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Abstract: Linear elastic fracture mechanics-based discrete crack propagation simulations are presented as the pullout of an anchor group
from a concrete matrix. The group was modeled as a periodic arrangement of anchors and load-carrying capacities and crack paths were
determined as functions of relative depth and spacing. The results suggest that American Concrete Institute design formulas for predicting the
capacity of group anchors are highly conservative, and that three-dimensional fracture mechanics-based simulations offer great promise for
improving design formulas associated with specific anchor geometries and loadings. DOI: 10.1061/(ASCE)EM.1943-7889.0001200.
© 2016 American Society of Civil Engineers.
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Introduction

Predicting the tensile load-carrying capacity of a steel anchor em-
bedded at depth d within a concrete matrix, for the case in which
the concrete progressively fractures and breaks out as a cone, re-
mained a relatively difficult and not well-understood problem up to
the early 1980s (Klinger and Mendonca 1982). This is because
fracture mechanics of concrete structures was still in its early
stages, and it had not been discovered that the breakout process
is in the realm of fracture mechanics. In fact, up to that time,
the debate was centered around which strength property of concrete
plays the critical role in resisting failure, what deformation mech-
anisms are involved in the progressive breakout process, and
whether additional understanding could be derived using improved
plasticity and damage-based procedures. Within the context of
strength-based theories, some investigators argued that the load-
carrying capacity depended on the concrete compressive strength,
whereas others proposed dependencies on shear strength or tensile
strength. Therefore, design codes continued to rely on formulas de-
rived from relatively simple limit-state models that assumed the
maximum load was in equilibrium with the resultant of uniformly
distributed stresses acting on the surface of a pullout cone with pre-
scribed shape. Regardless of the differences between numerous
plasticity-based models that were proposed to improve on predic-
tions, their reliance on a limiting stress automatically conferred on
their load-carrying capacity the d2-dependence that prevailed in
design formulas as recently as 1989 [ACI Committee 349 (ACI
1989)]. Fig. 1 shows that the plasticity-based design formulas re-
present the limit state calculation involving the assumption of a fail-
ure cone that resists the pullout force through a traction distribution
proportional to the tensile strength of the concrete, ft. The geomet-
ric parameters in this figure are those that appear in the ACI code,
namely the effective embedment depth hef and the anchor diameter
du. For convenience and to reduce the number of subscripts in the

equations of this paper, these parameters are redefined as follows:
hef ≡ d, and du ≡ c. The load-carrying capacity was determined in
the obsolete design procedures developed in the ACI Code by
Committee 349-89 (ACI 1989) by the limit-load formula

Pu;ACI ¼ ftπd2
�
1þ c

d

�
¼ 4ϕ

ffiffiffiffiffi
f 0
c

p
πd2

�
1þ c

d

�
≈ ftd2 ð1Þ

In Eq. (1), the tensile strength has been related to the com-
pressive strength, f 0

c, through the strength reduction factor
ϕ (ft ¼ 4ϕ

ffiffiffiffiffi
f 0
c

p
).

Advances in fracture mechanics modeling of concrete structures
led to theoretical, computational, and experimental studies, starting
in the early 1980s and continuing to today, that relied on the linear
elastic fracture mechanics (LEFM) assumption that the load carry-
ing capacity is dictated by the concrete fracture toughness, Kc, and,
in turn, obeys the d3=2 dependence that is consistent with experi-
mental data, linearity, and dimensional analysis (Ballarini et al.
1986, 1987; Elfgren 1998; Elfgren and Ohlson 1992; Eligehausen
and Sawade 1989; Eligehausen and Balogh 1995; Eligehausen et al.
2006; Fuchs et al. 1995; Karihaloo 1996; Krenchel and Shah 1985;
Ozbolt and Eligehausen 1992; Ozbolt et al. 1999; Vogel and
Ballarini 1999; Piccinin et al. 2010, 2012). The load-carrying
capacity predicted by LEFM, referred to as concrete capacity
design (CCD), can be written as

PLEFM ≈ Kcd3=2 ≈ kc
ffiffiffiffiffi
f 0
c

p
d3=2 ð2Þ

where kc = experimentally determined factor introduced by
Fuchs et al. (1995) to relate concrete’s fracture toughness to its
compressive strength. The plasticity-based design formulas in the
design codes have been replaced with the LEFM-derived d3=2 –
dependence as evidenced by the procedures spelled out in Comité
Euro-International du Beton (CEB), ACI Committee 349 (ACI
2006), and ACI Committee 318 (ACI 2008). The success of LEFM
in the design of steel to concrete anchorage cannot be overstated; it
paves the way for future contributions of LEFM to the design of
concrete structures as evidenced by current discussions in the con-
crete community to introduce size effects in the design procedures
for shear and torsion loadings.

The fracture behavior of anchors being pulled out of concrete is
associated with the strongest possible size effect, which is the neg-
ative square root dependence of ultimate stress on structural size
dictated by LEFM. The reason for this remarkable result is that
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the pullout configuration is, in the parlance of crack analysis, a
highly positive geometry. In fact Piccinin et al. (2012) showed that
LEFM suffices through experiments, and showed that the load-
carrying capacities and crack paths predicted by LEFM are approx-
imately equal to those predicted by the cohesive zone models that
typically are used to account for the size effects exhibited by most
concrete structures. Specifically they showed that LEFM suffices
even if the embedment depth, which represents the most significant
characteristic dimension of the structure, is comparable to the ag-
gregate size. It is for this reason that the model presented in this
paper relied confidently on LEFM.

The role played by the surface of the cone that is produced as the
anchor breaks out from the matrix is another extremely important
difference between plasticity-based formulas and those derived
from fracture mechanics. The previously discussed d2 scaling re-
sults from the assumption that the load-carrying capacity increases
in proportion to the cone’s surface area. Although fracture mechan-
ics simulations have made it abundantly clear that the relationship
does not hold; the crack front that extends from the edge of the
anchor toward the free surface becomes unstable under load-control
long before it reaches the surface. Thus, the capacity does not scale
with the surface area of the cone. The process of crack propagation
in the breakout process is analogous to a zipper that has been
loaded with a critical weight. Once it starts to unzip, its load-
carrying capacity in no way increases in proportion to the length
of the portion of the zipper that has not yet unzipped.

Despite this important difference, the area of the pullout cone
still enters in the design formulas for group anchors and anchors
near free edges, and, in particular, in how it is prescribed at which
spacing anchors sense each others’ presence. Specifically, anchors
are assumed to interact with each other and influence the load-
carrying capacity when the surfaces of their respective cones
coalesce. If the crack front for closely spaced anchors becomes
unstable under force control at lengths that are significantly shorter
than the total length traveled to the free surface, then it is expected
that the design formulas are overly conservative. Indeed, the ACI
(2008) commentary paragraph RD.5.2.3 states: “For anchors lo-
cated less than 1.5hef from three or more edges (hef is the effective
embedment depth), the tensile breakout strength computed by
the CCD method, which is the basis for Eq. (D-4)–(D-11), gives
overly conservative results. This occurs because the ordinary
definitions of ANc=ANco (the ratio of the projected areas of the
breakout cone associated with a group of N anchors and an isolated
anchor, respectively) do not correctly reflect the edge effects.” The
commentary then continues with modifications to the design
formulas that reduce the conservatism in the design, with certain
restrictions.

This paper is not intended to provide new and improved design
formulas, or to compare its results with experimental results

obtained on anchor groups of specific configurations (this clearly
cannot be done because of differences in geometry between the
idealized model considered in this paper and the more complex
configurations encountered in practice). These important tasks
are beyond the scope of the paper and will require substantial effort
by the concrete community. Instead, this paper focuses on identi-
fying and quantifying one factor that contributes to the overly
conservative nature of the design formulas available for designing
anchor groups that have been recognized by the ACI commentary
quoted previously. Through the analysis of a simplified configura-
tion that is amenable to relatively simple axisymmetric analysis,
this paper makes the argument that one of the reasons the design
formulas for anchor groups are overly conservative is that they
maintain that the load-carrying capacity depends on the projected
area of the failure cone. This occurs despite the fact that the lack of
dependence of the capacity on the area of the failure surface is, in
essence, the reason why fracture mechanics has been successful in
the design of individual anchors. Specifically, the simplified model
will show that because the ultimate load is achieved when the
cracks that initiate at the anchors’ edges are relatively short, the
reduction of load-carrying capacity with decreasing anchor spacing
is smaller than what is predicted by the design formulas.

LEFM Model and Nondimensional Parameters

Fig. 2(a) shows the anchor group whose failure was investigated us-
ing incremental discrete crack propagation simulations enabled by
the software (FRANC-2D). This simplified periodic hexagonal ar-
rangement represents the limit of N ¼ ∞ equally spaced anchors.
The simplified configuration cannot be used directly to quantify the
reduction of load-bearing capacity for an anchor group whose
perimeter-defining anchors interact with a traction-free boundary.
However, this geometry captures the essence of the interaction be-
tween the anchors, namely the anchor spacing and embedment
depth, and its symmetries allow it to be modeled using the single
unit cell shown in Fig. 2(b). Fig. 2(b) also shows that the approxi-
mation as a cylinder of the (three-dimensional) hexagonal outer sur-
face of the unit cell reduces the problem to a (two-dimensional)
axisymmetric representation. The symmetries and axial constraint
at infinity are represented by the zero shear stress condition and zero
horizontal displacement along the vertical exterior surfaces of a
section of the axisymmetric configuration as shown in Fig. 2(b).
The periodicity assumes all anchors break out simultaneously.

The relevant dimensions of the model are the embedment depth,
d, anchor spacing, s, and anchor diameter, c. The headed anchor is
represented, as was done in Ballarini et al. (1986), Ballarini et al.
(1987), Vogel and Ballarini (1999), and Piccinin et al. (2010, 2012)
by a discontinuity whose top surface is restrained from displacing
in the vertical and horizontal directions, and its lower surface is
traction-free. This simplification eliminates the need to model
the anchor thickness and for the presence of the steel stem, and
has been shown to accurately capture the crack paths and the
load-carrying capacity associated with an isolated anchor (Ballarini
et al. 1986). The crack length, l, is defined as the curvilinear
distance of the traction-free crack front from the edge of the anchor.
The pullout force acting on the anchor, P, is equal to the resultant of
the vertical nodal forces on the top surface of the discontinuity
produced by a uniform stress, p, applied along the bottom surface
of the cylindrical model. It is recognized that in anchorage appli-
cations, the pullout force not always is transmitted to the lower
surface as indicated in Fig. 2(b). However, as demonstrated in
the previously cited models that led to the currently used fracture
mechanics-based design formulas, the uniform stress is but a way

Fig. 1. Failure surface assumed by the first ACI Code provision
(ACI 1989)
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of maintaining equilibrium and it does not affect the dependence of
the load-carrying capacity on embedment depth. Also not affecting
the scaling law, is the compressive stress-induced damage in the
concrete in the immediate vicinity of the anchor tops that are em-
bedded relatively deeply. Such damage may have a small effect on
the very initial shape of the crack path, but not on the overall shape
of the pullout cone and on the fracture-energy dominated load-
carrying capacity. The effects of loading type; secondary damage,
such as compressive stress-induced microcracking in the vicinity of
the anchor; and other types of uncertainties are good reasons why
the design codes incorporate a highly conservative approach to the
design of embedded anchors. Nevertheless, the simplified model
presented in this paper is sufficient to illustrate the irrelevance
of the projected area of the failure surface to the load-carrying
capacity of an anchor group.

FRANC-2D possesses the ability to automatically remesh as it
extends the crack according to several choices of crack extension
direction criteria that depend on the Mode-I and Mode-II stress
intensity factors. The simulations presented in this paper rely on
stress intensity factors calculated using the J-integral method,
which were used to determine the direction of crack extension
according to the maximum hoop stress criterion (FRANC-2D). Ac-
cording to this local symmetry criterion, the crack chooses a path
that renders the Mode-II stress intensity factor nearly zero. Further-
more, the crack length is in equilibrium with the applied force ac-
cording to the Griffith criterion; its Mode-I stress intensity factor,
KI , is equal to the concrete fracture toughness, KIc.

Following Vogel and Ballarini (1999), linearity and dimensional
consistency require that for the applied loading to be in equilibrium
with the crack length, according to the Griffith criterion, the
fracture toughness could be related to the applied force as

KIc ¼ Pcd−3=2f
�
l
c
;
d
c
;
s
d
; υ

�
ð3Þ

where f is determined from the simulations; and ν = Poisson’s ratio
(set equal to 0.2 in all calculations). The normalized maximum
force achieved as the crack extends from the edge of the anchor
to the free surface is therefore expressed as

Pc

KIcd3=2
≡ g ¼ min

�
1

f

�
ð4Þ

where min = minimum Mode-I stress intensity factor calculated
along the crack path.

Results

A representative finite element method mesh is shown in Fig. 3.
The load-carrying capacities and crack paths presented next
represent the converged results as obtained by performing simula-
tions with meshes of varying element density for every geometry.
The purpose of Fig. 3 is to illustrate that the initial mesh must
be tailored to accommodate the automatic mesh refinement that

Fig. 2. (a) Hexagonal periodic arrangement of anchor group; (b) unit cell; (c) cylindrical approximation of unit cell; (d) axisymmetric section of
cylindrical unit cell
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is performed by FRANC-2D after each crack extension increment.
The accuracies of the stress intensity factors, load-carrying
capacities, and crack paths calculated using FRANC-2D for axi-
symmetric curvilinear crack paths have been reported for crack
configurations very similar to the one studied in this paper by
Gordeliy et al. (2013). Gordeliy’s results were obtained using a dis-
placement discontinuity-based integral equation approach, and, as
far as the authors know, it is the only convincing solution procedure
in the literature on such problems. Additional confidence in the re-
sults comes from a favorable comparison with the isolated anchor
results presented in Piccinin et al. (2012); the differences in load
capacities were shown to be less than 5%, and the crack paths were
indistinguishable. FRANC-2D calculates the stress intensity factors
using two approaches: the displacement correlation technique and
the J-integral procedure. The mentioned small differences between
the results presented in this paper and those in Piccinin et al. (2012)
are because of differences in the method used to evaluate the stress
intensity factors; in Piccinin et al. (2012) the displacement corre-
lation technique was used. The method chosen in this paper is
the latter because it generally is accepted that it is deemed more

accurate as a result of comparisons with benchmark solutions over
the program’s life, including comparisons with Gordeliy et al.’s
(2013) convincing results.

Crack Paths

Representative crack paths are shown in Fig. 4 as functions of nor-
malized embedment depth, d=c ¼ 1, 2, 5, and 10, for selected val-
ues of normalized anchor spacing, s=d ¼ 5, 3, and 1.5. The path for
d=c ¼ 10 starts at the left-most point, the d=c ¼ 5 path starts
immediately to its right, and so forth. The paths for d=c ¼ 10
and d=c ¼ 5 are hardly distinguishable. These figures also indicate
the point at which crack propagation becomes unstable under load
control, as discussed subsequently. It was determined that for
s=d > ∼3, and as shown in the figure, the crack path crossed
the free surface at a significantly large horizontal distance from
the vertical boundary of the unit cell. Thus, the cone produced
by one anchor did not interact with the one produced by its nearest
neighbors. The lack of interaction was underscored by the obser-
vation that the maximum load was reached at crack lengths that
were less than 30% of the total length they traveled before breaking
the surface. When s=d ∼ 3, the crack front broke the surface at the
edge of the boundary of the unit cell, thus forming a connection
with the crack approaching the same location from the adjoining
cell. For s=d < 3, and as shown in Fig. 4 for s=d ¼ 1.5, the break-
out cones of neighboring anchors intersected with each other as a
result of the attraction of their fronts to the zero-shear stress vertical
boundaries; these boundaries acted in a similar fashion to free sur-
faces that are known to attract cracks. The points of instability for
this relatively small anchor spacing occurred at crack lengths
roughly half of the length that they traveled before breaking the
vertical boundary. When the crack fronts of neighboring unit
cells approached each other, the assumption of axial symmetry be-
came increasingly unrealistic. But because the ultimate load was
achieved long before this happened, the results of the simulations
were expected to be highly relevant.

The result that the maximum force during a pullout failure was
achieved after a relatively small amount of crack growth under-
scores the fact that load carrying capacities dominated by fracture
mechanics, unlike those involving net-section yielding, do not scale
with the total area of the failure surface.

Fig. 3. Representative finite element mesh showing the density of ele-
ments at the end of a breakout simulation

(a) (b) (c)

Fig. 4. Anchor paths for (a) s=d ¼ 5; (b) s=d ¼ 3; and (c) s=d ¼ 1.5, indicating point of instability under load control

© ASCE 04016125-4 J. Eng. Mech.
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Load-Carrying Capacity

Fig. 5, corresponding to s=d ¼ 3, was representative of the previ-
ously defined normalized Mode-I stress intensity factor, f, as func-
tions of crack length. For each normalized embedment depth, the
curves on this plot produced the normalized maximum applied
force, g, as defined by Eq. (4). The load-carrying capacity was
shown as functions of embedment depth for selected values of
anchor spacing that corresponded to the transition from no inter-
action to strong interaction between neighboring anchors.

Fig. 6 shows that the normalized capacities were weak functions
of relative embedment depth, d=c (approximately 10%). As
mentioned previously, the results for the largest three spacings
were slightly different than those presented in Vogel and Ballarini
(1999) and Piccinin et al. (2010, 2012). Specifically, for d=c > 2,
the results showed the capacity to be a weak function of d=c that
varied from approximately 3.2 to 3.4. Piccinin et al. (2010) reported
instead an asymptote equal to 3.15; this study reproduced their re-
sults by using the displacement correlation technique, but the re-
sults presented in Fig. 6 are more accurate. Thus the d3=2 term
sufficed to quantify the dependence of capacity on embedment
depth. However, the load-carrying capacity was a moderately
strong function of relative spacing, s=d, decreasing from an average
value of approximately 3.3 for noninteracting anchors to approx-
imately 2.3 for the smallest of the simulated spacings. The number
of illustrative examples presented previously was not sufficient to
derive a sufficiently accurate fit of the surface that represented the
load-carrying capacity dependence on the embedment depth and
anchor spacing. For the purposes of this paper, the plots of these
dependencies, included in Fig. 6, should suffice. As discussed next,
the reduction with decreased spacing was much less than what was
dictated by available design formulas.

Comparison with Currently Available
Design Procedures

ACI-318-08 (ACI 2008) (Appendix D, Formula D-4), provides
formulas that could be used to determine the nominal concrete

breakout tensile strength of a group of anchors with effective
embedment depth, hef , with spacing, s < 3hef . This strength, nor-
malized by the load-carrying capacity of a single anchor, is propor-
tional to the ratio of the projected concrete failure area produced by
the N-anchor group, ANc, to the reference area associated with
a single anchor, ANco ¼ 9h2ef . For the case of a square array of
anchors the projected area is given by

ANc ¼
�� ffiffiffiffi

N
p − 1

�
sþ 3d

�
2

ð5Þ

The force carried by one anchor in the group, Pult;N=N, relative
to the capacity of a single anchor, Pult;o, therefore can be written as

Pult;N

NPult;o
¼ ½ð ffiffiffiffi

N
p − 1Þ s

3d þ 1�2
N

ð6Þ

A comparison between the periodic group studied in this paper
and the code’s design formulas can be made with hef ∼ d and by
setting N ¼ ∞, which leads to

Pult;N¼∞
NPult;o

¼
�

s
3d

�
2

ð7Þ

For the values of relative spacing simulated in this paper,
s=d ¼ 5, 3, 1.5, 1.2, and 1.0, the capacity ratios according to
Eq. (7) are 1.0, 1.0, 0.25, 0.16, and 0.11, respectively (for s=d ¼
5 and s=d ¼ 1, the code considers the anchors as noninteracting).
The 75–90% range of the reduction prescribed by the code was
significantly larger than the ∼20–30% reduction predicted by
the simulations (Fig. 6).

The design codes are conservative; it was a necessary condition
for minimizing potential structural failures. But this conservatism
was partly because of the fact that the design formulas maintain that
the load-carrying capacity is proportional to the projected areas
associated with the failure cones.

Conclusions

The results of the discrete crack propagation simulations presented
in this paper, despite being limited to a simplified configuration
involving a periodic arrangement of anchors, underscore the fact
that the failure cones produced as steel anchors break out from
a concrete matrix and are byproducts of the crack propagation,
and that they are not related directly to the load-carrying capacity
of the anchor group. This suggests that if less conservative designs
are desired, one may start by abandoning the introduction of the

Fig. 5. Representative normalized Mode-I stress intensity factor as
functions of normalized crack length (s=d ¼ 3, d=c ¼ 1, 2, 5, and 10)

Fig. 6. Normalized load capacity as functions of normalized embed-
ment depth (s=d ¼ 1, 1.2, 1.5, 3, and 5)

© ASCE 04016125-5 J. Eng. Mech.
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projected area of the failure cone into predictive equations, and in-
stead, develop design formulas for specific anchorage configura-
tions and applied loading from the results of three-dimensional
LEFM simulations of the breakout process in specific geometries
subjected to specific loadings. Such efforts are realistic considering
the advent of highly efficient and accurate finite element methods
for three-dimensional crack propagation simulations.

References

ACI (American Concrete Institute). (1989). “Code requirements for
nuclear safety.” ACI #349.1R, Detroit.

ACI (American Concrete Institute). (2006). “Code requirements for
nuclear safety related concrete structures (ACI 349-06) and commen-
tary (349R-06).” ACI 349-06, 349R-06, Detroit.

ACI (American Concrete Institute). (2008). “Building code requirements
for structural concrete (ACI 318-08) and commentary (318R-08).”
ACI 318-08, 318R-08, Detroit.

Ballarini, R., Keer, L. M., and Shah, S. P. (1987). “An analytical model for
the pull-out of rigid anchors.” Int. J. Fract., 33(2), 75–94.

Ballarini, R., Shah, S. P., and Keer, L. M. (1986). “Failure characteristics
of short anchor bolts embedded in a brittle material.” Proc. R. Soc.
London, A404, 35–54.

Elfgren, L. (1998). “Round robin analyses and tests of anchor bolts in
concrete structures.” RILEM technical committee 90-FMA: Fracture
mechanics of concrete applications, RILEM, Cachan Cedex, France.

Elfgren, L., and Ohlsson, U. (1992). “Anchor bolts modeled with fracture
mechanics.” Application of fracture mechanics to reinforced concrete,
A. Carpinteri, ed., Elsevier, London.

Eligehausen, R., and Balogh, T. (1995). “Behavior of fasteners loaded in
tension in cracked reinforced concrete.” ACI J., 92(3), 365–379.

Eligehausen, R., Mallée, R., and Silva, J. (2006). Anchorage in concrete
construction, Ernst and Sohn, Berlin.

Eligehausen, R., and Sawade, G. (1989). “Analysis of anchorage behaviour
(literature review).” Fracture mechanics of concrete structures: From
theory to applications, L. Elfgren, ed., Chapman and Hall, London.

FRANC-2D [Computer software]. Cornell Fracture Group, Ithaca, NY.
Fuchs, W., Eligehausen, R., and Breen, J. E. (1995). “Concrete capacity

design (CCD) approach for fastening to concrete.” ACI J., 92(1),
73–94.

Gordeliy, E., Piccinin, R., Napier, J. A. L., and Detournay, E. (2013). “Ax-
isymmetric benchmark solutions in fracture mechanics.” Eng. Fract.
Mech., 102, 348–357.

Karihaloo, B. L. (1996). “Pull-out of axisymmetric headed anchors.”
Mater. Struct., 29(3), 152–157.

Klinger, R. E., and Mendonca, J. A. (1982). “Tensile capacity of short
anchor bolts and welded studs: A literature review.” ACI J., 79(27),
270–279.

Krenchel, H., and Shah, S. P. (1985). “Fracture analysis of the pullout test.”
Mater. Struct., 18(6), 439–446.

Ozbolt, J., and Eligehausen, R. (1992). “Fastening elements in concrete
structures—Numerical simulations.” Proc., Fracture of Concrete and
Rock, 2nd Int. Conf., H. P. Rossmanith, ed., E & FN Spon, London.

Ozbolt, J., Eligehausen, R., and Reinhardt, H. W. (1999). “Size effect on the
concrete cone pull-out load.” Int. J. Fract., 95(1–4), 391–404.

Piccinin, R., Ballarini, R., and Cattaneo, S. (2010). “Linear elastic fracture
mechanics pullout analyses of headed anchors in stressed concrete,”
J. Eng. Mech., 10.1061/(ASCE)EM.1943-7889.0000120, 761–768.

Piccinin, R., Ballarini, R., and Cattaneo, S. (2012). “Pullout capacity of
headed anchors in prestressed concrete,” J. Eng. Mech., 10.1061
/(ASCE)EM.1943-7889.0000395, 877–887.

Vogel, A., and Ballarini, R. (1999). “Ultimate load capacities of plane and
axisymmetric headed anchors.” J. Eng. Mech., 10.1061/(ASCE)0733-
9399(1999)125:11(1276), 1276–1279.

© ASCE 04016125-6 J. Eng. Mech.

 J. Eng. Mech., 2017, 143(4): 04016125 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
ni

ve
rs

ity
 o

f 
H

ou
st

on
 o

n 
04

/1
0/

18
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

http://dx.doi.org/10.1098/rspa.1986.0017
http://dx.doi.org/10.1098/rspa.1986.0017
http://dx.doi.org/10.1016/j.engfracmech.2013.01.010
http://dx.doi.org/10.1016/j.engfracmech.2013.01.010
http://dx.doi.org/10.1007/BF02486160
http://dx.doi.org/10.1007/BF02498746
http://dx.doi.org/10.1023/A:1018685225459
http://dx.doi.org/10.1061/(ASCE)EM.1943-7889.0000120
http://dx.doi.org/10.1061/(ASCE)EM.1943-7889.0000395
http://dx.doi.org/10.1061/(ASCE)EM.1943-7889.0000395
http://dx.doi.org/10.1061/(ASCE)0733-9399(1999)125:11(1276)
http://dx.doi.org/10.1061/(ASCE)0733-9399(1999)125:11(1276)

