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Abstract: This study investigates the failure behavior of hybrid steel trussed concrete beams (HSTCBs) under three-point bending through a
series of finite-element (FE) simulations. The FE model employs well-established constitutive relations of concrete and steel with a simplified
contact condition between the concrete and steel truss. The numerical model is compared with existing experimental data as well as a FE
model that uses a more sophisticated concrete-steel interfacial model. The comparison shows that the present model is able to capture various
failure mechanisms of the beam and its peak load capacity. The model is applied to investigate the behavior of a set of HSTCBs of different
sizes, whose design corresponds to current industrial practice. The simulations show that, due to the lack of three-dimensional geometrical
similarity, the small-size beam exhibits shear failure, whereas the large-size beam experiences flexural failure. The observed transition
between different failure modes indicates the importance of employing a robust three-dimensional FE model for design extrapolation
of HSTCBs across different sizes and geometries. DOI: 10.1061/(ASCE)ST.1943-541X.0001792. © 2017 American Society of Civil
Engineers.
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Introduction

Hybrid steel trussed concrete beams (HSTCBs) represent an inno-
vative structural solution for beams in light industry buildings
and seismic-framed structures. This type of beam has been devel-
oped by the Italian construction industry over the last 50 years.
In HSTCBs, a prefabricated steel truss is embedded into a cast-
in-place concrete core, as shown in Fig. 1. The truss usually
consists of a bottom steel plate, a system of ribbed or smooth steel
bars welded together to form the diagonals of the truss, and an
upper chord made of single or coupled rebars. HSTCBs could lead
to a significant reduction in construction time and at the same time
minimize the risk of injury because no formwork or intermediate
supports are required due to the presence of the bottom steel plate
and the intermittent support devices, as shown in Fig. 1. Moreover,
the construction details can be controlled well without the need of
in situ welding or tying. Finally, HSTCBs are able to cover a large
span with a relatively small beam depth.

Since their inception a significant amount of research has
been performed on different aspects of HSTCBs. For instance,

Colajanni et al. (2013) investigated the strength of welded joints,
providing models for its prediction; Vincenzi and Savoia (2010)
and Trentadue et al. (2011) studied the buckling of steel trusses
in the operative phase preceding the concrete cast; several research-
ers analyzed the flexural and shear strengths of the beam (Tesser
and Scotta 2013; Chisari and Amadio 2014; Monaco 2014, 2016;
Campione et al. 2016; Monti and Petrone 2015; Colajanni et al.
2015b, 2016a, b); Ju et al. (2007), Amadio et al. (2011), Colajanni
et al. (2015b), and Monaco (2014) investigated the behavior of
beam-to-column joints and connections; and Hsu et al. (2004)
and Badalamenti et al. (2010) studied the seismic behavior of
HSCTBs. Tullini and Minghini (2013), Monaco (2014), and
Colajanni et al. (2014, 2015a, 2016a, 2017) recently investigated
the stress transfer from the bottom chord of the truss to the concrete
core. Sassone and Chiorino (2005) analyzed the time-dependent
creep behavior of HSCTBs.

Existing studies of the flexural and shear responses of HSCTBs
have mainly dealt with experimental testing (Chisari and Amadio
2014; Monaco 2014; Monti and Petrone 2015; Colajanni et al.
2016a) and the interpretation of the test results through simplified ana-
lytical modeling (Tesser and Scotta 2013; Chisari and Amadio 2014;
Monaco 2014, 2016; Campione et al. 2016; Monti and Petrone 2015;
Colajanni et al. 2016b). In addition to analytical modeling of the
flexural and shear resistance of HSCTBs, efforts have been devoted
to developing FE methods for different beam typologies of the lower
steel plate and the precast concrete base (Tesser and Scotta 2013;
Chisari and Amadio 2014; Monaco 2014, 2016; Campione et al.
2016; Colajanni et al. 2015a; Monti and Petrone 2015).

Due to the complex three-dimensional (3D) geometry of
HSTCBs and the nonlinear constitutive behavior of the materials
and concrete-steel interface, HSTCBs can exhibit different failure
modes. This makes it difficult to develop a single analytical model
for predicting the failure load of HSTCBs. Therefore, computa-
tional modeling becomes an essential tool. However, few studies
have been devoted to the development of efficient computational
models that can capture the failure behavior of HSTCBs reasonably
well and possibly be applied to the design process. This is what
motivates the present work.
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This paper presents a numerical study of the failure behavior of
HSTCBs. Of particular interest is the failure behavior of HSTCBs
of different sizes. The influence of specimen size and geometry on
structural failure has been observed and studied in structures made
of many types of concrete materials, including normal-strength
concrete (Bažant and Kazemi 1988; Ožbolt et al. 1994; Cedolin
and Cusatis 2007, 2008; Syroka-Korol and Tejchman 2012),
high-strength concrete (Appa Rao and Raghu Prasad 2004), and,
more recently, basalt bar–reinforced concrete (Syroka-Korol and
Tejchman 2013). Understanding of size and geometrical effects
could lead to improved design procedure because many full-scale
designs have to rely on the extrapolation of laboratory experiments
on small-scale specimens. Meanwhile, analysis of size and geomet-
rical effects has also stimulated the development of new cementi-
tious composite materials with superior strength and toughness
(Lepech and Li 2003, 2004) and has inspired advanced analysis

techniques for both classical and new problems (Bažant and Yu
2004; Yasir Alam and Loukili 2010; Yu et al. 2016).

This paper is planned as follows: the next section describes the
procedure of the finite-element analysis, the third section presents
model validation against both the existing experimental results and
a more realistic computational model, the following section
presents the simulated failure behaviors of HSTCBs of different
sizes, and the fifth section discusses overall observed size and geo-
metrical effects on the peak load capacity of HSTCBs.

Description of Finite-Element Analysis

The HSTCB is a complex three-dimensional structure composed of
strain-softening concrete material and ductile steel reinforcement.
The main challenge of developing a numerical model for a HSTCB
is to determine which details should be retained and which ne-
glected so that the model will be sufficiently robust and also com-
putationally efficient for the design purpose. In the present FE
model, the reinforcement bars and the bottom steel plate are mod-
eled using beam and shell elements, respectively, and the concrete
material is modeled using linear displacement tetrahedral elements.
The mesh size is chosen through a convergence study of load-
deflection curves.

Constitutive Models

In this study, the constitutive response of concrete is described by a
continuum damage plasticity model (Lee and Fenves 1998), which
combines the theory of continuum damage mechanics and the

web bars

bottom chord

upper chord

block of concrete

support device

Fig. 1. Topology of HSTCB

(a)

(b)

Fig. 2. Stress-strain curves of materials: (a) concrete under uniaxial tension and compression; (b) elastoplastic hardening behavior of steel
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theory of plasticity for a realistic representation of the inelastic
behavior of concrete. Fig. 2(a) shows the stress-strain curves of
concrete under uniaxial tension and compression. To mitigate
the spurious mesh dependency of the FE simulation of concrete
fracture due to its strain-softening behavior, the crack band model
is used in the simulation (Bažant and Oh 1983). In the implemen-
tation, fracture energy Gf is used as an input parameter and, as a
consequence, the tensile stress-strain curve is adjusted as a function
of element size in order to preserve the constancy of the fracture
energy. The constitutive relationship of steel material is considered
to follow a metal plasticity model, which exhibits elastoplastic
hardening behavior [Fig. 2(b)]. In this model, the von Mises yield
surface with an isotropic hardening rule is used to describe the plas-
tic flow, in which the yield surface changes its size uniformly in all
plastic strain directions.

The interface between the steel bars and concrete material is
assumed perfectly bonded. Such a simplification eliminates the
need to model the highly nonlinear stick-slip type of behavior of
the interface. As will be shown later, the validity of this assumption
is assessed by comparing the predicted load-deflection curves with
experimental measurements as well as those calculated by a model
in which the interface is modeled by using a set of nonlinear
cohesive elements.

Geometrical Scaling of Specimens

To investigate the influence of size and geometry on the failure
behavior of HSTCBs, the authors performed numerical simulations
of three-point bending tests on HSTCBs of three sizes, henceforth
referred to as Specimens S1, S2, and S3. The simulations were per-
formed using the general-purpose FE analysis software ABAQUS
6.12. Figs. 3(a and b) show the details of the geometry, boundary
conditions, and steel reinforcement of the beam examined in Speci-
men S1. In the scaled Specimens S2 and S3, the span-to-depth ratio
is kept the same as that of Specimen S1 (i.e., a=D ¼ 2.4), and the
depths are chosen so that Specimens S1, S2, and S3 have size ratio
1:2.22:4.93. The width of the beam is chosen as a constant
(b ¼ 300 mm). The size of the steel bars and bottom steel plates
is kept constant according to current industrial practice, whereas
the horizontal span of the diagonal steel truss is linearly scaled with
beam depth. Fig. 4 shows the scaled models with their geometrical

dimensions. It is noted that Specimens S1 and S2 represent the typ-
ical sizes that are used in practice.

It is clear that the resulting cross sections of the three specimens
differ from each other in terms of the slope of the diagonal rebars,
which increases from 68° for Specimen S1 to 86° for Specimen S3.
Furthermore, the sizes of the bottom steel plate and diagonal rebars
are also not scaled with beam size. Therefore, the present three
specimens do not exhibit geometrical similarity. As will be dis-
cussed later, this has a profound implication on the failure behavior
of the beams. All specimens are considered made of the same type
of material, i.e., concrete with compressive strength 25 MPa, Class
B450C steel for the longitudinal and diagonal rebars, and Class
S355 steel for the bottom plate.

Model Validation

The proposed computational model was used to simulate a recent
three-point bending experiment on Specimen S1 (Monaco 2014,
2016; Colajanni et al. 2016a). The simulation result is compared
with the experimental observation as well as a FE benchmark sim-
ulation, in which a more realistic cohesive law for the steel-concrete
interface was used. These comparisons allow justification of the
simplified assumption of perfect bonding in the steel-concrete in-
terface for the purpose of predicting the load capacity of HSTCBs.

Comparison with Experimental Results

Several three-point bending tests were performed on Specimen S1
at the Laboratory of Structures of the University of Palermo (Monaco
2014, 2016; Colajanni et al. 2016a). As shown in Fig. 3, the cross
section of the specimen has a dimension of 250 mm depth and
300 mm width, and the basic steel truss consists of seven 16-mm-
diameter rebars on the top, a 5-mm-thick steel plate at the bottom,
and a couple of 12-mm-diameter rebars along the diagonal directions.

The rebars are made of Class B450C ribbed steel, which has
yielding strength fy ¼ 450 MPa, and the bottom plate is made
of Class 355 smooth steel with fy ¼ 355 MPa. For concrete,
the design compressive strength, fc, is equal to 25 MPa. The spec-
imens have a shear span equal to 600 mm and the bottom steel plate
is anchored at the ends of the beam in order to avoid slip between
the plate and the concrete.

(a) (b)

(c)

steel plate
300x5

diagonal rebars 2Ø12/300 P
600

upper chord 7Ø16

D=250

300

a =

D=250

upper chord 7Ø16
diagonals
2Ø12/300

steel plate 300x5

applied displacement

pinned pinned

P

steel plate

Fig. 3. Specimen S1 (dimensions in millimeters): (a) cross section; (b) longitudinal section and load condition; (c) mesh of elements and boundary
conditions
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Two replicates of Specimen S1, denoted A1-1 and A1-2 in this
paper, were tested in the laboratory. These tests were performed by
using a displacement-controlled load, i.e., the load was applied
through a hydraulic jack, which was able to produce a constant
displacement increment. During the test, the midspan displacement
was monitored by external LVDTs, and the strains in the steel bars
and the bottom plates were measured by strain gauges. With refer-
ence to the experimental load-deflection curves of both the A2-1
and A2-2 specimens (Fig. 5), flexural cracks started to develop
at the bottom of the specimens as the load reached about 120
kN. Upon continued loading, diagonal shear cracks started to ini-
tiate and propagate, whereas the growth of the aforementioned
flexural cracks became insignificant. When the beam reached its
peak strength, significant diagonal shear cracking was observed,
which lead to the subsequent loss of load capacity. Finally, the em-
bedded ductile steel trusses allowed the beam to retain a residual
load capacity of about 200 kN at a large displacement greater than
25 mm (Colajanni et al. 2016a).

The authors used the present FEM model to simulate the afore-
mentioned experiments. Fig. 5 presents the comparison between
the simulated and measured load-displacement curves. It is evident
that the present model overestimates the stiffness of the beam due to
the assumed perfect bonding condition of the steel-concrete inter-
face. As will be shown in the following section, the simulated elas-
tic response can be further improved by employing a more realistic
nonlinear model for the concrete-steel interface. The simulation
results show that the beam exhibits an overall brittle failure, which
is manifested by a sudden drop in load-carrying capacity right after

the peak load. After this drop, the beam exhibits a residual load-
carrying capacity.

At the initial stage of loading, the concrete experienced flexural
damage at the bottom of the beam followed by yielding of the steel
truss and plate. The flexural failure of concrete did not lead to a
significant loss of load capacity because the tensile stress generated
by the bending was taken primarily by the steel elements (i.e., the
bottom plate in HSTCBs). Therefore, the flexural damage (flexural
cracks) experienced by the tensile concrete at the first stage did not
contribute to the failure of the beam. As the beam attained its peak
strength, extensive compressive failure occurred almost along the
direction of the compressed diagonal steel bars in the form of a
narrow band. This indicates that a compression strut was formed
along the diagonal direction, which started to experience damage
signifying diagonal shear failure. However, it should be also noted
that the span-to-depth ratio that characterizes the geometry of
Specimen S1 did not allow the typical truss mechanism, which
is sometimes used to interpret the shear failure of conventional
RC beams, to be triggered. After the load-deflection curve entered
its post-peak regime, the damage in the compression strut contin-
ued to grow and eventually lead to the ultimate failure of the beam.
The experimental results indicate that Specimen A2-1 reached a
peak load of 422.29 kN at a midspan deflection of 6 mm, whereas
Specimen A2-2 exhibited a maximum load of 461.29 kN at a
midspan displacement of 8 mm. Thus, Specimen A2-2 exhibited
a peak load 9.23% higher than Specimen A2-1, which is within
the normal scattering range of experimental results on RC speci-
mens (Bažant 2005; Yu et al. 2016). With reference to the postpeak

P

a = 600

D=250

s = 300
b = 300

øup=16

spl=5

øw=12

=68º

α =54°

α =57.2°

α =58.15°

β

=80.8ºβ

=86ºβ

a = 1332

s = 666

a = 2957.04

s = 1478.52

D=1232.1

D=555

b = 300

øup=16

øw=12

spl=5

b = 300
spl=5

øw=12

øup=16

size 1

size 2

size 3

Fig. 4. FEM model features (dimensions in millimeters): symbols of geometric parameters and ratio between geometry of models
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Fig. 5. Comparison between detailed and simplified FEM models against experimental results for HSTCBs with added longitudinal reinforcement

Fig. 6. Simulated maximum principal strains and comparisons with observed fracture patterns in Specimen S1: (a) subvertical cracks at initial loading
stage; (b) growth of cracks in midspan and along diagonal direction right before peak load
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trend of the experimental curves, it is noted that both specimens
exhibited a subhorizontal branch with values of residual load
capacity comparable in the two cases (about 200 kN): the residual
load capacity at large displacement values is attributed to the steel
elements that were seen to provide a ductile response in the final
phases of the test. The measurements of the strain gauge showed
that for both specimens the bottom tensile plate yielded shortly
after peak load was reached. The attainment of peak load and
the subsequent sudden load drop can be attributed to the extensive
failure of the concrete strut before the ductility of the diagonal
steel bars was mobilized to contribute to the overall structural
behavior. The strain gauge measurements showed that the longi-
tudinal rebar of the upper chord remained elastic until the end of
the test.

Overall, the failure of these two beams can be described by the
following stages: (1) development of subvertical flexural cracks in
the midspan before the achievement of peak load; (2) diagonal
shear cracking involving the development of cracks along the steel
diagonals, in the direction of the compressed concrete strut as peak
load is reached; (3) propagation of the diagonal cracks along the
steel diagonals, with insignificant growth of the flexural cracks,
and crushing of the concrete strut, which causes the sudden drop
of load-carrying capacity; and (4) development of residual capacity
due to ductile behavior of the steel members.

Fig. 6(a) shows the simulated profile of the maximum principal
strain in the beam during the initial loading stage. It can be seen
that the flexural subvertical cracks first appear in the midspan of the
beam and two symmetrical diagonal cracks begin to develop.
Fig. 6(b) shows the direction of the maximum principal strain right
before the beam reaches its peak strength. Compared to Fig. 6(a), it
is evident that the flexural cracks do not exhibit substantial growth,
whereas the compressive damage along the two diagonal directions
grows significantly. These simulated damage patterns agree well
with the experimentally observed cracking pattern, as shown in
the insets of Figs. 6(a and b).

The present constitutive model of concrete uses damage param-
eter αc ranging from 0 to 1 to describe the extent of compressive
damage (αc ¼ 0 denotes the intact condition, and αc ¼ 1 denotes
complete damage). This damage parameter can be understood as a
parameter describing the loss of the unloading elastic stiffness of
the material [Fig. 2(a)]. The damage index used in this study de-
scribes the compressive damage extent of concrete, for which the
stress-strain curve can be described as σc ¼ ð1 − αcÞE0ðεc − ~εplc Þ,
in which σc and εc represent the concrete stress and strain, respec-
tively; E0 = elastic stiffness; and ~εplc = plastic strain [Fig. 2(a)]. If
the plastic strain is ignored, the damage index essentially measures
the degradation of the secant stiffness. Fig. 7 shows the profile
of the compressive damage parameter in the beam at peak load.

Fig. 7. Magnitude of damage variable at failure in S1: (a) frontal view of concrete strut; (b) axonometric view

© ASCE 04017060-6 J. Struct. Eng.
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It is seen that at peak load the maximum value of αc along the
diagonal direction is about 0.105. According to the stress-strain
curve of concrete, this damage level indicates that the material
element is about to reach its compressive strength. By cutting
the cross section along the compression strut, it is observed
that the maximum compressive damage occurs near the surfaces
of the beam at the bottom of the compression strut, which corre-
sponds to the location where the diagonal steel truss is attached
to the bottom steel plate. Such a concentrated damage pattern
could be attributed to the stress concentration at the interface pro-
duced by the mismatch of the elastic properties of concrete
and steel.

Fig. 8 shows the cracking pattern of the beam at the end of the
analysis. It is seen that one major diagonal crack propagates
throughout the beam depth accompanied by several small diagonal
cracks. Simulation shows that the maximum value of αc along the
diagonal compression strut reaches 0.855, indicating an extensive
amount of compressive damage. Meanwhile, the stresses in the
steel truss and plates are well beyond the material’s yield strength
but do not yet reach the material’s rupture strength. As shown in
Fig. 8, the simulated diagonal cracking pattern at the ultimate fail-
ure point agrees well with the experimental observation.

The aforementioned comparison indicates that, despite the use
of a simple interfacial model, the present model can accurately cap-
ture various essential failure mechanisms, as well as the peak load
capacity of the beam, even though it does not accurately predict the
initial elastic stiffness of the beam.

Comparison with Computational Benchmark

To further investigate the role of steel-concrete interfacial behavior,
the authors simulated the three-point bending test of Specimen S1
by considering a nonlinear model for the steel-concrete interface.
The resultant interfacial slip was determined as δ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2s þ δ2t

p
,

where δs and δt are the slips along the two orthogonal directions
in the plane of the interface. The work-conjugate effective shear
traction needs to satisfy

τdδ ¼ tsdδs þ ttdδt ð1Þ

where ts and tt = shear tractions in two orthogonal directions in the
interface plane. Eq. (1) has to be satisfied for any arbitrary values of
dδs and dδt. This condition yields ts ¼ τδs=δ and tt ¼ τδt=δ.
Therefore, the behavior of the steel-concrete interface can be de-
scribed by the relationship between the net slip and the effective
shear traction. In this model, the τ -δ relationship is considered
to follow the well-known bond-slip model developed by Eligehau-
sen et al. (1983) as shown in Fig. 9. For the numerical implemen-
tation of this model, the rising branch of the curve was linearized in
such a way that the total energy dissipation (i.e., the area under the
τ -δ curve) is preserved (Fig. 9).

Fig. 5 shows the load-deflection curve simulated by this detailed
FEMmodel together with that simulated by the proposed simplified
model and the experimental measurement. It is seen that the result
of the benchmark model agrees well with the experimental result.
As compared to the simulation using the simplified model, it is

Fig. 8. Crack pattern at end of analysis in S1 and comparison with experimental evidence: (a) frontal view of numerical cracks; (b) picture of
Specimen A1-2 at end of test compared to numerical cracks

© ASCE 04017060-7 J. Struct. Eng.
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clear that employing a realistic steel-concrete interface allows better
capture of the overall beam stiffness. However, it is interesting to
note that it does not significantly affect peak load or total energy
dissipation (i.e., the area under the load-displacement curve). This
implies that the steel-concrete interface does not experience signifi-
cant damage. In other words, the energy dissipation along this inter-
face is small compared to the dissipation due to concrete damage
and steel plasticity. Therefore, the present simplified model is suf-
ficient for modeling the failure behavior of Specimen S1. It should
also be pointed out that, compared to those of the benchmark
model, the computations of the present model can be performed
more than three times faster.

Numerical Simulations of Specimens S2 and S3

The authors used the present model to simulate the failure behavior
of Specimens S2 and S3. As discussed in the previous section, the
perfect-bond model yielded a reasonable prediction of the failure
mechanisms of Specimen S1 because the damage of the steel-
concrete interface had an insignificant effect on the overall failure
behavior of the beam. Similar to the process for Specimen S1, the
authors also used the benchmark model to simulate the behavior of
Specimens S2 and S3 to compare with the present model. Fig. 10
shows the simulated load-deflection curves of Specimens S2 and
S3 by using the present model and the benchmark model. It is seen
that the load-deflection curves simulated by these two models are
very similar. It is interesting to observe that for Specimens S2 and
S3 the difference in the initial rising portions of the load-deflection
curves simulated by the two models is less pronounced than that for
Specimen S1. This could be due to the fact that the initial elastic
response of the steel-concrete interface has less influence on the
elastic response of Specimens S2 and S3 because the dimension
of the steel truss is not scaled proportionally with the concrete beam
size. The difference in the post-peak regime predicted by these two
models will be explained in the next two sections based on the
failure behavior of these specimens.

Load-Deflection Curve and Failure Behavior of
Specimen S2

Fig. 10 indicates that, in contrast to Specimen S1, Specimen S2
exhibits fairly ductile behavior before the ultimate loss of its load
capacity. During the initial stage of loading, it was observed that
concrete damage occurred in the midspan of the beam. It was noted
that, under loading, the bottom steel plate was pulled upward by the
two diagonal truss bars, which introduced local compressive stress
on the concrete [Fig. 11(a)]. When the specimen achieved peak
load, the bottom plate and the diagonal rebars of the truss had al-
ready yielded and a significant number of flexural cracks were
present in the concrete. In the diagonal direction, the stress in
the concrete reached the compressive strength. Meanwhile, limited

compressive failure was also observed in the midspan of the beam
due to the local deformation of the bottom plate.

It is noted that the overall damage along the diagonal directions
was much less than the flexural damage in the midspan of the beam
[Fig. 11(b)]. This is very different from the failure mechanism of
Specimen S1, in which the majority of cracking was observed
along the diagonal directions. Because the compressive damage
along the diagonal directions in Specimen S2 was less significant,
the beam was able to exhibit an overall ductile behavior. The delay
in compressive failure in the diagonal directions in Specimen S2
may be attributed to the fact that in the transverse direction the steel
truss has a steeper angle (Fig. 4), which leads to more confinement
of the concrete material, and such confinement effectively sup-
presses diagonal shear cracking. Certainly, other factors, such as
the aspect ratio of the cross section, may also influence the failure

Fig. 10. Simulated load-displacement curves for (a) Specimen S2;
(b) Specimen S3

Fig. 9. Cohesive law based on bond-slip relationship (data from Eligehausen et al. 1983)
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behavior of the beam. A detailed parametric study will be needed to
elucidate these influences.

Because the dominant failure mode of Specimen S2 was not
diagonal shear failure, it was expected that the interfacial damage
between the concrete material and diagonal rebars of Specimen S2
would be less than that of Specimen S1. Therefore, as seen in
Fig. 10, the postpeak regime of the load-deflection curve simu-
lated by the present model is close to that simulated by the bench-
mark model.

Load-Deflection Curve and Failure Behavior of
Specimen S3

For Specimen S3, a set of diffuse cracks appeared at the bottom of
the beam during the initial loading stage. These flexural cracks
were followed by compressive damage along the diagonal direction
[Fig. 12(a)]. At peak load, the main failure mechanism can be de-
scribed as flexural damage at the midspan [Fig. 12(b)]. After peak
load was attained, the maximum plastic principal strains in the
diagonal directions continuously increased. It is worthwhile to note

that the width of the cracks in the diagonal direction tended to in-
crease at the bottom of the beam, which is comparable to the flexu-
ral crack pattern [Fig. 12(c)]. Such a cracking pattern remained
almost the same until the ultimate failure of the beam.

By comparing the failure behaviors of Specimens S2 and S3, it
is clear that Specimen S3 exhibited less ductility. Even though the
steel truss bars in S3 had a steeper angle in the transverse direction,
it was noted that along the span direction the volume of concrete
material between the steel trusses in Specimen S3 was larger than in
Specimen S2. Therefore, the confinement effect on the compressive
damage along the diagonal directions was less significant in
Specimen S3 compared to that in Specimen S2. Meanwhile, as
compared to S1, the failure behavior of Specimen S3 was more
ductile, which indicates that the confinement effect in Specimen
S3 was more pronounced. The combined flexural and shear
damage in the postpeak regime also explains the observation that
the difference in the postpeak regimes of the load-deflection curves
simulated by the present model and the benchmark model became
more pronounced compared to that of Specimen S2, in which only
flexural damage was dominant in the postpeak regime.

Fig. 11. Damage mechanism of Specimen S2: (a) local deformation of steel truss; (b) maximum strain profile showing dominant flexural cracking
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Discussion on Scale and Geometrical Effects
in Failure of HSTCB

The foregoing simulations revealed that the failure behavior of
HSTCBs strongly depends on their size and geometry. Based on the
present simulations, there are two main failure modes in concrete:

(1) flexural failure at the midspan, and (2) diagonal shear failure. The
flexural failure of HSTCBs can essentially be described as a ductile
mode because the load is primarily resisted by the bottom steel plate
after the concrete material is cracked in tension. In contrast, diagonal
shear failure is typically quasi-brittle in nature, which is manifested
by a gradual loss of load-carrying capacity after peak load is attained.

Fig. 12. Evolution of cracking patterns of Specimen S3: (a) at initial loading stage; (b) at peak load; (c) at ultimate failure
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It is observed that the relative dominance of these two failure
modes is strongly influenced by the 3D geometrical arrangement
of the steel truss, which potentially leads to different levels of con-
finement effect on the concrete material. For reinforced concrete
beams, the size effect on load capacity can be studied analytically
for geometrically similar specimens, provided they have the same
failure mode. However, the three HSTCB specimens considered in
the present study do not follow geometrical similarity and, there-
fore, existing analytical scaling models (e.g., Bažant 1984, 2000,
2005) are not applicable. Nevertheless, the simulated size and geo-
metrical effects on the peak load of HSTCBs can be explained
qualitatively.

For size effect analysis, it is customary to use nominal structural
strength, σN , which is defined as a load parameter of a dimension of
stress, i.e.

σN ¼ Pmax=bD ð2Þ

where Pmax = maximum load capacity of beam; D = characteristic
size of beam (beam depth in present analysis); and b = beam width.

For Specimen S1, the failure mode at peak load was character-
ized by diagonal shear failure. The size effect on the nominal
strength of RC beams for such a global failure mode has been in-
vestigated extensively, and an approximate size and geometrical
effect equation has been proposed (Bažant 1984, 2005)

σN ¼ σ0ð1þD=D0Þ−1=2 ð3Þ

where σ0 = nominal structural strength at small-size limit; andD0 =
transitional size. Both σ0 andD0 are dependent on structural geom-
etry, material strength, and fracture properties. It is noted that
Eq. (3) describes the transition from quasi-plastic shear failure
to brittle shear failure as the specimen size becomes much larger
than the size of the fracture process zone.

It should be noted that Eq. (3) was proposed to describe the gen-
eral size effect in a quasi-brittle fracture, in which a large preexist-
ing (fatigued) crack is formed prior to peak load. Recent studies
have demonstrated that Eq. (3) can accurately describe the observed
size effect on the diagonal shear failure of RC beams that exhibit
diagonal shear cracks (Bažant and Yu 2005; Yu et al. 2016).
The shear failure of HSTCBs observed in this study [Fig. 6(b)]
essentially has the same mechanism as the diagonal shear failure
of conventional RC beams. Therefore, Eq. (3) is expected to pro-
vide a sufficient approximation of the size effect in shear failure of
HSTCBs.

As peak load was attained in Specimens S2 and S3, both spec-
imens experienced a significant level of flexural damage at the mid-
span and much less damage along the diagonal directions. If
concrete damage is ignored in the diagonal directions and the ten-
sile stress in the bottom part of the beam is considered taken by the
yielded steel plate, then the bending moment capacity at the mid-
span can be calculated as Mu ¼ FyAsd̄ (Fy = steel yield strength;
As = cross-sectional area of steel plate; and d̄ = effective depth of
beam, i.e., distance between centroid of steel plate and centroid of
compressive stress block of the concrete). Therefore, the peak load
of the beam under three-point bending can be calculated as
Pu ¼ 4FyAsd̄=L. Because the dimension of the beam is geometri-
cally scaled in two dimensions, d̄=L can approximately be taken
as a constant. This indicates that load capacity is independent of
beam size, and the corresponding scaling equation for σN can
be written as

σN ¼ ηD−1 ð4Þ

where η ¼ 4FyAsd̄=bL.

Fig. 13 plots the simulated relationship between the nominal
strengths of Specimens S1–S3 and their sizes on the log-log scale,
together with Eqs. (3) and (4). Because there is only one simulation
point for the diagonal shear failure mode, it is not possible to
determine σ0 and D0 of Eq. (3) and, therefore, for the purpose
of illustration, only a schematic plot of Eq. (3) is shown in Fig. 13.
Nevertheless, this is sufficient to explain the behavior of the size
effect curve. It is clear that, for Specimens S2 and S3, the simulated
size effect is consistent with Eq. (4). For Specimen S1, the simu-
lated nominal strength is expected to follow Eq. (3).

Based on the aforementioned analysis, the nominal strength of
the beam can be understood as the minimum value of the nominal
strengths predicted by Eqs. (3) and (4), i.e.

σN ¼ min½ηD−1;σ0ð1þD=D0Þ−1=2� ð5Þ

It is noted that there is a transition between these two size ef-
fects, which is governed by both the size and geometry of the beam.
Due to the complicated geometry of the embedded steel truss and
its confinement effect on the concrete material, it is not feasible to
obtain a simple analytical solution for the nominal strength of
HSTCB that takes into account both failure modes. Therefore, a
robust and efficient computational model is essential.

It is interesting to see that Eq. (5) predicts size effect σN ∝ D−1
for the flexural failure mode. This is due to the fact that in the
present analysis the bottom steel plate is not scaled proportionally
with the beam size because current industrial practice typically uses
a 5-mm-thick plate. This greatly penalizes the nominal strength for
large-size beams. If the steel plate thickness were proportionally
scaled with the beam size, the size effect on nominal strength
for the flexural failure mode would vanish. As a result, only the
diagonal shear failure mode, which could be subjected to a strong
size effect in the absence of shear stirrups, would be observed
(Bažant and Yu 2005; Yu et al. 2016). It should be noted that this
size effect in diagonal shear failure would also be influenced by the
complex geometry of the steel truss of HSTCBs, which has to be
studied through 3D computational modeling.

Conclusions

A robust and efficient FE model was developed to study the failure
behavior of HSTCBs. Through both experimental and numerical
validations, it was found that detailed modeling of the steel-
concrete interface is not essential for predicting the peak load

Fig. 13. Simulated size effect on nominal structural strength
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capacity or overall energy dissipation of the beam. Simulations of
HSTCBs of different sizes under three-point bending showed two
distinct failure mechanisms, namely, flexural failure at the midspan
and diagonal shear failure. The resulting size and geometrical ef-
fects on peak load capacity can be described as a combination of the
two individual size effects of these failure modes, in which the size
effect in diagonal shear failure can be described by the classical
Bažant’s size effect law of quasi-brittle fracture and the size effect
in ductile flexural failure can be derived by using a simple plastic
analysis. The transition between these two size effects is influenced
by the 3D geometry of the HSTCB and the fracture property of
concrete. Because analytical modeling of this complete size effect
is not feasible, robust and efficient computational modeling be-
comes an indispensable tool for design extrapolation of HSTCBs
across different sizes and geometries.
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