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� Calibration of partial material factors depends upon the assumed statistics of glass strength.
� There is experimental evidence of a lower bound for the glass strength population.
� A truncated Weibull distribution can account for the lower bound for glass strength.
� Partial material factors calibrated from bounded statistics are much lower than for unbounded statistics.
� Coefficients to vary the class of consequences are in agreement with indication from EN1990.
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a b s t r a c t

Partial material factors need to be calibrated to guarantee the target failure probability of glass structures
according to the semi-probabilistic (level I) methods of design. Calibration is made by comparison with
results obtainable with the full probabilistic approach (level III) on paradigmatic case studies.
Considering the results of previous work that assessed the validity of various statistical models of glass
strength, we use a generalized distribution of the Weibull type to derive new partial factors that account
for a lower bound for glass strength or not. The partial factors so calculated are much lower than those
previously obtained from the classical two-parameter Weibull distribution, and are in agreement with
the coefficients commonly used in practice. Moreover, the variation of the partial factors with respect
to changes in failure probability is similar to what is applied to other building materials.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Glass is a very old material whose use in construction works has
radically changed over the past few decades. It has evolved from a
simple in-fill material for windows to an effective structural mate-
rial of ever-increasing use to build roofs, floors, balustrades and
stairs. There is the need to develop specific design methods to
assure for glass structures safety levels comparable with those usu-
ally required for more traditional civil engineering construction
works. Structural performance is typically defined by the maxi-
mum acceptable probability of collapse, as assigned by the relevant
structural codes. In order to guarantee such performance, the
semiprobabilistic method of design (level I) is usually employed:
partial amplifying factors for the actions and partial reduction fac-
tors for the resistances are used, so as to ensure that the probability
of failure is equal or lower than the target value. The partial factors
for actions and materials are prescribed by structural codes on the
basis of calibration from a full probabilistic approach and from
practical experience. However, what are the correct material
factors for glass is a matter of debate.

Glass presents many peculiarities with respect to other building
materials. First of all, it is brittle. Its macroscopic strength is deter-
mined by the opening of small flaws on its surface whose shape is
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usually approximated as ‘‘thumbnail”. Because there is no possibil-
ity of stress redistribution through plasticity-type phenomena,
catastrophic failure of the whole glass structural component occurs
when the opening mode Stress Intensity Factor (SIF) of the domi-
nant crack reaches a critical value defined as the fracture tough-
ness. However, it has been recognized that the cracks could
extend even when the SIF is smaller than this critical limit, due
to a phenomenon [1] referred to as subcritical crack propagation,
or static fatigue. The susceptibility of glass to static fatigue must
be taken into account in the design. The critical role played by a
single crack is the reason why Weibull’s weakest-link-in-the-
chain concept [2] is universally accepted to interpret the variability
of the measured strength of glass.

The strong dependence of the macroscopic response of glass on
the existence of small flaws requires the consideration of aspects
that are not as important for other building materials. One of these
is structural size; the larger the loaded surface, the higher is the
probability of finding a flaw associated with the critical combina-
tion of size and stress. The probability of failure is also dependent
on the distribution of stress. For example, if the stress is uniform
equi-biaxial the orientation of the cracks does not matter, but if
the stress is uniaxial there is a lower probability that the surfaces
of the dominant crack are perpendicular to the direction of the
maximal tensile stress. And finally, the strength of glass is highly
dependent on changes in the flaw population produced by the
manufacturing process and subsequent handling. In the float pro-
duction process, patented in the late 1950s by Sir Alastair Pilking-
ton, a glass paste is poured on a bed of molten tin so to form a
floating panel. The contact of the panel with tin, and with the suc-
cessive contact with the rollers, can induce a higher level of surface
damage on the ‘‘tin side” with respect to the ‘‘air-side”. The cutting
process may also cause additional damage and hence a local reduc-
tion of strength at the borders. All these aspects must be consid-
ered in the assessment of the expected probability of failure.

The failure probability that is considered acceptable depends on
the consequence of the potential collapse and is prescribed by
structural standards. This classification, indicated by the standard
for the entire structure, should be detailed to the single structural
element on the basis of the consequences of its own collapse. In
Europe, the EN 1990 [3] indicates the accepted probability of fail-
ure for three Classes of Consequences (CC), varying from
1:335� 10�5 for CC1, to 1:305� 10�6 for CC2 and to 9:96� 10�8

(CC3) in one year. By considering that the actions are the same
for all structures, the required probability scenario is defined on
basis of the glass resistance and the partial material factors cm.
The complete probabilistic method (level III) directly measures
the failure probability through the convolution of the cumulative
probability for glass strength and the probability density function
for the actions, and it is generally used for calibrating the cm. This
is why the statistical model of material strength very strongly
affects the values for the material partial factors. In particular,
when such low failure probabilities are considered, a very accurate
characterization of the left-hand-side tail of the population of the
material strength becomes of primary importance.

The strength of glass is usually modeled using the traditional
two-parameter Weibull (2PW) extreme value distribution. How-
ever, it cannot provide [4] an accurate description on the left-
hand-side tail. Moreover, there are reasons in support of the exis-
tence of an intrinsic lower bound for the strength of commercial
float glass [5]. A minimum strength value is attributed to rigorous
factory production controls of visual transparency that concomi-
tantly guarantee that the sizes of the surface defects remain well
below an assigned value. While considering the capability of vari-
ous types of generalized Weibull distributions in interpreting the
experimental data, it has been shown [5], using the goodness of
fit procedure, that ‘‘bounded” Weibull statistics, i.e., statistics
assuming a lower-bound for population, are more accurate than
‘‘unbounded” statistics (especially for the air-side). One may be
concerned with potential strength degradation from aging. It is
true that natural abrasion/corrosion of the glass surfaces can
increase the surface damage in glass. However there is substantial
evidence that even the worst deterioration produced by sand blast-
ing cannot push the strength of glass below a certain limit [5].

To our knowledge, all of the proposed design methods are based
on the two-parameter Weibull distribution. Using this statistics,
the probabilistic method of level III was applied for the verification
of paradigmatic case studies [6], which served to calibrate the par-
tial material factors cm to be used in the semi-probabilistic
approach of level I. To distinguish the different classes of conse-
quences, each one characterized by the target probability of col-
lapse assigned by standard EN 1990 [3], a multiplication
coefficient for the partial material factor was introduced instead
of that for the partial factors of loads. However, the values of the
cm so obtained are quite high, of the order of 2.55 for CC2 and
1.8 for CC1. In fact the values for CC3 were not even recorded
because they were considered to be so high that they deserve fur-
ther investigation. Note that the values were calibrated for small-
size plates (of the order of 1 m2), so that larger structures will be
associated with even higher values. The values required by the
two-parameter Weibull models, being so much higher than those
traditionally used for the design of glass elements (which are based
upon practical rules, construction tradition and professional expe-
rience), have been hardly accepted by the building industry.

This paper presents a new calibration of partial factors that
relies on improved statistical distributions of glass strength. With
respect to the paper by Badalassi et al. [6], the considered popula-
tion of glass strengths derives from a much wider experimental
campaign [7], obtained with a refined testing method [8]. The sta-
tistical model considered here is the ‘‘bounded” left-truncated
Weibull (LTW) distribution that provides an excellent goodness
of fit with experimental data, at least on the air side [5]. Because
a lower limit for glass strength may be hard to accept, a compar-
ison is made with the ‘‘unbounded” extended Weibull (EXW) dis-
tribution that, although not optimal [5], gives much better
results than the 2PW. Both the LTW and EXW distributions are
derived by the 2PW distribution and provide similar rescaling of
glass strength to account for the effects of size and type of stress,
with no major analytical complications. The new coefficients
calibrated with the LTW distribution are substantially lower than
those presented by Badalassi et al. [6] and are in agreement
with the indications of practical experience. Moreover, the varia-
tion of the coefficients to pass from one class of consequences to
another is much more limited and of the same order of magnitude
of what is suggested in the EN 1990 [3] for other building materi-
als. The results from the EXW distribution is intermediate between
these and the calibration obtained with the 2PW statistics.

2. The statistical modeling of glass strength

We first provide a brief review of the experimental campaign
used as the reference for the derivation of generalized Weibull dis-
tributions, capable of interpreting the left-hand-side tail of the
population (at very low failure probabilities) better than the 2PW
model, in addition to a discussion of possible effects on glass
strength of aging due to natural abrasion/corrosion.

2.1. Experimental data

The experimental data used to calibrate the statistical parame-
ters are those from the experimental campaign by the working



1 In the lognormal statistics, the logarithm of the random variable x is normally
distributed. The density function f ðxÞ reads

f ðxÞ ¼ 1
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where l and f2 are the mean and the variance of the logarithm of the data, respec-
tively, which consequently do not represent the expectation value and the variance
of the stochastic variable.
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group TC129/WG8 of CEN that, to our knowledge, is the widest
ever made for float glass. The measured strengths from about
740 coaxial-double-ring tests with additional overpressure, per-
formed according to the standard EN1288-2 [8], are reported in a
technical document by CEN/TC129/WG8 [7]. It has been explained
[4] that such data required corrections and re-scaling to compen-
sate for the rough approximations made in the original interpreta-
tion and elaboration. Moreover, the failure stress values are
representative of the instantaneous collapse of the specimen [4],
thus they neglect the effects of static fatigue recalled in Appendix
A. This is reasonable because the time to failure during the exper-
iments is of the order of seconds and the approximation is on the
safe side, since the instantaneous strength is certainly higher than
the delayed strength for static fatigue.

For what follows a distinction must be made between the pop-
ulation of strengths measured either on the tin or on the air side of
float glass. This because the corresponding statistics are character-
ized by considerably different parameters that result from the float
production process; the face of glass merged in the tin bath, and
successively in contact with the roller supports, is characterized
by a significantly higher level of surface damage than the face
exposed to air.

2.2. Unbounded Weibull distributions

We refer to a Weibull distribution as ‘‘unbounded” if the
domain for the failure stress is 0;þ1½ Þ.

In the two-parameter Weibull (2PW), the probability of failure
of an element of surface area A, under a generic tensile state of
stress, reads

Pf ;W2 ¼ 1� exp �
Z
A

req;W2

g0

� �m

dA
� �

¼ 1� exp �K2W A
rmax

g0

� �m� �
; ð2:1Þ

where m and g0 are the shape and the scale parameters, respec-
tively, req;W2 represents an equivalent stress field accounting for
the distribution of tensile stresses, rmax is the maximum tensile
stress on the stressed surface and K2W A is the corresponding
effective area.

Let r1 and r2 (r1 P r2) be the principal components of the ten-
sile stress and let w be the angle between the direction of r1 and
the normal to surfaces of the dominant crack. Assuming an isotro-
pic orientation of defects, one can thus define

req;W2 ¼ 2=p
Z p=2

0
r1 cos2 wþ r2 sin

2 w
� �m

dw
� �1=m

; ð2:2Þ

and, from the condition of equal failure probability, the effective
area K2W A reads

KW2 A ¼ Aef ;W2 ¼
R
A ðreq;W2Þm dA

ðrmaxÞm
: ð2:3Þ

In order to give a better interpretation of the experimental data,
Marshall and Olkin [9] proposed a method for adding a parameter
to the two-parameter Weibull distribution. The extended Weibull
(EXW) distribution is of the form

Pf ;WE ¼ 1� mePs

1� ð1� mePsÞ
; ð2:4Þ

where ePs is a two parameter distribution, whose expression is of the
same type as (2.1), and m is the third parameter to be calibrated.
Clearly the equivalent stress req;WE and the effective area Aef ;WE

assume forms identical to those of (2.2) and (2.3), respectively.
Among all the unbounded Weibull distributions considered in
previous papers [4,5], the EXW distribution appears to be the most
convenient to interpret the experimental data. Other analyzed
models, including the bilinear and the bimodal distributions, not
only have very limited accuracy but also present formidable
analytical difficulties in their definition of the effective area. This
renders their practical use problematic at best.

It should be mentioned that some authors [10] have proposed,
outside the class of statistics of theWeibull type, the use of the log-
normal distribution.1 It was shown that this statistical model gives a
fair goodness of fit [4] for the data recorded in the technical docu-
ment by CEN/TC129/WG8 [7]. However it is not a robust model for
glass strength because it does not explicitly consider the effects of
size and stress state.

2.3. Bounded Weibull distributions

The ‘‘bounded” Weibull distributions include a lower bound
r0 > 0 for glass strength and, hence, the domain for the failure
stress is r0;þ1½ Þ.

For the 3-parameterWeibull (3PW) distribution, the cumulative
failure probability reads

Pf ;W3 ¼ 1� exp �
Z
A

req;W3 � r0

g0

� �m

dA
� �

¼ 1� exp �KW3A
rmax � r0

g0

� �m� �
; ð2:6Þ

where m; g0 and r0 are the shape, scale and location parameters,
respectively. With the same notation of (2.2), the equivalent stress
field req;W3 now takes the form

req;W3 � r0 ¼ 2
p

Z p=2

0
jr1 � r0jþ cos2 wþ jr2 � r0jþ sin2 w
� �

dw;

ð2:7Þ
and the corresponding effective area K3W A is

Aef ;W3 ¼ KW3A ¼
R
A ðreq;W3 � r0Þm dA

rmax � r0ð Þm : ð2:8Þ

The presence of r0 in Eqs. (2.7) and (2.8) leads to a strong non-
linear dependence of the effective area upon the state of stress.
This fact makes it very difficult to apply this statistical model. This
complication does not appear in an expression of the type (2.3).

A very accurate goodness of fit with the experimental data can
also be achieved with a left-truncated Weibull (LTW) distribution
[5]. This is the distribution that is obtained from the population
obeying to a 2PW distribution when all the specimens with
strength lower than a certain limit r0 are not accepted. This would
apply when ideal factory production controls mitigate the possibil-
ity of levels of surface damage higher than a specified value. The
cumulative probability of failure is of the form

Pf ;WT ¼ 1� exp �
R
A rm

eq;WT � rm
0

� �
dA

gm
0

24 35
¼ 1� exp �KWT rm

max � rm
0

gm
0

A
� �

: ð2:9Þ
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Remarkably, the expression of the equivalent stress field req;WT

is identical to that of (2.2), and consequently the effective effective
area KWT A is analogous to (2.3). This represents the major advan-
tage of the truncated Weibull distribution, i.e., it takes into account
a lower bound for glass strength and at the same time it includes a
particularly simple re-scaling that could account for the effects of
size and stress state.
2.4. Effects of duration of applied loads and aging

As mentioned previously, cracks in glass can grow in time when
their opening stress is far below the critical limit [1]. A review of
static fatigue or subcritical crack growth is provided in Appendix
A. In general, applied actions are schematized by loads assumed
to remain constant for a characteristic time, representative of their
effects during the life-time of the structural element. In design
practice, one accounts for the effects of static fatigue by reducing
the characteristic design strength of glass through the coefficient
kmod, defined in (A.5).

Particular considerations are needed in the case of bounded
Weibull statistics. To illustrate, it is convenient to refer to the phys-
ical derivation of the LTW distribution, according to which the
location parameter r0 comes from a left truncation of the experi-
mental data. Since the inferred lower bound for glass strength is
associated with the maximum size of the surface flaws that can
grow in time under subcritical conditions, r0 should be re-scaled
when taking into account different load histories. In fact, a precise
evaluation of r0 is crucial for the calibration of partial safety fac-
tors, because small changes in its value can lead to noteworthy dif-
ferences in the interpretation of the left-hand-side tails of the
population.

To take into account the effects of static fatigue, once the pop-
ulation of experimental data recorded in the technical document
by CEN/TC129/WG8 [7] has been assigned, we suggest to rescale
such data using Eq. (A.4) of Appendix A to obtain a new population,
which represents the measured strength for loads that are main-
tained constant during the characteristic time s. These data can
thus be interpolated again with a new statistical distribution, to
obtain the values r0;s and g0;s of the location and scale parameters,
respectively. In this process the shape parameter m is assumed to
remain unaffected.

It is likewise important to consider the effects of aging, in
particular those due to superficial abrasion-corrosion. This
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Fig. 1. Cumulative probability distribution of the material strength modified for taking in
air side surface.
phenomenon has been discussed at length in Section 2.3 of [5]
for the damage produced by sandblasting, for which two major
conclusions were drawn: (i) abrasion can increase the Stress
Intensity Factor associated with a dominant crack, but (ii) there
is an upper bound for this increment because too many defects
may produce beneficial shielding (reduction in SIF) of the
dominant flaw. Therefore, our suggestion is to operate a further
reduction of the location parameter and consider in the statistical
distributions the quantity r�

0;s, defined as

r�
0;s ¼

r0;s

x
; ð2:10Þ

with x > 1. To take into account that all of the strength data, and
not only the lower bound r0;s, are affected by a similar reduction,
we also suggest to vary in a similar manner the parameter g0 in
(2.9) by g�

0;s as per

g�
0;s ¼

g0;s

x
: ð2:11Þ

As it will made clear in Section 3.3, while discussing Fig. 1, such
a choice causes a uniform shift on the left-hand-side of the
cumulative probability of failure.

A final consideration regards the difference between the tin and
air side of float glass. The experimentally-measured difference on
the two strength populations should be attributed to a different
defectiveness on the two surfaces [5]. It is difficult to estimate pre-
cisely such a difference, but certainly the values of the coefficients
x of (2.10) and (2.11) should be somehow related for the tin and
air side. Albeit tentatively, we propose to consider

xtin ¼ xairð1� dÞ ¼ xð1� dÞ ) r�
0;s;tin

¼ r0;s;tin

ð1� dÞx ; r�
0;s;air ¼

r0;s;air

x
; ð2:12Þ

where d takes into account that the tin side surface is already dam-
aged. Analogous formulas hold for g�

0;s;air and g�
0;s;tin. Recalling the

results of the statistical analysis of a previous study [4] and, in par-
ticular, the fact the ratio between the lower limits for the air and the
tin side is 36=39 ’ 0:92, we propose to take d ¼ 0:10.

The evaluation ofx is not straightforward and would require an
accurate experimental investigation that considers various possi-
ble damaging actions, including those caused by handling. One
can expect a reduction of the strength of the order of 10� 20%
from the effects of abrasion due to sandblasting, which represents
25 30 35 40 45 50
Pa]

[m, η0,τ , σ0,τ ]

to account the effects of aging. Case of 10 min averaged peak-pressure acting on the



Table 1
Classes of consequences for glass elements indicate by CNR-DT210 [12].

Class Definition
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a very severe damaging action [11,5]. However, since our aim is the
calibration of the partial material factors for structural design, we
will choose here the rather conservative value x ¼ 1:5.
CC0 Specifically non-structural elements. Following failure, negligible
economic, social and environmental consequences and practically null
risk of loss of human life

CC1 Following failure, low risk of loss of human life and modest or
negligible economic, social and environmental consequences. Glass
structural elements whose failure involves scarce consequences fall
into to this category

CC2 Following failure, moderate risk of loss of human life, considerable
economic, social and environmental consequences. Glass structural
elements whose failure involves medium-level consequences belong to
this category

CC3 High risk of loss of human life, serious economic, social and
environmental consequences: for instance, the structures of public
buildings, stages and covered galleries, where the consequences of
failure can be catastrophic (concert halls, crowded commercial centers,
etc.). Glass structural elements whose failure involves high-level
3. The probabilistic and semi-probabilistic approach

The procedure that will be used in the sequel for the calibration
of material partial safety factors is now discussed in detail. The
method is based upon a comparison of the results that can be
obtained, on paradigmatic case studies, by using the full proba-
bilistic approach of level III and the semiprobabilistic approach of
level I. The statistical distributions for glass strength that will be
considered are the EXW and the LTW distributions [5]. Results will
be compared with those from the 2PW distribution obtained by
Badalassi et al. [6].
consequences fall into this category

Table 2
Probability of collapse as a function of the different classes of structural elements
according to EN 1990 [3].

Class b [TR ¼ 50 years] Pf [TR ¼ 50 years] b [TR ¼ 1 year] Pf [TR ¼ 1 year]

CC1 3.3 4.83 �10�4 4.2 1.335 �10�5

CC2 3.8 7.235 �10�5 4.7 1.305�10�6

CC3 4.3 8.54 �10�6 5.2 9.96 �10�8
3.1. Expected performance of glass structures and case studies

In order to guarantee a certain level of safety against failure, the
modern approach to structural design is based upon probabilistic
considerations. Structural standards prescribe the probability of
collapse that is reputed acceptable, as a function of the conse-
quence of the collapse itself. In Europe, the principles and require-
ments for the structural safety of buildings and other civil works
are established by the Eurocode EN 1990 ‘‘Basis of structural
design” [3], which is used in conjunction with the other nine stan-
dards EN 1991-1999. None of these documents however spell out
an approach that should be followed during the design of load-
bearing glass components.

The standard EN 1990 defines three classes of consequences,
namely CC1, CC2 and CC3, by considering the consequences of fail-
ure or malfunction of the construction in economic, social, and
environmental terms. Obviously, the choice of the specific class is
related with the importance of the construction itself. For example,
CC3 refers to grandstands and public buildings, CC2 to residential
and office buildings and CC1 to agricultural buildings and green-
houses. For the case of glass components the distinction cannot
be made on the basis of the type of construction within which they
are incorporated. On the one hand, it would be rare to find an
expensive glass floor in a cowshed: the cost of a glass structure
can only be afforded in luxury constructions. On the other hand,
assigning to all the glass elements the higher class CC3 would be
strongly uneconomical and unjustified, because glass is employed
to make only isolated parts of the construction (facades, floors,
stairs), whose failure is very rarely accompanied by the collapse
of the whole building. However, there are cases for which breakage
of one glass element may have comparable consequences, and this
is why it is necessary to make a classification on the basis of the
single element, rather than of the whole construction work. This
is the approach that has been followed, for example, by the Italian
code for structural glass [12], which has proposed the schematic
reported in Table 1. This includes, for completeness, also the class
CC0 referring to clearly-non-structural elements (for example, a
glass pane for a common window).

Concerning the class CC0, there is not an unanimous agreement
about the level of performance to be expected. According to some
European standards and guidelines, the assessment of the safety
level should be directly obtained from experimental testing of pro-
totypes. The American ASTM 1300 [13], appendix X3.1 presents
formulas for estimating the probability of breakage of rectangular
glass elements under specific loads, which is stated to be less than
0.05, even if no explicit reference is made whether this value refers
to the entire lifetime of the structure. Therefore, this case will be
not treated here.
For the other three classes, in Europe the EN 1990 [3] estab-
lishes the reference life times for different types of civil structures,
defined as the period during which the deterioration does not
impair the performances of the structure and only ordinary main-
tenance is required. Once this is established, the probabilities of
collapse can be assigned. Table 2 reports the probabilities of failure
for a reference life time of 50 years, given for two different values
(1 year and 50 years) of the return period TR of the applied actions.
Decreasing probabilities of failure, assumed equal to those com-
putable by using the target values of the corresponding reliability
index b (also reported in Table 2), can be accepted while passing
from the first to the third class of consequence.

3.2. Safety factors and the coefficient RM

It is customary [3] to classify the probabilistic calibration proce-
dures for partial factors into two main classes: full probabilistic
method (level III) and first order reliability method (FORM – Level
II). The Level III methods may be considered the most accurate
because they require a direct measurement of the probability of
collapse from the statistical distributions of the actions and of
the resistances. Denote with S the domain for actions and with f s
the statistical distribution of the values s 2 S and, by analogy, with
R the domain of the resistances and with f r the statistical distribu-
tion of the values r 2 R. If actions and resistances are independent
variables, the probability of failure Pf can be calculated from

Pf ¼ P½R� S 6 0� ¼
Z þ1

�1

Z sPr

�1
f RðrÞ f SðsÞdrds: ð3:1Þ

When the domains of resistance and action coincide, i.e.,
r ¼ s ¼ x; x 2 X, one can write

Pf ¼ P½R� S 6 0� ¼
Z þ1

�1
FRðxÞ f SðxÞdx; ð3:2Þ

where FRðxÞ represent the cumulative distribution of strength, i.e.,
the probability that the strength is less that x. The level II methods



Table 3
Graphically estimated parameters characterizing the left-truncated Weibull distribu-
tion for wind (two values) and snow loads. For the test configuration of EN 1288-2
[8]: KWT;air ¼ 0:54; KWT;tin ¼ 0:55; A ¼ 0:2826 m2 as per [5].

Case study m g0;s [MPa] r0;s [MPa] g�
0;s [MPa] r�

0;s [MPa]

Air side
Wind, 10 min 4.0025 40.12 27.27 26.75 18.53
Wind, 3 s 4.0025 55.51 38.45 37.00 25.63
Snow, 1 month 4.0025 24.39 16.89 16.26 11.26

Tin side
Wind, 10 min 3.7678 26.41 25.29 19.56 18.73
Wind, 3 s 3.7678 36.53 34.98 27.06 25.91
Snow, 1 month 3.7678 24.39 16.89 16.26 11.26
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provide some hypothesis which simplify the estimation of the prob-
ability of failure, so that it can be measured by the reliability index
b. In general, these methods are proposed under the assumption
that the material strength is interpreted by a Gaussian distribution,
which is not applicable to glass.

The material partial safety factors are calibrated by referring to
paradigmatic case studies. For these, an optimal design is obtained
that achieves the target probability of failure established in Table 2,
calculated with level III methods. Then, one finds the value of the
material partial safety factor cm that reproduce such optimal
design with level I methods, assuming the partial coefficients for
actions cf indicated by the relevant standards.

In general, partial safety factors are provided that refer to the
probability of failure associated with CC2. To pass to CC1 or CC3,
the standard EN 1990 [3] introduces a multiplicative correction
factor KFI for the partial coefficient of the actions cf . Obviously
KFI < 1 when passing from CC2 to CC1, KFI > 1 when going from
CC2 to CC3. For the case of glass structures, as indicated in CNR-
DT 210 [12], it is usually preferred to introduce the correction coef-
ficient RM of the material partial safety factor, so that RM < ð>Þ1
when passing from CC2 to CC1(CC3). If the structure is linear elas-
tic, there is no difference between decreasing the actions or
increasing the resistances. But in the presence of geometric non-
linearities that may be involved in slender glass structures, it
seems more appropriate to increase the resistances because other-
wise the non-linear effects could be underestimated.

The paradigmatic case studies considered here are associated
with a 8 mm-thick square glass plate of side 3000 mm, simply sup-
ported at the edges under a uniformly distributed out-of-plane
load. Such load will be representative of the effects of wind on a
façade panel, or of the effects of snow on a roof panel. The various
loads differ in their characteristic duration. For the wind actions,
two different conditions are considered, each one associated with
characteristic wind pressures averaged over the times either
t ¼ 10 min or t ¼ 3 s. Although the former load value is lower than
the latter, its duration is higher and therefore the phenomena of
static fatigue, referred to in Appendix A, may render the first veri-
fication more restrictive than the second one. Following the recom-
mendations by standards [12], the characteristic values of the
snow load will be considered applied for a time equal to one
month. These conditions will be examined in detail in Section 4.
3.3. Calibration procedure based upon the left-truncated Weibull
(LTW) statistics

The left-truncated Weibull distribution is represented by (2.9).
In order to take into account the effects of static fatigue, the exper-
imentally measured points in the experimental campaign of Sec-
tion 2.1 were re-scaled according to the ‘‘subcritical crack growth”
law of (A.4) according to the characteristic duration s of the
applied loads, i.e., 3 s and 10 min, for the two characteristic values
of wind load, and one month for the snow load. The statistical dis-
tribution representing the material strength for each case study is
hence dependent upon s.

All the parameters that characterize the statistics of glass
strength, for either the air or the tin side, are recorded in Table 3
as graphically estimated [5]. Recall that the experimental data
need to be re-scaled according to the effective area KWTA corre-
sponding to the specimen in the testing configuration of EN
1288-2 [8]. Such an expression is analogous to KW2A of Eq. (2.3)
and it is stress-dependent if one takes into account geometric
non-linearities [14]. However, since the non-linear distribution of
stress in the plate is such that the higher the loads, the lower is
KWT (conservative), we therefore assumed the values of KWT;air

and KWT;tin that correspond to a maximum stress of 100 MPa, which
is approximately equal to the maximum stress measured in the
tests. The values of r�

0;s and g�
0;s have been calculated as per

(2.10) and (2.11).
Fig. 1 shows that the reduction of the scale parameter g0;s and of

the location parameter r0;s according to (2.10) and (2.11) causes a
leftward shift of the cumulative probability function curve and an
increase in the slope of the same curve, which means a reduction of
the material strength and of the data dispersion.

Since the orientation of the glass plate is random, following
Badalassi et al. [6] we will consider that the probability that the
air side is under maximum tensile stress is equal to the probability
of having the tin side in this condition. Hence, the corresponding
cumulative probability function of material strengths is the arith-
metic mean of the functions representing the strength of the two
surfaces. Let symbolically ‘‘sd ¼ air” or ‘‘sd ¼ tin” represent the side
‘‘sd” of glass. The cumulative distribution reads

FðairþtinÞ=2
r;A;s;WT ¼ 1� 1

2

Xtin
sd¼air

exp �Ksd
WTrmsd � rmsd

0;s;sd

gmsd
0;s;sd

A

" #
: ð3:3Þ

Setting f r;sðrÞ as the distribution probability for the maximum
stress r occurring in one year, the convolution integral (3.4), which
reads

Pf ;1y;WT ¼
Z þ1

�1
FðairþtinÞ=2
r;A;s;WT ðrÞf r;sðrÞdr; ð3:4Þ

gives the probability of failure in one year. The parameters defining
the action are made to vary until the target values of failure proba-
bility in Table 2 is achieved.

At this point, the maximum stress acting in the glass rmax;s;d is
evaluated via a structural analysis, i.e,

rmax;s;d ¼ Sðcf QÞ; ð3:5Þ
where we define Sðcf QÞ as the stress induced by the action Q of
characteristic duration time s, considered as a deterministic value,
multiplied by the partial safety factor cf .

The verification formula in the semiprobabilistic approach of
level I is of the form

rmax;s;d � r0;d 6
Kmod kA;s;WTðf g;k � r0;kÞ

RM cm
; ð3:6Þ

where cm represents the material partial safety factor and kmod of
(A.5) synthetically takes into account the phenomenon of static fati-
gue (Appendix A). The coefficient kA;s;WT accounts for the effects of
size and type of stress, while RM provides the correlation with the
various classes of consequence. Moreover, f g;k ¼ 45 MPa represents
the reference value for the characteristic strength of glass, assumed
to refer to the ideal conditions of an equibiaxial stress state
(KWT = 1) acting on a unitary area (Au ¼ 1 m2), and r0;k represents
the reference characteristic value of the lower bound for glass
strength.



Table 4
Estimated parameters for the extended Weibull distribution for the wind (two values)
and the snow loads. For the test configuration of EN 1288-2 [8]:
KWE;air ¼ 0:3; KWE;tin ¼ 0:17.

Case study m g0;s ms
[MPa]

Air side
Wind, 10 min 7.9 120 0.003
Wind, 3 s 7.9 180 0.001
Snow, 1 month 7.9 75 0.002

Tin side
Wind, 10 min 12 74 0.001
Wind, 3 s 12 100 0.002
Snow, 1 month 12 45 0.001
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The design value r0;d of the location parameter is taken of the
form

r0;d ¼ Kmod kA;s;WT r0;k

RM cm
: ð3:7Þ

This implies a noteworthy simplification in the verification formula,
i.e.,

rmax;s;d 6
Kmod kA;s;WTf g;k

RM cm
: ð3:8Þ

The value f g;k ¼ 45 MPa can be considered representative of the
5% fractile of the glass strength measured on the air-side under
standard reference conditions (uniform equibiaxial stress on the
unitary area) [4].

Assuming the equal probability of failure for a glass plate sub-
jected to a generic stress state acting on the area A and another
one under an equibiaxial stress-state acting on a unitary area
(Au ¼ 1 m2), one can write

1� 1
2

Xtin
sd¼air

exp � f msd
g;k � rmsd

0;s;sd

gmsd
0;s;sd

Au

" #

¼ 1� 1
2

Xtin
sd¼air

exp �KWT;sdrmsd
max � rmsd

0;s;sd

gmsd
0;s;sd

A

" #
: ð3:9Þ

Assuming that the arguments of the exponential functions are
infinitesimal of the first order and performing the Taylor’s
expansion ex ¼ 1þ xþ oðxÞ, after making the substitution
rmax ! kA;s;WTf g;k, one obtains the condition

Xtin
sd¼air

KWT;sd kA;s;WTf g;k
	 
msd � rmsd

0;s;sd

gmsd
0;s;sd

A ¼
Xtin
sd¼air

f msd
g;k � rmsd

0;s;sd

gmsd
0;s;sd

Au: ð3:10Þ

An approximate solution for this condition can be obtained by
separately evaluating the fracture probability for sd ¼ air and
sd ¼ tin, that is

KWT;sd ksdA;s;WTf g;k
� �msd � rmsd

0;s;sd

gmsd
0;s;sd

A ¼ f msd
g;k � rmsd

0;s;sd

gmsd
0;s;sd

Au; ð3:11Þ

which provides

ksdA;s;WT ¼ 1
f g;k

f msd
g;k Au þ r0;s;sdðA� AuÞ

KWT;sdA

" #1=msd

; sd ¼ air; tin: ð3:12Þ

Therefore, we will write

kA;s;rmax ¼ kðairþtinÞ=2
A;s;rmax

¼ 1
2

kairA;s;rmax
þ ktinA;s;rmax

h i
: ð3:13Þ

This is the final expression that allows the rescaling of the
design values in the verification formulas to take into account
the effects of size and state of stress.

3.4. Calibration procedure based on the extended Weibull (EXW)
statistics

Following (2.4), the extended Weibull distribution reads

Pf ;WE ¼ 1�
m exp �KWEA rmax

g0

� �mh i
1� ð1� mÞ exp �KWEA rmax

g0

� �mh i ; ð3:14Þ

where rmax is the maximum tensile stress, m and g0 represent the
shape and the scale parameters, respectively, while m is the third
parameter by Marshall and Olkin [9].

Once the data of the measured strength population has been
rescaled to account for the static fatigue phenomenon for loads con-
stantly applied for the time s, the three parameters characterizing
the air and the tin side have been estimated by the graphicalmethod
proposed by Zhang and Xie [15]. The value of the parameters defin-
ing the distribution for the considered case studies are recorded in
Table 4. In elaborating the experimental data, it has been assumed
as in Section 3.3 that the effective area is the one associated with a
value of the maximum tensile stress equal to 100 MPa.

Thus, assuming again that the probability of having either the
tin side or the air side under tensile stress is the same, Eq. (3.14)
becomes

FðairþtinÞ=2
r;A;s;WE ¼ 1� 1

2

Xtin
sd¼air

ms;sd exp �KWE;sd
rmax
g0;s;sd

� �msd
h i

1� ð1� ms;sdÞ exp �KWE;sd
rmax
g0;s;sd

� �msd
h i

264
375:
ð3:15Þ

The probability of failure in one year then reads

Pf ;1y;WE ¼
Z þ1

�1
FðairþtinÞ=2
r;A;s;WE ðrÞf r;sðrÞdr: ð3:16Þ

The stress induced by the considered action Q of characteristic
duration time s multiplied by the action partial safety factor cf is
given again by Eq. (3.5). On the other hand, the verification formula
takes the simple expression

rmax;s;d 6
Kmod kA;s;WEf g;k

RM cm
; ð3:17Þ

where the terms have the same meaning of Eq. (3.6).
In order to evaluate kA;s;WE, assuming equal failure probability

with standard conditions (unitary area under uniformly dis-
tributed loads), one finds

1� 1
2

Xtin
sd¼air

ms;sd exp �KWE;s;sdA
kA;s;WEf g;k
g0;s;sd

� �msd
h i

1� ð1� ms;sdÞ exp �KWE;s;sdA
kA;s;WEf g;k
g0;s;sd

� �msd
h i

264
375

¼ 1� 1
2

Xtin
sd¼air

ms;sd exp �Au
f g;k
g0;s;sd

� �msd
h i

1� ð1� ms;sdÞ exp �Au
f g;k
g0;s;sd

� �msd
h i

264
375; ð3:18Þ

where f g;k is again the reference characteristic strength under stan-
dard conditions, and kA;s;WEf g;k ¼ rmax. To approximately solve this
equation, one can again separately evaluate the fracture probability
of the air (sd ¼ air) and tin (sd ¼ tin) surfaces, to obtain

ms;sd exp �KWE;s;sdA
ksdA;s;WEf g;k
g0;s;sd

� �msd
� �

1� ð1� ms;sdÞ exp �KWE;s;sdA
ksdA;s;WEf g;k
g0;s;sd

� �msd
� �

¼
ms;sd exp �Au

f g;k
g0;s;sd

� �msd
h i

1� ð1� ms;sdÞ exp �Au
f g;k
g0;s;sd

� �msd
h i ; ð3:19Þ



Table 5
Values of the product cm RM (RM ¼ 1 for CC2), calibrated according to the left-
truncated (LTW) and the extended (EXW) Weibull distributions.

Load case CC1
(LTW)

CC1
(EXW)

CC2
(LTW)

CC2
(EXW)

CC3
(LTW)

CC3
(EXW)

Wind [10 min] – cm RM 1.62 1.71 1.82 2.30 2.04 3.20
Wind [3 s] – cm RM 1.61 1.77 1.81 2.39 2.04 3.36
Snow [1 month] – cm RM 1.59 1.80 1.78 2.40 1.98 3.25

76 R. Ballarini et al. / Construction and Building Materials 121 (2016) 69–80
which implies

exp �KWE;s;sdA
ksdA;s;WEf g;k
g0;s;sd

 !msd
" #

¼ exp �Au
f g;k
g0;s;sd

 !msd
" #

: ð3:20Þ

Finally, one obtains

kairA;s;WE ¼
Au

KWE;s;airA

� �1=mair

; ktinA;s;WE ¼
Au

KWE;s;tinA

� �1=mtin

: ð3:21Þ

Then, analogously to (3.13), it will be assumed again

kA;s;WE ¼ kðairþtinÞ=2
A;s;WE ¼ 1

2
kairA;s;WE þ ktinA;s;WE

h i
: ð3:22Þ

in order to evaluate the rescaling of the design values in the verifi-
cation formulas.

4. Calibration of partial material factors

The procedures outlined in Sections 3.3 and 3.4 are now applied
to calibrate the material partial safety factors.

4.1. Wind load

The procedure is similar to that used by Badalassi et al. [6], but
differences arise as a result of the diverse statistical models. As
indicated in Section 3.2, consider a simply supported rectangular
plate, 3� 3 m2 and 8 mm thick, under the effects of a uniformwind
pressure pw. The probabilistic model for the wind pressure is that
suggested in the standard EN 1991 [16] and reported in Appendix
B. Because of the effects of the static fatigue, two characteristic val-
ues for pw, corresponding to averaged measures on t ¼ 10 min and
t ¼ 3 s, have been considered. The correlation between the maxi-
mum tensile stress in the plate and the wind pressure, i.e.,
pw ¼ SpðrÞ, can be calculated via FEM analysis, so to obtain from
Eq. (B.5) the cumulative distribution function of the maximum
stress in the plate consequent to the maximum annual wind pressure,
which reads

Fr;pr;tðrÞ ¼ exp � exp
1
0:2

� 2SpðrÞ
qce;t cp cd 0:20:75

2 v2
b;50

 !" #
; ð4:1Þ

where all the coefficients have been introduced in Appendix B.
Recall that the difference between the cases t ¼ 10 min and
t ¼ 3 s is contained in the exposure factor ce;t as per Eq. (B.4). The
probability density function f r;pr;t is obtained by deriving (4.1) with
respect to r, i.e.,

f r;pr;tðrÞ ¼ Fr;pr;tðrÞ exp 1
0:2

� 2SpðrÞ
qce;t cp cd 0:20:75

2 v2
b;50

 !

� 2

qce;t cp cd 0:20:75
2 v2

b;50

d
dx

SpðrÞ: ð4:2Þ

Material strength has been interpreted either with the LTW or
the EXW distributions, whose parameters are recalled in Tables 3
and 4 for the data recorded in the technical document by CEN/
TC129/WG8 [7], re-scaled to take into account the effects of static
fatigue for the reference duration of the applied loads.

For the plate of area A ¼ 3� 3 m2, the effective area has been
evaluated via FEM analyses. The plate has been divided into finite
elements of area DAi ¼ 50� 50 mm2 and the principal stresses r1

and r2 estimated at the center of each element. Then, for both
the cases sd ¼ air and sd ¼ tin, the equivalent stress req;WT;sd;i in
the i�th element is evaluated with a formula analogous to (2.2).
Then, from (2.3), the effective area KWT;sd A can be calculated as
KWT;sd A ¼
PN

i¼1r
msd
eq;WT;sd;iDAi

rmsd
max

: ð4:3Þ

For the extendedWeibull statistics, one can obtain an analogous
formula for the effective area KWE;sd A. Observe that, if non-linear
effects are neglected, such expressions depend on plate geometry,
constraints and type of loading, but not upon the amount of
loading. This assumption provides noteworthy simplifications,
and it is in general quite accurate. However, here the value is
calculated taking into account non linear effects, for a maximum
stress of the same order of that used in the calibration procedure.
For the case at hand one obtains KWT;air ¼ 0:095; KWT;tin ¼ 0:1;
KWE;air ¼ 0:01 and KWE;tin ¼ 0:003.

In order to achieve an optimal design for the selected plate, we
can modify the wind pressure pw by artificially changing the loca-
tion where the structure is set. For example and without loss of
generality, the design height above ground zd for both the cases
t ¼ 10 min and t ¼ 3 s, so to modify ce;t in (4.2) as per (B.4). The
optimal heights are those giving in the convolution integrals
(3.4) and (3.16) the target probability of failure of Table 2.

In the semiprobabilistic method of level I, the design wind pres-
sure is given by (B.3) and must be multiplied by the partial coeffi-
cient of the actions cf ¼ 1:5. The maximum stress is obtained as
rmax;d;s ¼ Sðcqpw;d;sÞwith FEM analysis. The calibration of the partial
material factors then comes from requiring the equal sign in the
verification formulae (3.8), for the LTW, and (3.17), for the EXW
distributions. Therefore, one finds

cm ¼ Kmod;sk
ðairþtinÞ=2
A;s;rmax

f g;k
rmax;s;dRM

; ð4:4Þ

where, from (A.5), kmod ¼ 0:6652 for s ¼ 10 min and kmod ¼ 0:9203
for s ¼ 3 s.

The values of kðairþtinÞ=2
A;s;WT are estimated through (3.12). Since the

variation of the location parameters only marginally affects the

corresponding value, we have set kðairþtinÞ=2
A;s;WT ’ 1:034 for both

s ¼ 10 min and s ¼ 3 s. On the other hand, kðairþtinÞ=2
A;s;WE is given by

(3.21), which provides kðairþtinÞ=2
A;s;WE ’ 1:3538.

Passing to the coefficient RM , this is unitary by definition for CC2
elements. The value of cm in (4.4) is the one that corresponds to
verification for the CC2 probability of Table 2, with RM ¼ 1. Once
such value has been determined, the other cases of CC1 and CC3
are analyzed and, from (4.4), the corresponding values of RM are
determined.

The results of the analysis are summarized in Table 5. Observe
that the LTW provides much lower values for cm than the EXW dis-
tribution. This despite the fact that for the LTWwe have considered
the effects of the natural material degradation through the coeffi-
cient x, as explained in Section 2.4, whereas this has been
neglected in the EXW approach.

4.2. Snow load

Next the plate is subjected to an uniformly distributed snow
load qs. With FEM analysis one can again find the relationship
qs ¼ SqðrmaxÞ and determine the cumulative distribution of the



Table 6
Weibull parameters used for the calibration of the material partial safety factors
according to the 2-parameter Weibull distribution [6].

Load case Surface ms g0;s

[MPa mm2/m]

Test Air 5.4 1096
Tin 7.3 406

Wind, 3 s Air 5.1 1220
Tin 6.9 425

Wind, 10 min Air 5.1 876
Tin 6.9 305

Snow, 1 m Air 5.1 541
Tin 6.9 188

Table 7
Partial Safety Factors from the 2-parameter Weibull distribution for a 3� 3 m2 plate
(assume kgA ¼ 0:7851).

Load case CC1 CC2 CC3

Wind [10 min] – ðcM RMÞ=kgA 2.11 3.09 4.89
Wind [3 s] – ðcM RMÞ=kgA 2.27 3.2 4.97
Snow [1 month] – ðcM RMÞ=kgA 2.05 3.07 4.92

Table 8
Values of RM evaluated according to the 2-parameter (2PW), the extended (EXW) and
the left-truncated (LTW) Weibull distributions.

2PW EXW LTW

Wind, 10 min
RM (CC1) 0.68 0.74 0.89
RM (CC3) 1.58 1.39 1.12

Wind, 3 s
RM (CC1) 0.71 0.74 0.89
RM (CC3) 1.55 1.41 1.13

Snow, 1 month
RM (CC1) 0.67 0.75 0.89
RM (CC3) 1.60 1.35 1.11
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maximum stress in the plate for the snow loads in one year from (B.9),
to obtain

Fr;qs;tðrÞ¼ exp �exp 1� SqðrÞ
qskliCECt

ð1þ2:5923VÞ
� �

p
V
ffiffiffi
6

p �0:57722
� �� �

:

ð4:5Þ
Differentiating with respect to r, one finds the probability den-

sity function

f r;qs;tðrÞ¼ Fr;qs;tðrÞ exp 1� SqðrÞ
qskliCECt

ð1þ2:5923VÞ
� �

p
V
ffiffiffi
6

p �0:57722
� �

p
V
ffiffiffi
6

p

� 1þ2:5923V
qskliCECt

d
dx

SqðrÞ;

ð4:6Þ

where all the coefficients have been defined in Appendix B.
To achieve the optimal design with the probabilistic approach,

the coefficient of variation of snow loads has been assumed to be
V ¼ 0:2, while the height a.s.l. is varied until the value of the con-
volution integrals is equal to the target value of the probability of
failure. Then, the design load qs;d;s is obtained and a deterministic
FEM calculation gives the maximum stress rmax;d;s ¼ Sðcf qs;d;sÞ, with
cf ¼ 1:5. The partial material factors are then calibrated according
(4.4). For the case at hand for which s ¼ 1 month, the value of

Kmod;s is 0.4044 from (A.5), whereas kðairþtinÞ=2
A;s;WT and kðairþtinÞ=2

A;s;WE have
the same values as the case of wind load.

Results are shown in Table 5. As in the case of wind, the LTW
gives less restrictive coefficients than the EXW approach, although
in the second case the effects of natural ageing of glass are
neglected.

4.3. Comparison with previous studies

An extensive analysis for the calibration of material partial
safety factors has been proposed [6], but there are substantial
differences with respect to the present derivation. First of all, the
considered statistics is a two-parameter Weibull distribution of
the type (2.1). Secondly, the shape parameter m and the scale
parameter g0 of the statistics were derived from a particular exper-
imental campaign [17], which is much more limited than that
mentioned in Section 2.1, and conducted with a different experi-
mental set-up. Thirdly, to take into account the phenomenon of
static fatigue on the reference time s, the data were re-scaled
according to the expressions

ms ¼ n
nþ 1

m; g0;s ¼ g
nþ1
n

0
1

ðnþ 1Þ _rs
� �1=n

; ð4:7Þ

where n is the coefficient of the power law (A.1) and _r is the exper-
imental stress rate, constant and equal to _r ¼ 2 MPa/s. The relevant
values are reported in Table 6.

The case study used by Badalassi et al. [6] for the calibration is
also very different, since it considered a 6 mm thick, 1� 1 m2,
simply supported square plate. In order to pass from that case to
the 3� 3 m2 plate, one may use the coefficient kgA taken from
the Italian code [12], which adopts the coefficients obtained in
the previous work [6], i.e.,

kgA ¼ 0:24m2

kA

� �1=7

with k ¼ 0:145: ð4:8Þ

Setting A ¼ 9 m2, one obtains kgA ¼ 0:7851.
Table 7 reports the values of ðcMRMÞ=kA, calculated by using the

values of cm and RM given by Badalassi et al. [6] and setting
kgA ¼ 0:7851. The value corresponding to CC3 has been calculated
here for the sake of completeness.
Comparing Tables 7 and 5, it is evident that the 2PW distribu-
tion provides much higher values of the partial safety factors than
the other ones. With respect to the LTW, the hypothesis that the
location parameter is null (no lower bound for glass strength) pro-
vides a conservative estimate. But the results may be overly con-
servative for designs that dictate very low failure probabilities of
failure. In fact, whereas for CC1 the values of Tables 5 and 7 are dif-
ferent but still comparable, the gap tends to increase for CC3. The
EXW distribution leads to safety factors very close to those from
the LTW statistics for CC1 elements; slightly higher for CC2 ele-
ments; definitely higher for CC3 elements. In any case, the values
remain lower than for the 2PW case.

The calibrated values of RM are summarized in Table 8 for all the
considered cases. Recall from Section 3.2 that the Eurocode EN
1990 [3] provides the multiplicative coefficient KFI for the actions
to pass from CC2 to CC1 (KFI ¼ 0:9) or to CC3 (KFI ¼ 1:1), and that
for linearly elastic structure such coefficient plays the same role
of RM . Although this comparison is of limited significance because
the statistics assumed to define the values of KFI is not Weibull’s,
one finds from Table 8 that the left truncated Weibull distribution
is the one that gives results in excellent agreement with the proce-
dure suggested by the Eurocode for all building materials.

5. Discussion and conclusions

This article has presented a new calibration of partial material
factors to be used in the structural design of glass with methods
of level I (semiprobabilistic approach). The calibrationwas obtained
from the comparison of the results obtainablewithmethods of level
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III (full probabilistic) in paradigmatic case studies. The statistical
models for the effects of the applied actions, essentially wind and
snow, are consistent with those proposed in the EN 1991-1-4
[16]. The performance of the structure is given by the maximum
allowed probability of failure, which is established in the EN 1990
[3] for three classes of consequences. A proposal is made here to
extend such classes to the case of localized glass elements whose
failure, although not provoking the collapse of the whole building,
can have consequences of various levels of severity.

This study complements and develops the results recorded in a
previous paper [6], where a similar-in-type procedure was fol-
lowed, but with substantial differences. First of all, the type of sta-
tistical model for glass strength is different. Whereas in the
previous work [6] the attention was focused on the two-
parameter Weibull (2PW) distribution, here we have used the
extended (EXW) and left-truncated (LTW) generalized Weibull
statistics. According to a recent study [5], these are able to inter-
pret the left-hand-side tail of the population much better than
the more classical 2PW model, a property that is of crucial impor-
tance while dealing with low probabilities of failure likewise those
tolerated in construction works. In particular, the LTW prescribes a
lower bound for glass strength, a quite delicate hypothesis whose
significance has been discussed at length [5]. Proper rescaling of
the glass strengths are proposed to account for static fatigue due
to subcritical crack propagation and for the effects of size and type
of stress. Moreover, the experimental campaigns, from which the
parameters defining the statistics have been derived, are quite dif-
ferent. Whereas in the previous study [6] reference is made to the
tests performed by the italian ‘‘Stazione Sperimentale del Vetro”
[17], performed with a ring-on-ring set-up, here we have used
the results of the much wider experimental campaign of the work-
ing group TC129/WG8 of CEN, performed according to EN 1288-2
[8], and statistically elaborated by the authors of the paper in pre-
vious works [4,5].

The data obtained here are summarized in Table 5, and should
be compared to those of Table 7, which refers instead to the previ-
ous study [6]. The difference is quite striking: the partial factors
from the 2PW may be as much as twice those derived from the
LTW, the difference being more evident at the lowest probabilities
of failure (class of consequence CC3). The EXW distribution pro-
vides values that are intermediate between the aforementioned
cases, even if for this statistics the effects of aging have been
neglected, whereas they have been considered in the LTW case.

There are reasons to repute that the most reliable estimate are
those obtainable with the left-truncated Weibull statistics. On the
one hand, the statistical analysis has demonstrated the inability of
the 2PW distribution to interpret the left-hand-side of the strength
population [4]. On the other hand, the possibility of the existence
of the lower bound for glass strength can be justified on the basis
of the severe factory production controls used during manufactur-
ing [5]. Indeed the distributions that indicate such lower bound
have been proved to be the best in the interpretation of the data
corresponding to the lower probabilities. Moreover, experimental
results have demonstrated that also severe damaging action, like
sandblasting, cannot reduce the strength of glass beyond a certain
lower limit. The possibility of such a degradation has been here
accounted for by diminishing, on the safe side, the limit strength
calculated from experiments.

The results obtained by Badalassi et al. [6] have been considered
overly conservative by the building industry and professional
designers, because they are not consistent with the coefficients tra-
ditionally used on the basis of experience and rules of practice. One
can argue that the 2PW statistics is on the safe side, but its overly
conservative nature reduces the competitiveness of glass in con-
struction. Since the idea of a lower bound for glass strength may
be difficult to accept, because it is in conflict with the engineering
sense according to which nothing can be 100 % safe, the partial fac-
tors have been also calibrated using the EXW statistics, which is an
‘‘unbounded” distribution giving a good, even though not optimal,
interpretation of the tails of the population of strengths [5]. Partial
safety factors remain in any case much less than those obtained by
using the 2PW statistics.

It should also be mentioned that the Eurocode EN 1990 [3] pro-
vides the coefficient KFI , multiplicative of the applied actions, to
pass from verifications in class of consequence CC2 to CC3 or
CC1. Here, this passage is proposed through the coefficient RM that
multiplies not the actions, but the material strengths. This is
because of the slenderness of glass structures, for which geometric
non linearities may be so important to render preferable maintain-
ing the actions unaltered, but the effects of KFI and RM are com-
pletely equivalent if the structure is linear elastic. What should
be observed is that the variation associated with KFI , as suggested
in EN 1990 [3], is approximately 10 %, and such a value squares
very well with the results from the LTW statistics. Higher differ-
ences are obtained for the EXW, and even more so with the 2PW
distributions. Although the importance of the comparison is not
absolute, since the coefficients KFI have been calibrated in EN
1990 [3] on the basis of different-in-type statistics, this finding
confirms the opportunity to comply with general principles of
structural design, commonly adopted for all types of materials.

The presented results are certainly not exhaustive, since there
are some unsolved matters and still-open problems. First of all,
the Weibull parameters for the extended and left truncated Wei-
bull distributions have been here estimated graphically, but a more
rigorous analytical method may provide a slightly different estima-
tion of the partial material factors. Moreover, the considered case
study is such that the maximum tensile stress acts far from the
border, but there are important structural elements, like fins or
beams, in which the edge is under maximum tension. The strength
of the edge can be quite different from that of the core material due
to the damage induced during the cutting process, but the lack of
experimental data does not allow for a reliable statistical charac-
terization. A similar consideration applies to surface treatments,
as well as to heat or chemically toughened glass. Another critical
issue regards the effects of live personnel loads, whose stochastic
interpretation is still not definite, to our knowledge.

This study does demonstrate that the values of partial material
factors considered so far on the basis of the study of Badalassi
et al. [6] are overly conservative. Industrial competitiveness in the
globalized market asks for reliable and safe construction that at
the same time comply with the issues of cost-effectiveness, energy
savings and reduction of pollutant emission (recall that the embod-
ied energy of glass is comparable with that of steel, and about 15
times greater than for concrete). We hope that new experimental
researches will be supported to corroborate the new calibration
procedure presented here, in order to permit the adoption of milder
design coefficients in current structural standards.
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Appendix A. The effective crack growth model

Brittle failure of glass is governed by surface micro-cracks that
propagate catastrophically once the crack opening stress reaches
a critical value [18]. The phenomenon can be well interpreted by
linear elastic fracture mechanics (LEFM). Crack growth is governed
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by the Stress Intensity Factor (SIF) KI in mode I, and instantaneous
collapse occurs when the SIF reaches the critical threshold KIc [19],
which represents a characteristic material parameter (KIc ¼ 0:75
MPa m0.5 is usually assumed).

A subtle phenomenon, usually referred to as static fatigue or
subcritical crack propagation [1], is the slow growth over time of
cracks while their size is far smaller than the critical limit. The
speed of subcritical crack growth is traditionally considered a
function of the SIF, governed by a power-law of the type [20]

dc
dt

¼ m0
KI

KIC

� �n

; ðA:1Þ

where m0 and n are parameters that depend upon the thermo-
hygrometric conditions and the type of glass [21]. It is customary
to assume m0 ¼ 0:0025 m/s and n ¼ 16 for float soda-lime glass to
be on the safe side.

The subcritical crack growth occurs when micro-cracks are under
a positive crack opening stress for value of the SIF comprised
between KI0, a lower bound below which no propagation occurs
but that is usually neglected, and KIC . Since the SIF for a thumbnail
surface crack is KI ¼ rY

ffiffiffiffiffiffi
pc

p
, where r is the crack opening stress, Y

is a shape coefficient and c is the characteristic size of the crack,2

when considering a load history r ¼ rðtÞ for the crack opening
stress, one can writeZ cc

ci

c�n=2dc ¼
Z tf

0
m0

rðtÞY ffiffiffiffi
p

p
KIc

� �n

dt; ðA:2Þ

where tf represents the failure time, when the crack size passes
from the initial value ci to the critical value cc .

Considering that tests are, as a rule, performed at a constant
stress rate _rtest , then rðtÞ ¼ _rtestt. If f test is the tensile strength mea-
sured at the end of the test, from (A.2) one can find the initial crack
size ci

ci ¼ n� 2
2

m0
nþ 1

Y
ffiffiffiffi
p

p
KIc

� �n
f nþ1
test

_rtest
þ Yftest

ffiffiffiffi
p

p
KIc

� �n�2
" # 2

n�2

; ðA:3Þ

which indicates a measure of the initial defectiveness of the glass
specimen. For practical values of the parameters, the second term
within the square brackets is negligible with respect to the first
one. Under this assumption, since ci is a given quantity, it turns

out that f nþ1
test = _rtest ¼ R is approximately constant, whatever the

stress rate during the test.
For design purposes, actions are schematized by constant loads

acting on the structure for a characteristic time, representative of
their cumulative effect during the whole life-time. Suppose that
the stress rs is sufficient to provoke rupture if constantly applied
for the time s. Integrating Eq. (A.2), one can write [6]

rn
ss ¼ 2=ðn� 2Þcð2�nÞ=2

i

m0 Y
ffiffiffi
p

p
KIc

� �n ¼ 1
nþ 1

R: ðA:4Þ

From this expression, it is then possible to obtain, for any fixed
s, the stress rs.

For design purpose, a more practical way to consider this
phenomenon is through the coefficient kmod, which takes the form

kmod ¼ rs

f ref
¼ 1

f ref

1
nþ 1

� �1=n s
R

� ��1=n

¼ 1
nþ 1

� �1=n

Rð Þ 1
nðnþ1Þ _rref

	 
 �1
nþ1 sð Þ�1=n

: ðA:5Þ
2 Since thumbnails cracks naturally tend to be semicircular, one can identify c with
the radius of the crack and assume Y ¼ 2:24=p.
Here f ref is a reference value, which is generally assumed to be the
bending strength of a glass plate tested at _rref ¼ 2 MPa/s. For float
glass, by assuming characteristic values for the various parameters,

one obtains for n ¼ 16 the expression kmod ¼ 0:9759 sð Þ1=16 when s is
measured in seconds.

Appendix B. Probabilistic models for wind loads and snow loads

Wind actions are usually considered as uniformly distributed
pressures. There are various probabilistic models for wind pres-
sure. According to the Eurocode EN1991-1-4 [16], the reference
wind velocity corresponding to a return period TR is of the form

vbðTRÞ ¼ aRvb;50; aR ¼ 0:75

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 0:2 ln � ln 1� 1

TR

� �� �s
; ðB:1Þ

where vb;50 is defined as the characteristic wind velocity at 10 m
above ground averaged over 10 min on an exposure category II field,
determined for a return period of 50 years. From Eq. (B.1), it is pos-
sible to obtain the cumulative distribution function of the maxi-
mum averaged wind velocity over 10 min recorded in one year vb,
i.e., the probability that such value is not exceeded in one year,
which reads

FðvbÞ ¼ exp � exp
1
0:2

� v2
b

0:20:752 v2
b;50

 !" #
: ðB:2Þ

According to EN1991-1-4 [16] the peak pressures, correspond-
ing to the averages over time t ¼ 10 min and t ¼ 3 s, are indicated
by

pw;10min ¼ 1
2
qv2

b ce1ðzÞcp cd; pw;3s ¼
1
2
qv2

b ceðzÞcp cd: ðB:3Þ

Here, cd is the dynamic factor, cp is the pressure coefficient,
q ¼ 1:25 kg/m3 is the air density, z is the height above ground,
whereas ce1ðzÞ and ceðzÞ are the exposure factors. These factors,
which mark the distinction between the peak pressure correspond-
ing to the averaged time t = 10 min or t = 3 s, are given by

ce1ðzÞ ¼ ln z
z0

� �� �2
k2r c

2
t with z¼ zmin for z6 zmin;

ceðzÞ ¼ k2r ctðzÞ ln z
z0

� �
ln z

z0

� �
ctðzÞ þ7

h i
with z¼ zmin for z6 zmin;

ðB:4Þ
where z0 and zmin are reference heights, kr is a coefficient that
depends upon the field exposure category and ctðzÞ is the oro-
graphic coefficient. Hence, the cumulative distribution function
Fðpw;tÞ takes the form

Fðpw;tÞ ¼ exp � exp
1
0:2

� 2pw;t

qce;t cp cd 0:20:75
2 v2

b;50

 !" #
; ðB:5Þ

with ce;t ¼ ce when t = 3 s and ce;t ¼ ce1 when t = 10 min.
The snow actions are due to the snow deposit on a roof, consid-

ered undrifted for uniform flat surfaces. The equation for the snow
load referred to a return period of n years (qsn) is proposed in the
standard EN 1991-1-3 [22] through the expression

qsn ¼ qsk
1� V

ffiffiffi
6

p
=p½lnð� lnðPnÞÞ þ 0:57722�

1þ 2:5923V

" #
; ðB:6Þ

where V is the variation coefficient of the series of maximum annual
snow loads, Pn is the annual probability of exceedance and qsk is the
characteristic snow load value on the ground for a 50 year return
period. Such value is reported by regulations as a function of the cli-
mate zone and the altitude above sea level. From (B.6), one can
obtain the value of the annual probability of non-exceedance and,
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hence, the cumulative distribution function for ground snow loads
for a reference period of 1 years, which results to be

FqsnðxÞ ¼ exp � exp 1� x
qsk

ð1þ 2:5923VÞ
� �

p
V
ffiffiffi
6

p � 0:57722
� �� �

:

ðB:7Þ
By denoting with CE the exposure coefficient, with Ct the thermal
coefficient, and with li the roof shape coefficient, the snow load
on the roof is determined by the expression

qs ¼ liqskCECt: ðB:8Þ
Then, by substituting Eq. (B.8) into (B.7), one obtains the cumulative
distribution function of undrifted snow loads on roofs

FqsðxÞ¼ exp �exp 1� x
qskliCECt

ð1þ2:5923VÞ
� �

p
V
ffiffiffi
6

p �0:57722
� �� �

:

ðB:9Þ
The values of the various coefficients can be found in the EN

1991-1-3 [22].
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