quasi-static loading. A
crack with its front centered at the middle of the cylin-
der is achieved by specifying a critical value of KI con-
sistent with the fracture energies listed in Table 1 and
letting the system approach the minimum energy state.
Specifically, the atoms located in the outer annulus of
thickness d, depicted in Fig. 1a by the gray area, are
kept fixed during the energy minimization procedure,
while the atoms in the inner core are allowed to relax.
The molecular statics calculations are performed using
LAMMPS developed by Plimpton (1995) and its fire
energy minimization algorithm introduced by Bitzek
et al. (2006). The stress intensity factor is then iter-
atively increased (decreased) and optimized through
the energy minimization up to the point where the ini-
tial crack extends (heals). This procedure, as discussed
subsequently, determines the lattice trapping range.

Regarding the notation used throughout the paper,
a crack system in SC is represented as (cleavage
plane)[crack front]. Similarly, an arbitrary tilt GB crack
is defined as (cleavage plane)1θ1(cleavage plane)2θ2
[crack front], but in case of a symmetric GB this nota-
tion reduces to (cleavage plane)θm[crack front], where
θ1 and θ2 are the tilt angles and θm = θ1 + θ2 is the
total misalignment angle, see Fig. 1a.

Aiming to compute the upper and lower lattice trap-
ping limits, we perform the following calculations.
First, the simulation domain is constructed by applying
the displacement field given by the linear elastic solu-
tion in Eq. (B.6) and produced by a critical loading that
makes KI = KIG to the relaxed crack-free structure in
accordance with the schematics shown in Fig. 1a. To
illustrate the boundary conditions, Fig. 1b shows the
imposed displacements as functions of polar angle θ at
fixed radial distance r for the Si SC (111)[112̄] crack

system that was relaxed with SW potential. The effect
of anisotropy for the chosen orientation can be seen by
comparing the actual anisotropic and isotropic, which
is obtained by keeping C11 and C12 elastic constants,
see Table 1, and assuming that C44 = (C11 − C12)/2,
i.e. A = 1.

Next, keeping atoms fixed within the outermost tube
of thickness d = 2a0, where a0 is the lattice constant
given in Table 1 for all potentials (i.e. d ≈ 11Å),
the atomic positions are optimized by minimizing the
potential energy with the fire algorithm proposed by
Bitzek et al. (2006). Although the original crack-free
structure is optimized before applying the displacement
field, for the GB crack the fixed atoms along the sur-
faces that define the inserted crack do not occupy their
optimal positions. In other words, these atoms are fixed
as if they see GB environment, but instead located at
the free surface. To avoid this issue, the fixed bound-
ary conditions are set iteratively for the initial struc-
ture, namely, first, the cylinder of larger radius R + 2d
is constructed, crack is inserted and relaxed keeping
atoms in r ∈ [R + d, R + 2d] fixed; next, the outer-
most region, defined as r ∈ [R, R + 2d], is deleted
and the structure is optimized again keeping atoms in
r ∈ [R − d, R] fixed. Afterwards, this initial system
is loaded/unloaded incrementally with ±δKI to deter-
mine both K+

I and K−
I lattice trapping limits. An incre-

ment of 0.1 MPa
√
m is used initially for δKI, but the

increment is reduced to 0.01 near the trapping limits
within±0.1 range to achieve targeted accuracy. In addi-
tion, since in some cases no abrupt bond breaking is
observed upon loading (e.g. for the MEAM potential),
3.3 Å bond length (also used in Perez and Gumbsch
(2000)) is taken as the threshold value to determine if
the crack has extended or healed, as defined by bond
breaking or bond healing.

In order to select the simulation parameters that rep-
resent the fracture process near the crack front, simula-
tions were performed to calculate the lower and upper
bond trapping limits as functions of force norm tol-
erance, ftol and cylinder size R. As can be seen in
Fig. 2a, the trapping limits values for the structure of
radius R = 100 Å converge rapidly with the force
norm tolerance variation for all potentials, i.e. start-
ing from 10−2 eV/Å. The effect of size is more pro-
nounced, especially for the potentials predicting amore
ductile fracture behavior (blunting of the crack front),
although the deviation even for the smallest structure
is relatively modest. Based on these findings, tolerance
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I trapping limits
together with the theoretical fracture toughness KIG as functions
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ftol = 10−4 eV/Å for the Si SC (111)[112̄] crack system.Results
for three different interatomic potentials are presented together,
where superscripts refer to the fracture behavior, i.e. b brittle, d
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of ftol = 10−4 eV/Å and radius of R = 100 Å are
chosen and used in all subsequent calculations.

3 Results and discussion

3.1 Single crystal

Consider the propagation of a crack along different ori-
entations of a SC. We first compare the stress field of
the molecular model with the asymptotic formulas pro-
vided by the theory of elasticity. It was reported in Sin-
clair and Lawn (1972) that in spite of the inherent non-
linearity associated with the interatomic interactions
on which potentials are based, for very brittle mate-
rials such as Si there is remarkably good agreement
between the stress (the atomisticmodel stress is defined
as the virial stress), strain and displacement fields of
molecularmodels and elastic continuummodels within
the region that extends from a few interatomic spacing
from the crack front to a larger distance that is much
smaller than other characteristic dimensions. Note that
the question of validity of elasticity near the front of
a crack in brittle solids was addresses in Singh et al.
(2014), where a comparison of the predictions of a
finite deformation continuum theory with zero temper-
ature atomistic results of SW potential demonstrated
that elasticity is valid even for relatively large strains
at distances from the crack front larger than 1 nm.
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Fig. 3 a Atomic representation (visualized with OVITO soft-
ware developed by Stukowski (2010)) of the simulated Si SC
(111)[112̄] crack system loaded with KIG = 0.61 MPa
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where color refers to themagnitude of the virial stress component

σyy given by LAMMPS for SW potential. b Contour plot of the
inverse distance weighted averaged atomistic results shown in
a and c elasticity predictions for σyy stress component, Eq. (B.5)
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Fig. 4 Comparison
between the LAMMPS
(symbols) and elasticity,
Eq. (B.5), (solid lines)
predictions by SW potential
for all non-zero stress
components of the Si SC
(111)[112̄] crack system
loaded with KIG = 0.61
MPa

√
m. a, b Present

results for the radial
distance dependence of the
stress components at fixed
polar angles θ = 0 and π/4,
respectively. c, d show plots
of the stresses as functions
of polar angle at fixed radius
r = 5 and 50 Å,
correspondingly
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The contour plots in Fig. 3b, c show that the virial
σyy stress component (labeled by LAMMPS) and the
asymptotic elastic solution (labeled by LEFM) are in
excellent agreement for SW potential at the very crack
front and along the fixed boundary atoms. To render the
comparison more clear, Fig. 4 presents line plots for all
non-zero components of stress as functions of radial
distance and polar angle. It is observed that it takes but
a few Å, from the crack front to recover the inverse
square root stress singularity that is consistent with the
asymptotic elastic solution. Figure 4d also shows excel-
lent agreement of the angular variation of stresses at the
distance r = 50 Å; but note that even at r = 5 Å, as
shown in Fig. 4c, the qualitative comparison is excel-
lent and that the quantitative deviations are less than
20%.

Comparisons between atomistic and continuum pre-
dictions of the stress component σyy for all potentials
are shown in Fig. 5. The only potentials that do not
match the elastic solution for stress to a high degree
are MEAM2 and MEAM. The ability of MEAM2 to
predict with high accuracy the elastic stress field in
the vicinity of crack fronts is questionable, consider-
ing the approximately 20% difference that persists over
the entire simulation domain of radius R = 100 Å.
Whether the discrepancy is caused by a large fracture
process zone that prevents the development of a K -

dominated region, or by significant nonlinear relations
between stress and strain of the potential, can be deter-
mined through Fig. 6. These plots present the displace-
ments, strains and stresses at a distance r = 50 Å from
the crack tip predicted by the MEAM2 potential for
the same system analyzed in Fig. 5. It is observed in
Fig. 6 that the displacements and strains produced by
the atomistic model match to a very high degree those
of the linear elastic solution (the deviations are <1 and
2%, respectively). However, the deviation in stress as
discussed previously is as high as 20%. The agreements
between the strains and displacements produced by the
continuumsolution and the atomisticmodel suggest the
presence of a well-developed K -field. Thus it is con-
cluded that the discrepancy is a result of the highly non-
linear relations between displacements (or strains) and
forces (or stresses) associated with MEAM2. Fig. 7a,b
confirms this result by showing a noticeable level of
nonlinearity in the stress strain curves of the MEAM
and MEAM2 potentials. As expected the SW poten-
tial is quite linear. For MEAM2, the Si SC is signifi-
cantly softer in compression and slightly stiffer in ten-
sion. This explains why the elasticity solution under-
estimates σyy and σxx .

It appears that all of the considered potentials have
unique nonlinear elastic behavior; this because none of
them was fit to specific nonlinear response. According
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Fig. 5 Comparison between the LAMMPS (dashed lines) and
elasticity, Eq. (B.5), (solid lines) predictions for σyy stress com-
ponent of the Si SC (111)[112̄] crack system of radius R =
100 Å loaded with KIG listed in Table 2 for all considered poten-

tials.s Here each plot is labeled according to the used potential,
see Table 1. The shown crack opening displacement is computed
from Eq. (B.7)

to recent experimental work by Zhang et al. (2016),
defect-scarce Si SC nanowires demonstrate ultrahigh
elasticity, being fully elastically loaded above 10%
elastic strain (approaching the theoretical elastic limit
of silicon, which is∼17%, as found fromDFT calcula-
tions by Roundy and Cohen (2001)) with full recovery
during unloading with linear stress-versus-strain curve
throughout the whole deformation. This suggests that
an ideal interatomic potential for Si should display lin-

ear elastic response for up to 10% tensile deformation,
which is not always the case with the available poten-
tials.

For completeness, the contour plots of εyy strain
component presented in Fig. 7c demonstrate the overall
strain range achieved in our simulation domain. Ahead
of the crack front tensile strain εyy reached ≈20% at
the crack tip and falls down to ≈3% near the bound-
ary at distance of 100 Å. A good agreement with linear
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)

-5

0

5

ux

uy

θ/π
-1 -0.5 0 0.5 1

ε

-0.04

-0.02

0

0.02

0.04

εxx

εyy

εxy

θ/π
-1 -0.5 0 0.5 1

σ
(G

P
a)

-2

0

2

4

6
σxx

σyy

σzz

σxy

LAMMPS
LEFM

(a) (b) (c)

Fig. 6 Comparison between the LAMMPS (symbols) and elas-
ticity, Eq. (B.5), (solid lines) predictions by MEAM2 potential
for the Si SC (111)[112̄] crack system loaded with KIG = 0.52

MPa
√
m for a displacements, b strains and c stresses as functions

of polar angles at fixed radius r = 50 Å

ε
-0.05 -0.025 0 0.025 0.05

σ
(G

P
a)

-10

-5

0

5

10
σxx = C11ε

σyy = C12ε

σxy = C44ε

ε
-0.05 -0.025 0 0.025 0.05

-10

-5

0

5

10 C11

C12

C44

ε
-0.05 -0.025 0 0.025 0.05

σ
(G

P
a)

-10

-5

0

5

10

ε
-0.05 -0.025 0 0.025 0.05

-20

-10

0

10

20

ε
-0.05 -0.025 0 0.025 0.05

σ
(G

P
a)

-10

-5

0

5

10

ε
-0.05 -0.025 0 0.025 0.05

-60

-40

-20

0

20

-0.05

0

0.05

0.1

0.15

0.2

SW MEAM MEAM2(a)

(b)

(c)

[112̄]

[111]

[1̄10]

LAMMPS
LEFM

εyy

D
ev

ia
ti

on
(%

)

D
ev

ia
ti

on
(%

)

D
ev

ia
ti

on
(%

)

Fig. 7 a Stress–strain curve predicted by SW, MEAM, and
MEAM2 potentials (left to right). b Deviation of stress response
(effectively elastic constants) with respect to linear elastic regime
(|ε| < 0.001), i.e. measure of nonlinearity of the potentials as

function of applied strain. c Comparison of εyy strain compo-
nent for the Si SC (111)[112̄] crack system of radius R = 100
Å, loaded with KIG listed in Table 2 for the considered three
potentials labeled above
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Table 2 Fracture behavior predictions by our atomistic calculations in Si SC

1 2 3 4 5 6 7 8 9

T3 MOD EDIP SW mSW MEAM MEAM1 MEAM2 MEAM3

(110)[001]
K+
I 2.83d,p 2.34d,p 2.11d,p 1.39d,t 1.06b,p 0.78b,p 1.55d,p 1.19d,p 1.49d,p

KIG 0.64 0.59 0.65 0.66 0.82 0.77 0.68 0.55 0.71

K−
I 0.22 0.33 0.33 0.41 0.62 0.69 0.45 0.36 0.44

ΔKI 11.86 6.09 5.39 2.39 0.71 0.13 2.44 2.31 2.39

G+ 60.81 33.92 27.29 14.80 5.64 3.90 16.08 11.59 15.95

G− 0.37 0.67 0.67 1.29 1.93 3.05 1.36 1.06 1.39

(110)[11̄0]
K+
I 2.76d,t 1.87sd,p 1.95d,t 1.12sd,t 1.24b,t 0.86b,p 1.46sd,t 0.90b,p 1.18b,t

KIG 0.69 0.62 0.68 0.69 0.83 0.75 0.71 0.58 0.73

K−
I 0.23 0.33 0.29 0.39 0.57 0.66 0.44 0.34 0.41

ΔKI 11.00 4.67 5.72 1.87 1.18 0.30 2.32 1.65 1.88

G+ 49.17 19.66 21.77 8.84 7.37 4.32 12.65 5.81 9.20

G− 0.34 0.61 0.48 1.07 1.56 2.55 1.15 0.83 1.11

(111)[11̄0]
K+
I 3.34d,t 2.22sd,t 2.07d,p 1.33sd,p 1.09b,p 0.78b,p 1.44sd,p 1.09sd,p 1.43sd,p

KIG 0.60 0.55 0.60 0.61 0.75 0.73 0.63 0.52 0.66

K−
I 0.18 0.28 0.23 0.34 0.50 0.60 0.37 0.31 0.37

ΔKI 17.56 6.93 8.00 2.91 1.18 0.30 2.89 2.52 2.86

G+ 74.82 28.42 24.98 12.71 5.77 3.64 12.67 8.79 13.78

G− 0.22 0.45 0.31 0.83 1.21 2.16 0.84 0.71 0.92

(111)[112̄]
K+
I 2.65d,p 1.58sd,p 1.83d,p 0.86b,p 0.96b,p 0.73b,p 1.27d,p 0.69b,p 0.93b,p

KIG 0.59 0.55 0.60 0.61 0.75 0.74 0.63 0.52 0.66

K−
I 0.18 0.32 0.25 0.39 0.57 0.66 0.43 0.36 0.42

ΔKI 13.72 3.94 6.32 1.21 0.68 0.09 1.79 0.92 1.21

G+ 48.54 14.53 19.62 5.37 4.48 3.22 10.03 3.60 5.89

G− 0.22 0.60 0.37 1.10 1.58 2.63 1.15 0.98 1.20

The upper K+
I and lower K−

I trapping limits, as well as the theoretical fracture toughness KIG are given in MPa
√
m. The dimensionless

trapping range ΔKI is also included. The critical energy release rate G+ and G− (the upper and lower trapping limit) are given in J/m2

Here superscripts denote the crack propagation regime: d ductile, sd some ductility, b brittle; and direction, t tilted, p planar

elastic solution for εyy is observed within the whole
simulation domain even for potentials that predict high
deviations in stresses that arise from elastic nonlinear-
ity of the potential and should be addressed with care.
The comparisons above suggest that interatomic poten-
tials do quite a good job in predicting the strain fields in
the vicinity of a crack front with linear elastic solution
developing just within a few Å from the tip. But next it
will be shown that predicting the loads at which a crack
extends is a different story.

Due to discreteness of the atomic structure, the crack
remains stable within the loading range K−

I < KI <

K+
I , where K+

I > KIG . Note that this so-called lat-
tice or bond trapping phenomenon was demonstrated
by modeling by Thomson et al. (1971) and atomistic
calculations by Gumbsch and Cannon (2000), Perez
and Gumbsch (2000) and Zhu et al. (2006). The mag-
nitude of lattice trapping depends on bond strength and
bond directionality (the effect is higher for ionic and
covalently bonded materials than for metals), density
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Fig. 8 Graphs of the upper K+
I and lower K−

I trapping limits
together with the initial value of the stress intensity factor KIG
predicted by the considered potentials in Si SC for a (110) and

b (111) cleavage planes with different propagation directions.
This is a visualization of data given in Table 2

of the cleavage plane (it is larger for less dense cleav-
age planes) and temperature (trapping can be overcome
by thermal fluctuations). For these reasons Si should
experience significant levels of trapping. It is difficult
to determine themagnitude of trapping experimentally,
since only the upper limit is measurable. But it is rec-
ognized that the experimental values of K+

I are at least
two times larger than the calculated KIG , as discussed
in Gumbsch and Cannon (2000). Lattice trapping is
also responsible for the experimentally observed prop-
agation anisotropy in Si, see e.g. Tsai and Mechol-
sky (1991), Perez and Gumbsch (2000) and Zhu et al.
(2006).

Our calculated results of the trapping limits for (111)
and (110) planes, which are the principal cleavage
planes in Si SC, are presented in Table 2 and illustrated
in Fig. 8. The energy release rate is also listed in the
table. Fracture toughness KIG predicted by the contin-
uum model given in Eq. (1) varies slightly among the
potentials because of the difference in elastic constants
and surface energies, see Table 1. As expected, KIG lies
within the lattice trapping range computed for the dis-
crete system of atoms. The deviation between K+

I and
KIG is not the result of only the discrete nature of the
crack extension, but also because not all assumptions
and approximations used to derive KIG are fulfilled by
some of the potentials. For instance; (1) some poten-
tials lead to ductile instead of ideally brittle behavior,
see Fig. 9 showing the examples of ductile and brittle
response predictions by the T3 and mSW potentials,
respectively. Crack front blunting, e.g. shown in Fig. 9a
for Si SC (111)[112̄] crack system for the T3 potential,
is observed for the potentials with K+

I values labeled
by “d” in Table 2; (2) the fractured surface reconstructs

during extension (as it happens for the (111) cleav-
age plane using MEAM potential), something that is
not considered in the estimation of KIG ; (3) the crack
front turns (as indicated for K+

I values labeled by “t”
in Table 2), while KIG is computed assuming planar
propagation.

It is instructive to compare our results with those
reported for ideally brittle Si by Gumbsch and Can-
non (2000), Perez and Gumbsch (2000), Bailey and
Sethna (2003) and Zhu et al. (2006). A comparative
study of EDIP, mSW, MEAM, for modeling of frac-
ture in notched SC Si was performed by Bailey and
Sethna (2003). They also considered the (110)[001]
crack system without a notch and reported results sim-
ilar to ours for fracture toughness and behavior. Our
study further considers other atomistic aspects that
might be important, such as discontinuous versus con-
tinuous bond breaking. Fromour calculations all poten-
tials, exceptMEAM, exhibit discontinuous bondbreak-
ing at the crack front for all considered crack sys-
tems. However, in ab initio study of fracture in Si by
Perez and Gumbsch (2000) bonds broke discontinu-
ously in the (110)[11̄0] crack system and continuously
for (110)[001] and (111)[011̄] orientations.

Regarding the quantitative comparison for the frac-
ture toughness, experimentally measured values are
KIc = 1.15 ± 0.08 MPa

√
m for the (110) cleav-

age plane according to Fitzgerald et al. (2002) and
KIc = 1.05 and 1.19 MPa

√
m for (110)[11̄0] and

(110)[001] crack systems, respectively, as reported by
Tsai and Mecholsky (1991). It was also found that the
(110) fracture plane displays noticeable propagation
anisotropy, an effect that is significantly smaller for
extension of cracks of the (111) plane type. Table 2
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Fig. 9 Series of the optimized atomic structures of the Si SC
(111)[112̄] crack system for loading with the stress intensity
factors listed in Table 2 for a T3 and b mSW potentials exhibit-
ing ductile and brittle response, correspondingly. The images are

obtained with OVITO software developed by Stukowski (2010),
where color reflects the magnitude of the potential energy U
measured per atom

shows that potential MEAM2 gives the closest values
of K+

I for both propagation directions on the (110)
cleavage plane as compared with Tsai and Mechol-
sky (1991). Obviously our two-dimensional models
at zero temperature cannot capture some of the fea-
tures of crack extension including the crack advance-
ment through finite temperature-activated kink for-
mation observed in three-dimensional computational

studies by Zhu et al. (2006) and Kermode et al.
(2015).

Although some potentials predict values close to the
experimentalmeasurements, seeFig. 8, quite large vari-
ations in the upper trapping limit K+

I (or equivalently,
fracture toughness) is observed. KIG and K−

I , on the
other hand differ less. Fracture toughness alone should
not be used to decide whether a potential character-
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izes fracture sufficiently well. Figure 8 also shows that
the deformation in the immediate vicinity of the crack
front, demonstrated for two opposite cases in Fig. 9, has
significant influence on the trapping range; it is notice-
ably larger for cracks that blunt. But a certain amount
of variation in trapping range is observed among poten-
tials. For example, the trapping range ΔKI varies sig-
nificantly among the considered potentials, e.g. from
0.09 for MEAM to 13.7 for T3 potential model of the
(111)[112̄] crack system. Such large variation in trap-
ping and behavior along the crack front manifests high
sensitivity to the potential form and its parameters. It is
appropriate to compare our results for trapping ranges
presented in Table 2 with ab initio values reported by
Perez and Gumbsch (2000), which are ΔKI = 0.6,
0.3, and 0.3 for (110)[11̄0], (110)[001] and (111)[11̄0]
crack systems, respectively. Only mSW and MEAM
predict values for ΔKI in the same range and have
the same trends. Other potentials noticeably overes-
timate the trapping range, presumably due to ductile
response along the crack front. However, it should be
mentioned that the screening cutoff procedure for bond-
order potentials recently developed by Pastewka et al.
(2013), such as T3 and MOD, modifies their ability
to model crack propagation. Specifically, the screened
T3 potential predicts values for critical stress intensity
factors similar to ab initio results reported by Perez
and Gumbsch (2000). The results suggest, with no
surprise, that not all interatomic potentials are capa-
ble of predicting sufficiently well the fracture behav-
ior of Si, because it is known to behave in a brit-
tle manner and expected to have a moderate trapping
range.

Additional results that are available to assess the
performances of the studied potentials include the
value of 6.0 J/m2 obtained by hybrid classical/quantum
mechanicalmolecular dynamics simulations at the low-
est strain rate (0.1%ps−1) as reported in Kermode
et al. (2008) for the critical energy release rate in
(111)[11̄0] mode-I crack system. This upper bound
value compareswellwith the prediction ofmSWpoten-
tial, G+ = 5.77 J/m2. All the other potentials except
MEAM considerably overestimate this quantity, see
Table 2. The same paper reportsG− = 2.1 J/m2, below
which the crack closes. In our case the mSW potential
predicts G− = 1.21 J/m2, while all other potentials,
except MEAM, noticeably underestimate this quantity.
Consequently, mSW predicts reasonable values for the

critical energy release, including the lattice trapping
range.

Then, which is the “best” interatomic potential for
fracture of a Si SC? First, it is clear that only mSW and
MEAM predict brittle fracture for the considered crack
systems and yield reasonable values for fracture tough-
ness and (perhaps more importantly) lattice trapping
range, see Table 2. But theMEAMpredicts a somewhat
small trapping range and significant nonlinear relation-
ships between stress and strain with increasing strain.
mSW potential does capture the brittle fracture behav-
ior of cracks in Si in most aspects, but it does so at the
price of an unjustified modification of the SW poten-
tial that changes the elastic constants and the melting
temperature, as demonstrated by Holland and Marder
(1998b). Based on this assessment it is proposed that
a robust potential does not yet exist, but if the goal is
to provide qualitative predictions, i.e. trends associated
with crack propagation in Si at 0 K temperature, then
the mSW potential may be the best choice.

3.1.1 Additional validation of mSW potential

To verify the robustness of the potential in capturing the
brittle response of a cracked Si SC, we next consider
mode-II loading. No experimental results nor com-
putational results are available for comparison. How-
ever, the results of our simulations could be compared
with one of the so-called local symmetry criteria of
LEFM, which dictates that a crack under mixed-mode
loading will propagate along a direction perpendic-
ular to the maximum hoop stress, see Erdogan and
Sih (1963). Once this direction is determined, then
the effective mode-II toughness could be defined as
the critical value of the applied mode-II stress inten-
sity factor that renders the tangential (or hoop) stress
equal to the critical tensile (hoop) stress of a mode-
I crack. Mathematically the maximum hoop stress is
written in terms of the mode-I fracture toughness as
σθθ |max = KIc/

√
2πr .

Creating an atomically sharp mode-II crack by sim-
ply applying the corresponding displacement field is
not possible because the proximity of fracture surface
atoms prevents the formation of free surfaces. Instead,
the crack is modeled as a finite-thickness notch created
by removing a strip of atoms with one unit cell size in
the y direction for a x < 0 region. Consider the polar
components of stress, i.e. the radial σrr , the tangential
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Fig. 10 a Schematics of the
polar coordinate
representation of stresses.
Plot of the stresses as
functions of polar angle θ at
radial distance of r = 50Å
from the crack tip under
mode-I loading with
KIG = 0.75 MPa

√
m for b

a sharp crack and d notched
crack; c notched crack
under mode-II loading with
K eff
II = 0.63 MPa

√
m, as

predicted by the simulations
(symbols) and the
continuum model (solid
lines) with mSW potential.
Vertical solid black lines
depict the angle at which
tensile stress σθθ is
maximum, i.e. crack
propagation angle θ0
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σθθ (hoop), and the shear σrθ . It is observed in Fig. 10
that for mode-I loading the stress components associ-
ated with the elasticity solution are in agreement with
those of the atomistic model for both the sharp crack
and notch configurations, and that the stress fields of a
sharp crack are well-approximated by those produced
by the notch. Agreement between the mode-II asymp-
totic field (of a sharp crack) and the field produced by
the atomistically-simulated notch are also shown in this
figure. Note that despite the slight discrepancy in the
radial stress between the notch and the sharp crack,
the hoop stress distributions of the sharp and blunted
configurations are indistinguishable.

The variation of the hoop stress σθθ throughout
the whole simulation domain is shown in Fig. 11 for
both the mode-I and mode-II loaded notches. The
atomic configurations just before and after propaga-
tion shown in Fig. 11(middle, right) demonstrate brittle
crack extension for both loading conditions. The sim-
ulations of this geometry and loading using the other
potentials were performed but are not presented here.
Suffice it to say that brittle extension was not always
the case. SW potential, for example, for mode-II load-
ing produced severe deformation in the vicinity of the

notch-front for the case of the (111)[11̄0] system; and a
dislocation was emitted in the (111)[112̄] system. Note
that for the case of isotropy the analytic expression for
the critical angle is given as θ0 = − arccos (1/3) ≈
−70.5◦. However, the crack extension direction in the
discrete atomistic system is highly influenced by the
orientations of the surfaces with lower energies. As
shown in Fig. 11b(right) the mode-II loaded crack in
(111)[11̄0] SC turns at approximately−70◦ in the sim-
ulations due to the presence along this direction of
a (111̄) low energy plane. This is in excellent agree-
ment with LEFM. In the (111)[112̄] oriented SC, the
mode-II crack turns at −90◦, along a (11̄0) low energy
plane.

As mentioned previously, for a given material sys-
tem the maximum hoop stress criterion of LEFM can
also provide the ratio between the critical mode-II
stress intensity factor and the mode-I fracture tough-
ness KIc. Defining the effective critical stress intensity
for mode-II fracture as K eff

II , then for an isotropic mate-
rial K eff

II /KIG = √
3/2 ≈ 0.87. For the anisotropic

material the ratio is computed numerically, e.g. for
mSW potential the result is K eff

II /KIG = 0.84 which
is 2.6% lower. Note that the atomistic calculations
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Fig. 11 Plots of the σθθ stress component (hoop stress) of the
Si SC (111)[11̄0] crack system of radius R = 100Å under a
mode-I and b mode-II loading. (left) Comparison between the
LAMMPS (dashed lines) and elasticity (solid lines) predictions
for mSW potential. (middle, right) Atomic representation (visu-

alized with OVITO software developed by Stukowski (2010))
of the simulated Si SC system. Here KIG = 0.75, K+

I = 1.56,
K+
I +δKI = 1.57; K eff

II = 0.63, K+
II = 1.13, K+

II +δKII = 1.14,
all are given in MPa

√
m

provide a noticeably larger value of K+
I = 1.56 for

the notched structure as compared to the sharp crack
value of K+

I = 1.09 (for which KIG = 0.75), while
K+
II = 1.13 for the notched structure with K eff

II = 0.63
(all K values are in MPa

√
m). This yields the 14%

lower ratio K+
II /K

+
I = 0.72. The small discrepancy

between these ratios can be attributed to the effects of
the notched crack geometry andbond trapping.Overall,
mSW potential appears to be robust in terms of brittle
response under mixed-mode loading.

3.2 Grain boundary

WenowusemSWpotential to investigate fracture along
grain boundary (GB) defects, which are known to influ-
ence and in some cases dominate the mechanical and
electronic properties of crystalline solids. GBs are usu-

ally identified by the relative orientation between the
rotation axis and the normal to the boundary plane. The
extreme cases correspond to a tilt GB for which the two
directions are perpendicular to each other, and the twist
GB for which they are parallel. Atomistic calculations
show that twist GBs in Si are generally energetically
less favorable than tilt GBs because they involve larger
bond distortion and more coordination defects, see e.g.
Kohyama and Yamamoto (1994). This explains why
the majority of experimentally observed GBs in poly-
crystalline Si are of the symmetric tilt type and are
consistent with the predicted GB energies, as reported
by Ratanaphan et al. (2014). Here we focus on some
of the most common tilt GBs observed in Si; those
misoriented around [11̄0] and [001] directions with the
well knownmost stable structures identified by various
atomistic techniques, reported e.g. in Kohyama (2002).
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Fig. 12 Optimized by mSW potential 〈11̄0〉 projections of the atomic structures of [11̄0] symmetric tilt GB crack systems under KIG
loading given in Table 3. Here color represents the potential energy U measured per atom

Consider first the (nn1) family of symmetric tilt
GBs for n ranging from 1 to 5, formed by rotating ini-
tially (110)[11̄0] oriented grains with specific angles
θ1 = θ2 = θm/2, see Fig. 1, where the total misalign-
ment angle θm is dictated by the final orientations of
the grains. This choice includes the primary coher-
ent twin Σ3(111)70.53◦[11̄0], the secondary twin
Σ9(221)38.94◦[11̄0], as well as lower angle GBs
Σ19(331)26.53◦[11̄0], Σ33(441)20.05◦[11̄0], and
Σ51(551)16.10◦[11̄0]. Figure 12 shows the atomic
structures of the near-front region for systems con-
taining a crack along these GBs, with structures corre-
sponding to the optimized GB configurations reported
by Kohyama et al. (1986), under KIG loading given
in Table 3. The fracture toughness and bond trapping
range for crack extension and healing along the GB
are calculated as before by incrementally loading and
unloading the system depicted in Fig. 12.

The energy penalty of the primary twin Σ3, shown
in Fig. 12a is nearly zero, because its GB structure cor-
responds to a hexagonal diamond stacking sequence
which does not distort the atomic arrangement. It is for
this reason that it represents the largest fraction (30%by
number) among all GBs in polycrystalline Si reported
by Ratanaphan et al. (2014), and results in nearly iden-
tical fracture toughness as the (111)[11̄0] SC system,
see Table 3.

The Σ9 GB is formed at the intersection of the two
Σ3 twin boundaries having different crystallographic
directions, such as (111) and (111̄), see DiVincenzo
et al. (1986). It is therefore the secondary twin bound-
ary as a natural consequence of the high fraction ofΣ3.
Two reconstructionmodels have been proposed forΣ9;
the lower energy “glide-plane” formed by 1/4[114̄]
glide and labeled Σ9g, and the higher energy “mirror-
plane” (which has a mirror symmetry with respect to
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Table 3 Fracture toughness predictions by mSW potential for symmetric tilt GB cracks and corresponding SC systems in Si

Crack system K+
I KIG K−

I ΔKI G+ Gc G−

Σ3(111)70.53◦[11̄0] 1.08 0.75 0.50 1.16 5.66 2.72 1.21

(111)[11̄0] 1.09 0.75 0.50 1.18 5.77 2.72 1.21

Σ9g(221)38.94◦[11̄0] 1.06 0.69 0.47 1.26 5.41 2.28 1.06

Σ9m(221)38.94◦[11̄0] 1.18 0.58 0.41 1.89 6.70 1.62 0.81

(221)[11̄0] 1.11 0.81 0.51 1.18 5.93 3.14 1.25

Σ19(331)26.53◦[11̄0] 1.37 0.69 0.49 1.80 9.01 2.30 1.15

(331)[11̄0] 1.14 0.82 0.53 1.15 6.24 3.24 1.35

Σ33(441)20.05◦[11̄0] 1.57 0.67 0.43 2.65 11.83 2.14 0.89

(441)[11̄0] 1.14 0.82 0.53 1.15 6.24 3.24 1.35

Σ51(551)16.10◦[11̄0] 1.53 0.68 0.31 3.94 11.23 2.24 0.46

(551)[11̄0] 1.16 0.83 0.54 1.15 6.45 3.24 1.40

Σ5(120)36.87◦[001] 0.98 0.76 0.47 1.09 4.82 2.92 1.11

(120)[001] 1.08 0.91 0.63 0.71 5.85 4.20 1.99

Σ5Z(130)53.13◦[001] 1.02 0.69 0.45 1.27 5.22 2.40 1.02

Σ5S(130)53.13◦[001] 1.06 0.79 0.58 0.83 5.64 3.10 1.69

(130)[001] 1.11 0.94 0.65 0.71 6.18 4.46 2.12

The upper K+
I and lower K−

I trapping limits, as well as the theoretical fracture toughness KIG are given in MPa
√
m. The dimensionless

trapping range ΔKI is also included. The critical energy release rate Gc found from Eq. (2), G+ and G−, that corresponds to the upper
and lower trapping limits, are given in J/m2

(221) plane) and denoted by Σ9m. Figure 12b, c show
the structures of the twomodels, respectively,where the
color map represents the potential energy per atom. In
these discrete systems the fracture toughness depends
on the position of the crack front, the position depen-
dence being a function of the variation in bond strength.
For example, in the case of the Σ9g GB the periodic
unit contains four different bonds, depicted as b1-b4
in Fig. 12b, although b1 and b3 (similarly, b2 and b4)
are energetically identical. Extension of the crack front
position produces a K+

I of 1.06 MPa
√
m for b1 and

K+
I of 0.83 for b2. Evidently, the critical stress inten-

sity factor reflects the bond strength; bonds with lower
potential energies lead to higher toughness. Therefore,
all further calculations are performed for crack fronts
positioned at the “strongest” bond within the GB. Note
that when K+

I is reached the crack extends across not
only the “strongest” bond, but also the weaker bonds.
For example, in case of the Σ9g GB two consecutive
bonds (b1 and b2) break simultaneously at KI > 1.06
MPa

√
m (even though for the crack front positioned

at the weaker bond b2 only one bond breaks when
K+
I = 0.83 MPa

√
m is reached). For the Σ9m GB,

which has a larger variation in bond strength, four

consecutive bonds (the whole GB periodic unit) break
simultaneously when KI exceeds 1.18 MPa

√
m.

The lower angle (nn1) GBs with n ≥ 3 have a sym-
metric structure and are composed of a linear array
of b = 1/2〈110〉 edge dislocations with fivefold-
sevenfold ring core structure. Larger n, which implies
smallermisalignment angle θm between the grains, cor-
responds to larger separation distance between the dis-
location cores, as can be seen in Fig. 12d–f. Figure 13a
shows the fracture toughness of the (110)[11̄0] tilt fam-
ily of GBs. These lower angle boundaries exhibit larger
bond trapping in comparison with the corresponding
SC and the Σ9 and Σ3 systems. Σ9m exhibits a sim-
ilar trend, but is not as much different than the SC.
The more stable Σ9g is found to have slightly lower
K+
I than SC. From the continuummodel viewpoint the

fracture toughness of GBs, because they have a posi-
tive energy penalty, should always be lower than SC [in
accordance with the lower energy release rateGc given
in Eq. (2)]. However, in agreement with other atomistic
calculations, e.g.Möller andBitzek (2014b), our results
show that this is not always the case, since the atomic
arrangement near the crack front significantly affects
the bond strength, and hence, toughness. In summary,
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Fig. 13 Graphs of the upper K+
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I trapping lim-
its together with the initial value of the stress intensity factor
KIG predicted by mSW potentials in Si for cracks along selected
GBs formed by symmetric tilt of a (110)[11̄0] and b (110)[001]

initially oriented grains. GB crack results correspond to open
circles, while SC data are shown by plus sign symbols. This is a
visualization of data given in Table 3
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Fig. 14 Optimized by mSW potential 〈001〉 projections of the atomistic structures of [001] symmetric tilt GB crack systems under KIG
loading given in Table 3. Here color represents the potential energy U measured per atom

among the considered (110)[11̄0] symmetric tilts, only
theΣ9g GB has lower K+

I than the corresponding SC;
the primary twin Σ3 has the same toughness as the
SC; and the other GBs are tougher than ther respective
SC.

Next, we study the two most energetically sta-
ble, according to Kohyama (1987), and experimentally
detected, e.g. by Ratanaphan et al. (2014), (110)[001]
symmetric tiltGBs,which are theΣ5(120)36.87◦[001]
andΣ5(130)53.13◦[001]. Figure 14presents the atomic
structures of cracks running along the GB together
with the corresponding SC system all loaded with
KIG reported in Table 3. The GB configurations agree

with those published in Kohyama (1987). Σ5(120)
36.87◦[001], shown in Fig. 14a, has a symmetric struc-
ture and makes up the largest fraction of [001] tilt GBs
observed in polycrystalline Si. Σ5(130)53.13◦[001]
in turn has two configurations, namely, higher energy
symmetric Σ5S and lower energy zig-zag Σ5Z struc-
tures, shown in Fig. 14b, c, respectively. It should
be noted that the free surface introduced by insertion
of the crack reconstructs in case of Σ5Z , as can be
seen in Fig. 14c while comparing with the SC system
in Fig. 14d. Regarding the fracture toughness values,
all Σ5 GBs appear to have slightly lower K+

I than
the corresponding SC and even all of the considered
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Fig. 15 Comparison between the LAMMPS (top) and elas-
ticity, Eq. (B.5), (bottom) predictions by mSW potential
for the σyy stress component of a Σ9g(221)38.94◦[11̄0], b

Σ5(120)36.87◦[001] and c Σ5(130)Z53.13◦[001] GB crack
systems of radius R = 100Å loaded with KIG listed in Table 3

(110)[11̄0] tilt GBs, see Fig. 13 or Table 3. Note that
mSW potential predicts brittle fracture behavior for all
presented here results for Si structures, including vari-
ous SC orientations and GBs.

As was done for the SC, consider next how the GB
affects the elastic response of a crystal to mode-I load-
ing. Figure 15 shows the σyy virial stress component
averaged over neighboring atoms, and the asymptotic
elastic solution for three different GBs that are weaker
than the corresponding SC. It is observed that GBs
introduce noticeable, but localized, distortions in the
elastic response of the structures, and therefore, do not
affect the overall stress field which can be well approx-
imated by the elastic solution. The interface essentially
is a defect not unlike the crack front, which produces
fields that “perturb” the elastic solution in its immediate
vicinity.

4 Summary

In this paper we revisited the question of how capable
the widely used interatomic potentials are in charac-

terizing the extension of cracks in Si and Si/Si grain
boundaries subjected to quasi-static mode-I loading.
Seven of the nine considered potentials produce stress,
strain and displacement fields in the near crack-front
region in accordance with the corresponding asymp-
totic elastic solution. Only the MEAM and MEAM2
potentials display noticeable levels of elastic nonlin-
earity, and hence, produce stress fields that deviate con-
siderably throughout the simulation domain. The frac-
ture toughness and bond trapping effect determined
through our simulations in Si SC along its princi-
pal cleavage planes, i.e. (111) and (110), and dif-
ferent propagation directions, showed that seven of
nine potentials predict ductile (manifested by crack
tip blunting) instead of the desired brittle behav-
ior, and overestimate the bond trapping range. Only
for mSW and MEAM does the crack extend by
cleavage in both mode-I and mode-II loadings. It is
concluded that only mSW potential is able to cap-
ture the brittle fracture behavior and properly model
the elastic response of Si material simultaneously,
although it is still far from an ideal potential because
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of its unrealistic elastic constants and high melting
temperature.

mSW potential was then used to study cracks placed
along the most commonly observed tilt GBs in Si
that belong to the class of interfaces having a non-
oscillatory elastic solution. Focusingon (110)[11̄0] and
(110)[001] symmetric tilt GB systems, we showed that
the fracture toughness forGBs can be larger than that of
the corresponding SCs. This result, which is due to the
fact that the fracture process involved discrete bond
rupture within the local atomic arrangement, contra-
dicts the classical continuum description of fracture.
Thus the atomistic calculations confirmed the substan-
tial role of bond trapping in cracks propagating along
the GB in Si.
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this research through Grant NSF/CMMI-1361868.

Appendix A: Elasticity matrices

The elastic stiffness tensor of a (010)[001] oriented Si
SC, that has cubic symmetry, can be expressed inmatrix
form using the Voigt notation as

C(0) =

⎡

⎢⎢⎢⎢⎢⎢
⎣

C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44

⎤

⎥⎥⎥⎥⎥⎥
⎦

, (A.1)

whereC11,C12, andC44 are the only three independent
elastic constants, listed in Table 1 for different inter-
atomic potentials. Next, the forth order stiffness tensor
for an arbitrary crystal orientation (n2)[n3], labeled in
accordance with the crack system notation and defined
by the rotation matrix Ω , can be obtained in the fol-
lowing way.

Ci jkl = Ωi pΩ jqΩkrΩstC
(0)
i jkl , (A.2)

where Einstein summation rule is used. The matrix
Ω , that rotates the initial (010)[001] crystal system
around axis m by angle θ0 so that it orients the crystal
as (n2)[n3] (i.e. it has n2 crystallographic orientation
along y axis and n3 along z axis), writes as

Ωi j = cos θ0δi j + sin θ0εik jmk + (1 − cos θ0)mim j ,

(A.3)

where δ is the Kronecker delta and ε is the Levi-Civita
symbol.

For a SC system we define the stiffness tensor C
obtained by applying rotational transformation Ωm

θ0
shown in Eq. (A.3), where axis m and angle θ0 are
dictated by the considered crystal orientation, to the
initial C(0) given in Eq. (A.1). For the tilt boundaries
we also find the stiffnesses C(1) and C(2) obtained by
additional rotation about z axis by angles θ1 and θ2 of
a SC with stiffness C = Ωm

θ0
C(0); this transformation

is denoted by Ω z
θβ

where β = 1 and 2 correspond to
the solutions for θ ∈ (0, π) and θ ∈ (−π, 0) regions,
respectively, see Fig. 1. Equivalently,C(β) can be com-
puted by applying the total rotation operation being a
product of two as Ω(β) = Ω z

θβ
Ωm

θ0
to C(0) accord-

ing to Eq. (A.2). For example, a (110)[001] SC system
has m = (0, 0, 1)T, θ0 = π/4; (110)[11̄0] has m =
(−0.357,−0.863, 0.357)T, θ0 = 1.718; (111)[11̄0]
has m = (−0.642,−0.762, 0.085)T, θ0 = 1.578;
(111)[112̄] has m = (−0.367,−0.887,−0.282)T,
θ0 = 2.909.

Appendix B: Linear elastic solution for a bimaterial
interface crack

This section briefly reviews the linear elastic solu-
tion obtained by Qu and Bassani (1989) and Bas-
sani and Qu (1989) and includes the key expression
needed to implement the used boundary conditions. In
a rectangular coordinate system xi (i = 1, 2, 3; x1,
x2, x3 correspond x , y, z coordinate system used in
the paper), the infinitesimal strain tensor, defined as
εi j = 1

2 (ui, j + u j,i ), where comma refers to the par-
tial derivative, u is the displacement, is related to the
Cauchy stress tensor as σi j = Ci jklεkl . Then the equi-
librium equation writes as

Ci jkluk,l j = 0. (B.1)

In case of the two-dimensional plain strain problem
considered here εi3 = 0, ui = ui (x1, x2). It allows
to search for a solution in the form of ui = ai f (z),
where f is an arbitrary function of complex variable
z = x1+ px2. Substituting it into Eq. (B.1) leads to the
following eigenvalue problem
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[Q + p(R + RT) + p2T]a = 0, (B.2)

that yield six roots for p and corresponding eigenvec-
tors a. Here are Q, R, T are the elasticity matrices
defined as Qik = Ci1k1, Rik = Ci1k2, Tik = Ci2k2.
SinceC is positive definite, there are three pairs of com-
plex conjugate roots, so that Im(pα) > 0, pα+3 = p̄α

(overbar denotes the complex conjugate) for α =
1, 2, 3. Next, additional matrices are introduced as
P = diag[p1, p2, p3] = 〈pα〉, A = [a1, a2, a3],
B = RTA + TAP.

Moving to the interface crack problem,we first iden-
tify the matrices introduced above for a SC of a given
orientationwith stiffnessC before tilt is applied, i.e. for
perfect structure without the interface. Then, the prop-
erties of the system with a tilt boundary are computed
as

Aβ = Ω
x3
θβ
A, Bβ = Ω

x3
θβ
B, Pβ = 〈p(β)

α 〉,

where p(β)
α = pα cos θβ + sin θβ

−pα sin θβ + cos θβ

, (B.3)

β = 1 and 2 correspond to the solutions for materials
having different tilt angles, i.e. for y > 0 and y < 0
regions, respectively. Solving for the asymptotic stress
and displacement fields produced at the interface crack
tip, Bassani and Qu (1989) introduced matricesW and
D as

W = −Re(A1B
−1
1 − Ā2B̄

−1
2 ),

D = − Im(A1B
−1
1 − Ā2B̄

−1
2 ), (B.4)

which reflect continuity of displacements and tractions
across the bimaterial interface. Qu and Bassani (1989)
also proved that if W = 0 the crack tip fields are not
oscillatory, i.e. solution for the stress field has the stan-
dard inverse square root singularity.

For the particular case of uniform tractions applied
along the crack faces, that can be represented by the
stress intensity vector k = (KII, KI, KIII)

T, for bima-
terial satisfying W = 0 the linear elastic solution for
the stress being function of radial distance r and polar
angle θ derived by Bassani and Qu (1989) takes the
following form

(σ12, σ22, σ32)
T = θ (β)(θ)k√

2πr
,

(σ11, σ21, σ31)
T = − θ̃

(β)
(θ)k√
2πr

,

θ (1)(θ)=Re(B̄1�̄1B̄
−1
1 ), θ̃

(1)
(θ)=Re(B̄1�̄1P̄1B̄

−1
1 ),

θ (2)(θ)=Re(B2�2B
−1
2 ), θ̃

(2)
(θ)=Re(B2�2P2B

−1
2 ),

�β = 〈(cos θ + p(β)
α sin θ)−1/2〉. (B.5)

The asymptotic behavior of the displacements can be
deduced from the full finite crack solution given in
Eqs. (3.14a,b) in Bassani and Qu (1989) and it writes
as

u(r, θ) =
√
2r

π
θu

(β)(θ)k,

θu
(1)(θ) = Re(Ā1〈(cos θ + p̄(1)

α sin θ)1/2〉B̄−1
1 ),

θu
(2)(θ) = Re(A2〈(cos θ + p(2)

α sin θ)1/2〉B−1
2 ). (B.6)

The crack opening displacement can be calculated as

Δ(x1) = √
2x1/πDk for x1 < 0. (B.7)

Besides, according to Wu (1990), the energy release
rate becomes

Gc = 1

4
kTDk. (B.8)

Although this approach may seem complicated and
unnecessary for the problems considered here, since
the solution for a uniformly loaded interface crack of
W = 0 bimaterial is identical to the linear elastic solu-
tion for one anisotropic media obtained by Sih et al.
(1965) with corresponding elastic properties for each
region, it provides a more rigorous framework and
allows to justify the solution type (oscillatory versus
non-oscillatory) by computing the matrixW.
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