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We extend the classical J-integral approach to calculate the energy release rate of cracks
by prolonging the contour path of integration across a traction-transmitting interphase
that accounts for various phenomena occurring within the gap region defined by the nom-
inal crack surfaces. Illustrative examples show how the closed contours, together with a
proper definition of the energy momentum tensor, account for the energy dissipation
associated with material separation. For cracks surfaces subjected to cohesive forces,
the procedure directly establishes an energetic balance �a la Griffith. For cracks modeled
as phase-fields, for which no neat material separation occurs, integration of a general-
ized energy momentum (GEM) tensor along the closed contour path that traverses the
damaged material permits the calculation of the energy release rate and the residual
elasticity of the completely damaged material. [DOI: 10.1115/1.4032986]
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1 Introduction

In his fundamental paper of 1951, Eshelby [1] opened new
possibilities in the physical theory of the solid state by showing a
parallelism with the classical theory of elasticity. Specifically, he
demonstrated that the driving force for the movement of a source
of elastic singularity such as a point defect within a crystal lattice
can be established as the negative gradient of the total energy with
respect to the position of the singular point. In his words, “this
force, in a sense fictitious, is introduced to give a picturesque
description of energy changes, and must not be confused with
the ordinary and surface and body forces acting on the material.”
The distinction is emphasized by defining the driving forces as
configurational forces which are associated with a balance law for
a tensorial field referred to as the energy–momentum tensor. More
precisely, at the base of the energy release rate associated with the
movement of the singularity, there is a configurational force bal-
ance that must hold for any arbitrary control volume of the body.
Although initially considered for linear elastic materials, the
energy–momentum tensor and the corresponding balance laws
can be defined for nonlinear elastic solids [2] and, for processes
where dissipative phenomena are involved, for which a variational
derivation is not straightforward. Gurtin recognized the broad and
deep significance of configurational forces by viewing them as
basic primitive objects, consistent with their own force
balance [3].

In this paper, we address cracks that involve dissipative
phenomena, and therefore, it is useful to refer to Gurtin’s deriva-
tion of the Eshelby relation that does not involve any constitutive
equation or variational principle but instead relies upon a version
of the second law for referential control volumes whose bounda-
ries evolve with time. For the sake of simplicity, we summarize
the procedure for the case of infinitesimal deformation gradients
(small stains and moderate rotation); extension to nonlinear defor-
mations does not present additional conceptual difficulties but
only a slightly larger mathematical effort. Then, let X�Rd, where

d is the dimension where the problem is set, be representative of
the undistorted reference configuration of the body, and let u(x):
X ! Rd represent the displacement of a particle initially at
x � X. Following the same argument of Ref. [4], if one assumes
the energy–momentum tensor T as a primitive quantity for which
an appropriate form of the second law of thermodynamics is intro-
duced, one can demonstrate that invariance under reparameteriza-
tion of the reference control volume provides the Eshelby relation

T ¼ W I�ruTS (1.1)

where W is the bulk free energy of the body, I is the identity ten-
sor, S is the deformational stress tensor, and du is the displace-
ment gradient. The tensor T has proven to be useful in the
formulation of numerous physical problems, such as evolving
interfaces, two-phase equilibrium, and solidification processes. In
particular, for the motion of a line in a two-dimensional body [5],
the significant balance law is of the typeð

C
ðW�ruTS Þn dsþ g ¼ 0 (1.2)

where g is the concentrated configurational force associated with
its tip, and C is an arbitrary closed surface that embraces the tip.
If the direction of the moving line is defined by the unit vector r,
one readily has

�g � r ¼ r �
ð

C
ðW�ruTS Þn ds ¼

ð
C
ðWr � n� Sn � rurÞ ds

(1.3)

This relationship is the basis of the elegant method proposed by
Rice [6] to calculate the energy release rate of a crack. The proce-
dure is well defined because the integral in Eq. (1.3), traditionally
referred to as the J-integral, is path independent as long as the
area enclosed by the closed path does not include singularities.

When calculating the J-integral for topological features such as
a line, the path C can embrace the tip of the line and touch the
crack surfaces, rendering C a closed contour. But if the line repre-
sents a crack whose surfaces introduce a discontinuity of
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displacements, then it acts as a barrier that cannot be trespassed
and thus prevents C from closing. Whether the path C should be
considered closed or not is a subtle but substantial distinction.
Consider the case of a line (or surface) of discontinuity for which
the displacement field is multivalued. In the case of infinitesimal
deformations, the (infinitesimal) strain-tensor field cannot be inte-
grated in a cut body even if it satisfies the compatibility equations
because, using, for example, Cesaro’s representation [7], one
would obviously reach different values of the displacement while
approaching the two faces of the cut from opposite sides. In
general, multivalued displacements are encountered when the
reference domain X is not periphractic,1 which for the two-
dimensional case coincides with the notion of multiply connected.
A similar difficulty occurs when the body is continuous but
obtained from a configuration that is not periphractic in the natural
undistorted state, for example, Volterra dislocations for which
material portions are first added or subtracted and then the cutting
surfaces are joined together. As suggested by Love [8], a physical
interpretation of the mathematical problem may consist in render-
ing the domain periphractic by means of a system of barriers, iso-
lating the two faces of any discontinuity surface. The stress in the
body is one valued and continuous, but the displacement may be
discontinuous across the barrier.

Similarly to the aforementioned example, the energy momen-
tum tensor T, even if it is divergence free, may provide a nonzero
value when integrated on a closed contour C embracing a crack
tip. It is then useful, in the definition of C, to imagine that the slits
present in the body are associated with topological barriers, in the
sense mentioned above, and that C touches the two faces of the
barrier, but does not traverse it. This setting is used in the classical
application of the J-integral, as suggested by Rice [6].

The situation is different for cracks whose surfaces are sub-
jected to tractions, such as those introduced by Barenblatt [9]. In
the most general case, the surfaces of such cracks are subjected to
cohesive forces per unit area that are functions of the crack open-
ing displacement (COD). If one regards such forces as being pro-
vided by a fictitious interphase layer of infinitesimal but non-null
thickness, then the displacement at the interface is no longer mul-
tivalued, because the image point of each particle forming the
interphase is well defined. Therefore, for cohesive cracks there is
no need to introduce a topological barrier along the line defining
the crack, and as a consequence, a completely closed path that
enters and traverses the interphase material may be considered.
This idea is presented in Sec. 2.1 with reference to a paradigmatic
example.

The cohesive interphase, referred to as the process zone, allows
for material separation at the price of energy dissipation, because
the constitutive relationship that relates the cohesive forces per
unit area to the COD presents a strain softening branch approach-
ing the null value at a critical value of the COD. This contribution
enters the global energetic balance of the system and, according
to Griffith’s basic idea, the crack advances when the energy
release rate equals the rate of dissipation of the cohesive forces in
the process zone. Therefore, modulo a proper definition of the
energy–momentum tensor, one expects that the vanishing of the
J-integral on a C that traverses the interphase, according to
Eq. (1.3), represents the condition of crack extension. This direct
approach for establishing Griffith equilibrium is illustrated in
Sec. 2.2.

The idea of closing the path of the J-integral is directly applied
to the case of a Barenblatt crack under monotonic loading in
Sec. 3.2, under the assumption that the crack profile remains self-
similar as it extends, as discussed in Sec. 3.1. It is noted that the

same argument for such smooth closure cracks can be applied in
the small-scale bridging limit to establish a correlation with the
borderline case of sharp cracks. In this case, the evanescent inter-
phase zone triggers and produces the neat separation of the mate-
rial ligaments, a process that should be recalled in the energetic
balance by considering that material separation is associated with
the cohesive law. Consequently, one can repeat the same rationale
used for cohesive forces and take into account directly the contri-
bution �a la Griffith for the energy dissipated in the fracturing pro-
cess. In this case, the stress intensity factor is not zero, but it can
be directly verified that the closed-path J-integral, traversing the
crack in the sense mentioned above, vanishes.

The closed-path J-integral approach described in this paper is
analogous to Eshelby’s approach for bodies containing defects
like dislocations, where there is no barrier and the integral of the
energy momentum tensor is always performed on a closed con-
tour. Remarkably, this approach can naturally be extended to the
case of bridged cracks in linear elastic materials, for which the
cohesive forces are not sufficient to annihilate the crack tip stress
intensity factor. As shown in Sec. 3.3, this can be done via an
appropriate definition of the generalized energy–momentum ten-
sor, slightly different from Eq. (1.2): integration of this field along
a closed path embracing the crack tip can directly provide the
energy release rate associated with the square of the stress inten-
sity factor at the crack tip.

The closed-path J-integral method can readily be applied to
phase-field models of crack propagation. In classical models of
fracture, cracks are well-defined lines or surfaces of discontinu-
ity. In the phase-field approach, on the contrary, cracks are
viewed as narrow bands in which the material degrades. Many
recent works aim at establishing a link between these two some-
what complementary views of the same phenomenon. Various
forms of phase-field models have been proposed, for which an
excellent review can be found in Ref. [10]. For the sake of illus-
tration, in Sec. 4.1 reference will be made to the models by
Karma et al. [11], later developed by Hakim and Karma [12] and
by Bourdin et al. [13]. In particular, the latter authors used mod-
ern results of variational convergence of functionals [14] to con-
nect, in the limit of the evanescent length-scale l associated with
the fracture geometry, a rate-independent damage theory of the
gradient type [15] to the variational approach to brittle fracture
[16]. A key parameter in the aforementioned limit l ! 0 is the
assumption that a positive quantity, infinitesimal faster than l, is
added to the elastic part of the strain energy in the corresponding
functional. In the approximating phase-field model, such a
quantity must be considered in order to stabilize the numerical
solution of the minimization problem, but not too much consider-
ation is paid to this, because the aforementioned convergence
result suggests that it is small and negligible. Nevertheless, such
quantity produces a residual nonzero stiffness (of the order of a
small fraction of the elastic modulus as determined through nu-
merical results) in the damage bands, producing an effect that,
for the case of sharp cracks, would be equivalent to bridging
forces along crack surfaces.

A detailed analysis of the possible use of the J-integral in the
phase-field description of cracked bodies has been conducted by
Hakim and Karma [12]. The authors first introduced the general-
ized energymomentum (GEM) tensor, which contains a term that
accounts for the damaging phase field. The configurational forces
exerted on a propagating damage band can thus be obtained by
considering the flux of the GEM tensor on the “open” path ACB,
of the type represented in Fig. 1. Here, A and B are taken suffi-
ciently far from the tip and close to the crack on a macroscopic
scale, but with the distance 2h between A and B much longer than
the process zone scale. Namely, the mathematical limits h! þ1
and R!þ1, with h/R! 0, are followed, where R is the distance
of A and B from the crack tip. This represents, for the case of
phase-field models, the counterpart of the topological barrier men-
tioned above for the case of sharp cracks. Since on the path ACB,
the material is sound, the GEM tensor reduces to the classical

1A three-dimensional cracked body is not “periphractic” in a topological sense
general, according to the definition of Milne-Thomson. He noted its Greek derivative
meaning “fenced about” and characterized a periphractic three-dimensional region as
one that is “bounded internally by one or more closed surfaces.” Thus, a periphractic
three-dimensional region has embedded holes or cracks, but not necessarily holes
that pierce completely through it. The former is simply connected but the latter is
not.
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Eshelby tensor, so that one obtains the energy release rate with an
argument that mirror’s Rice’s J-integral.

It is noted that some ambiguities arise in the aforementioned
procedure. The phase field does not present a sharp transition
from 0 (broken material) to 1 (sound material), so that the exact
width of the process zone cannot be defined in objective terms.
One could certainly define the region where the field is 1�/0,
with /0 � 1, but the choice of /0 is arbitrary and, indeed, /0

cannot be chosen too small (a possible choice is /0¼ 0.1� 0.2),
otherwise, in the practical case of a numerical simulation, the
band would almost “invade” the surrounding body. But as shown
in Sec. 4.2 and illustrated in the example of Sec. 4.3, an applica-
tion of the proposed closed-path approach removes this ambiguity.
This is because the GEM tensor can be evaluated on the closed
path ACBA that traverses the band defined by the phase field, with
no need of defining the locations of points A and B. The resulting
integral results to be path-independent as long as it is taken in a
region, like the one envisaged in Fig. 1, where the material is
unaffected by the propagation of the tip of the damage band. If the
integral is taken in another region, the integral representation
accounts only for the energy that is dissipated within the region
that is enclosed by the contour. In Sec. 4.4, we show that a modifi-
cation of the GEM tensor and closed-path integration allows the
direct measurement of the energy release rate for the moving
band, and the evaluation of the residual elasticity within the band
may result after it yields as shown in the model of Ref. [13].

We believe that the proposed method can be applied in many
other problems involving not-neat separation of the crack surfa-
ces. For example, it could be applied to the measurement of the
fracture toughness of bulk adhesive joints [17], where small-scale

linear elastic fracture mechanics (LEFM) and the traditional
J-integral cannot account for the large size of the fracture process
zone. Other interesting applications could be in the characteriza-
tion of the mechanical failure of lithium ion battery electrodes
[18], through the possibility of taking into account directly the
effects of the electric fields traversing cracks [19]. In general, the
applicability and the limitations of the closed-path J-integral in
measuring the effects of dissipative processes still needs to be
validated on theoretical grounds [20], but this is beyond the scope
of the present article. Nevertheless, we believe that the method
proposed here provides a direct link between the mechanics of
sharp cracks and its regularized description through damage
mechanics.

2 The Eshelby Method for a Bimaterial Elastic Solid

The simplest case that illustrates the use of closed-path contours
is that of an elastic solid composed of two materials that are sepa-
rated by an elastic interphase. In this illustrative example, in the
spirit of Eshelby [2] no crack is present. We first define the
mechanics of the interphase and then consider the energy dissipa-
tion within the interphase and the energy release rate associated
its cracklike extension.

2.1 A Paradigmatic Example. Consider an elastic body X in
generalized plane stress or plane strain, composed of two regions
joined by an elastic interface. For simplicity, as represented in
Fig. 2(a), we assume that the interface is straight and can be repre-
sented by a (nonlinear) elastic material with reference thickness h.
In the following, we will consider the limit in which the thickness
of the interface is negligible with respect to the other length-
scales of the problem, and we will derive the conclusions in the
limit h! 0.

The midline of the elastic interface is supposed to be a line of
geometric and elastic symmetry. If the applied loading and bound-
ary conditions are symmetric with respect to the same line, the
traction across the interface consists of only a stress component
normal to the separation surface. The intensity of the stress is
assumed to depend upon the stretch of the surface. In the language
of cohesive fracture mechanics, the cohesive forces per unit area,
say f, is a function of the COD, say 2v, i.e., f¼ f[2v]. At this point,
we do not make any assumption about the constitutive equation
that describes the elastic interface, other than that it is qualita-
tively of the type represented in Fig. 2(b). There is a threshold
f0> 0 that is necessary to activate the interface, i.e., it takes a
stress f0> 0 to initiate the enlargement of the interface. Such a
stress increases up to a maximum fM corresponding to the relative
displacement 2vM, beyond which it decreases and becomes null if
the enlargement becomes larger than the limit 2v0. At this stage,
the corresponding portion of the interface is stress-free. This
assumption also includes the particular case in which the strain-
hardening branch (0, vM) is evanescent, i.e., fM¼ f0, and the con-
stitutive law is monotone decreasing.

Fig. 1 Spatially diffused crack tip region. Circular contour
path to calculate the flux of the GEM tensor.

Fig. 2 (a) The body composed of two elastic solids joined by a straight elastic
interface. (b) A general constitutive equation relating the interface-stress with the
relative displacement.
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Let the system be subject to some external quasi-statically
and monotonically applied forces, as schematically represented in
Fig. 2(a). The body will find an equilibrium configuration that
coincides with the solution of the corresponding elasticity prob-
lem, under the prescribed conditions at the boundary and jump
conditions at the interface. If the constitutive equation is of the
type of Fig. 2(b), we qualitatively expect a deformation that, as
indicated in Fig. 3(a), resembles the COD of a cohesive crack.
Introduce the reference system (x1, x2), with associated unit vec-
tors (e1, e2), such that the x1 axis coincides with the symmetry line
and the x2 axis is at right angle to it. Then, define the displacement
field components in the form

uðxÞ ¼ u1ðx1; x2Þe1 þ u2ðx1; x2Þe2 (2.1)

The interface will yield according to the resulting stress, and the
variation of its thickness will be 2v(x1)¼ u2(x1, 0þ)� u2(x1, 0þ)
¼ 2u2(x1, 0þ)¼�2 u2(x1, 0þ). Here, we have set 6h/2ffi 06 in the
limit h! 0. There will be regions where: (i) the interface is inac-
tive, i.e., the stress is less than f0 and 2v(x1)¼ 0; (ii) the interface
is active, since 0< 2v(x1)< 2v0; and (iii) the interface is com-
pletely yielded and 2v(x1)> 2v0. Consider an equilibrium state
and choose the origin of the axes such that the interface is inactive
for x1> 0, active for �k< x1< 0 and yielded for x1<�k. In
Fig. 3(a), the springs that schematically represent the cohesive
interface have been drawn with dashed lines in the region where
the interface has yielded.

An energetic potential per unit area of the interface can be
defined as

F½s� ¼
ðs

0

f ½s� ds (2.2)

Obviously, in the yielded region where 2v2(x1, 0þ)> 2v0, one has
that F[2v2(x1, 0þ)]¼F[2v0]¼F0. Consider a pseudotriangular
closed path P�PþR, as represented in Fig. 3(b), which is supposed
to shrink and in the limit embraces part of the interface. Observe
that in the standard application of the J-integral, the crack acts as
a barrier and, consequently, the path is not supposed to cross the
crack surfaces. On the other hand, here there is no crack, and
consequently, it is possible to consider a closed path. We can then
apply the most general form of the Eshelby theorem (1.2) pro-
posed by Gurtin and Podio-Guidugli [4,5]. For the particular con-
figuration just described, no stress singularity can occur because
the state of stress at the interface cannot be higher than fM. There-
fore, in the limit, the point R of Fig. 3(a) can tend to the origin of
the reference system, i.e., to the boundary between the active and
inactive regions. As the path becomes closer to the interface, con-
tinuity of the stress implies that

r22ðx1; 0
þÞ ¼ r22ðx1; 0

�Þ ¼ f ½u2ðx1; 0
þÞ � u2ðx1; 0

�Þ�
¼ f ½2u2ðx1; 0

þÞ� ¼ f ½�2u2ðx1; 0
�Þ� (2.3)

If the active portion advances in the positive direction of the x1

axis, then the energy release rate of the whole elastic system reads

J ¼
ð

PþR

ðWe1 � n� Sn � ru e1Þds

þ
ð

R P�
ðWe1 � n� Sn � ru e1Þds

þ
ð

P�Pþ
ðWe1 � n� Sn � ru e1Þds (2.4)

On the path P6R, one has that n¼6e2,rue1¼e1ð@=@x1Þu1ðx1;0
6Þ

þe2ð@=@x1Þu2ðx1;0
6Þ, and Sn¼r22(x1,06) e2. On the other hand,

on P�Pþ one finds n¼�e1, Sn¼0, and W¼F[2u2(x1P,0þ)]/h,
where x1P denotes the abscissa of points P� and Pþ. Therefore,
Eq. (2.4) becomes

J ¼ �
ð

PþR

r22 x1; 0
þ� � @

@x1

u2 x1; 0
þ� �

ds

þ
ð

R P�
r22 x1; 0

�ð Þ @
@x1

u2 x1; 0
�ð Þdsþ

ð
P�Pþ
�Wds (2.5)

The first two integrals read

�
ð0þ

x1P

r22 x1; 0
þ� � @

@x1

2u2 x1; 0
þ� �� �

dx1

¼ �
ð0þ

x1P

f 2u2 x1; 0
þ� �� � @

@x1

2u2 x1; 0
þ� �� �

dx1

¼ �
ð0

2u2 x1P;0
þð Þ

f 2u2 x1; 0
þ� �� �

d 2u2 x1; 0
þ� �� �

¼
ð2u2 x1P;0

þð Þ

0

f s½ �ds ¼ F 2u2 x1P; 0
þ� �� �

(2.6)

whereas the third integral takes the formð
P�Pþ

We1 � nds ¼
ð

P�Pþ
�Wds

¼ �
ð

P�Pþ

F 2u2 x1P; 0
þð Þ½ �

h
ds

¼ �F 2u2 x1P; 0
þ� �� �

(2.7)

The conclusion is that J¼ 0, independently of the crack path,
in agreement with Eshelby’s theorem. Note, in fact, that the
derivation of Eqs. (2.6) and (2.7) is independent of whether
the path P�Pþ traverses either the active or the yielded
regions. In terms of fracture mechanics, this finding is in
agreement with the condition that crack extension initiates
when the energy release rate equals the energy dissipated in
the cohesive zone. Recall, in fact, that a crucial assumption in
the derivation of Eqs. (2.6) and (2.7) is that the whole system
is in elastic equilibrium.

Note that one could use the same argument on any pillow path
P�Pþ SþS�, of the type represented in Fig. 3(b), to find that the
corresponding integral of the energy momentum tensor vanishes.
This is true, regardless of the location of the branches P�Pþ and
S�Sþ, identified by the abscissas x1P and x1Q.

2.2 Interfacial Dissipation and Energy Release Rate. It is
instructive to sort and interpret the contributions of the three inte-
grals appearing in Eq. (2.5). This can be done on the basis of a
classical argument. Suppose the interface tip moves by an amount
n in the x1 direction, so that a new equilibrium state is attained. If,

Fig. 3 (a) Deformed configuration of the body. (b) The closed-
path contour for the application of Eshelby energy moment
tensor.
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following the same hypothesis for cohesive cracks of Ref. [9], the
length k of the active region is much smaller than the length of the
whole interface, i.e., k is much smaller than the reference length
scales associated with the elastic problem, then the deformed
shape remains unchanged. This means that the u2 component
of the new displacement field will be such that u2n(x1, 06)
¼ u2(x1� n, 06). In the energetic variation of the whole system,
the contribution associated with the interface only is

DKðnÞ ¼
ðl

�L

F½2u2ðx1 � n; 0þÞ� � F½2u2ðx1; 0
þÞ� dx1 (2.8)

where we have assumed that L> k and l> n. In fact, outside the
interval �L� x1� l, the static state of the interface does not
change. Therefore, the rate of change of the interfacial energy at
n¼ 0 reads

d

dn
DK nð Þð Þn¼0

¼
ðl

�L

f 2u2 x1 � n; 0þ
� �� � @

@n
2u2 x1 � n; 0þ
� �� �

dx1

( )
n¼0

¼
ðl

�L

�f 2u2 x1 � n; 0þ
� �� � @

@x1

2u2 x1 � n; 0þ
� �� �

dx1

( )
n¼0

¼
ð0

�k
�f 2u2 x1; 0

þ� �� �
d 2u2 x1; 0

þ� �� �

¼ �2

ð0

2v0

f s½ �d sð Þ dx1 ¼ F 2v0½ � ¼ 2F0 (2.9)

This represents the work that has to be expended to let the yielded
interface advance by dn from n¼ 0, divided by dn. This contribu-
tion is the opposite of Eq. (2.7) because, in the words of Ref. [2],
the term (2.7) represents the energy that is added to the
reference domain enclosed by the path P�PþR when, thinking of
keeping fixed the interface, the domain is moved in the direction
of increasing n. Since in this case, the energy is subtracted, a
negative sign appears in Eq. (2.7).

The work required to yield the interface must be provided by
the energy release rate of the elastic matrix that surrounds the
interface itself. In general, the body is subjected to dead-load
tractions on the boundary, so that it is convenient to refer to the
complementary energy U[t], where t denote the boundary
tractions. It is convenient to consider distinctly the two elastic
sub-bodies that are joined by the interface and define for each
portion the complementary energies Uþ[t] and U�[t], where the
superscripts refer to the part that is located in the direction of the
positive or negative x2 axis. Let q(x1, 0þ)¼ r22(x1, 0þ) and
q(x1, 0�)¼ r22(x1, 0�) represent the tractions that are applied to
the two sub-bodies through the interface. Equilibrium provides
q(x1, 0þ)¼ q(x1, 0�)¼ q(x1), and Castigliano’s theorem states

@Uþ

@q x1; 0
þð Þ ¼ �u2 x1; 0

þ� �
;

@U�

@q x1; 0
�ð Þ ¼ u2 x1; 0

�ð Þ (2.10)

When the yielded portion of the interface moves, then the traction
becomes qn(x1, 0þ)¼ qn (x1, 0�) and, if the shape of the interface
profiles does not change, then qn(x1, 0þ)¼ q(x1� n, 0þ) and
qn(x1, 0�)¼ q(x1� n, 0�). Then, the rate of change of the comple-
mentary energy for a movement of the yielded interface in the
positive n direction reads

d

dn
DH nð Þð Þn¼0 ¼

d

dn

ðl

�L

U qn x1; 0
þ� �� �
þ U qn x1; 0

�ð Þ½ �
� �

dx1

( )
n¼0

¼
ðl

�L

�u2n x1; 0
þ� � @
@n

q x1 � n; 0þ
� �

þ u2 x1; 0
�ð Þ @
@n

q x1 � n; 0�ð Þ
� �

dx1

( )
n¼0

¼
ðl

�L

u2 x1; 0
þ� �
� u2 x1; 0

�ð Þ
� � @

@x1

q x1ð Þdx1 ¼ u2 x1; 0
þ� �

r22 x1; 0
þ� �
� u2 x1; 0

�ð Þr22 x1; 0
�ð Þ

� �� �l
�L

�
ð0

�k
r22 x1; 0

þ� � @

@x1

u2 x1; 0
þ� �� �
� r22 x1; 0

�ð Þ @
@x1

u2 x1; 0
�ð Þ

� �
dx1

¼ �
ð0

�k
r22 x1; 0

þ� � @

@x1

u2 x1; 0
þ� �� �

dx1 þ
ð0

�k
r22 x1; 0

�ð Þ @
@x1

u2 x1; 0
�ð Þð Þ dx1 (2.11)

In writing Eq. (2.11), we have used the fact that
r22(�L, 0þ)¼ 0 and u2 (l, 0þ)� u2(l, 0�)¼ 0. Since the comple-
mentary energy evaluated on the elastic solution equals the
opposite of the total potential energy, then Eq. (2.11), which is
equal to the first two integrals of Eq. (2.5), represents a posi-
tive quantity equal to the energy release rate in the elastic
matrix. Such a value coincides with that found in Ref. [6] as a
direct application of the J-integral on a closed contour that
embraces the cohesive forces.

The conclusions just reached correspond to the case in which,
in the evaluation of the integral of Eq. (2.4), the path P�PþR is
such that x1P<�k and x1R> 0, i.e., the whole yielded portion of
the interface is embraced by the contour. It is much more interest-
ing to repeat the same argument by considering the pillow path
P�Pþ SþS� of Fig. 3(b), where the abscissas x1R and x1S can be

anywhere along the interface. Reasoning as in Eq. (2.9), one finds
that

ð
P�Pþ

We1 � ndsþ
ð

S�Sþ
We1 � nds

¼ �
ð

P�Pþ

F 2u2 x1; 0
þð Þ½ �

h
dsþ

ð
S�Sþ

F 2u2 x1; 0
þð Þ½ �

h
ds

¼ �F 2u2 x1P; 0
þ� �� �
þ F 2u2 x1S; 0

þ� �� �
(2.12)

This equals minus the work rate to be expended on the portion
x1P� x1� x1P of the interface as it is moved in the positive n
direction. On the other hand, with the same derivation of
Eq. (2.11), one has

Journal of Applied Mechanics JUNE 2016, Vol. 83 / 061008-5

Downloaded From: http://appliedmechanics.asmedigitalcollection.asme.org/ on 03/29/2016 Terms of Use: http://www.asme.org/about-asme/terms-of-use



�
ð

PþSþ
r22 x1; 0

þ� � @

@x1

u2 x1; 0
þ� �

ds

þ
ð

P�S�
r22 x1; 0

�ð Þ @
@x1

u2 x1; 0
�ð Þds

¼ d

dn

ðx1S

x1P

U qn x1; 0
þ� �� �
þ U qn x1; 0

�ð Þ½ �
� �

dx1

( )
n¼0

(2.13)

This contribution equals the energy release rate in the elastic
matrix associated with the movement of the interface, but it is
restricted to only the portion x1P� x1� x1P. The physical signifi-
cance of such a “restriction” is stated, in the sense of Castigliano’s
theorem, by the intervals of integration in the right-hand side term
of the equality (2.13).

3 Closed-Path J-Theory for Fractures

The method just proposed for elastic interfaces is now extended
to bridged cracks.

3.1 Self-Similarity of Crack Profiles. A key hypothesis that
allowed the development of the arguments of Sec. 2 and that
will be used again in Sec. 3 is that the shape of the interface
profile does not change during the advancement of the yielded
portion. Here, we derive the condition according to which the
crack tip region does not alter its shape during its advancement.
Consider the plane problem of a straight crack opening in mode
I, traversing an infinite, homogeneous and isotropic, elastic
medium, with shear modulus G, Poisson’s ratio �, and Young’s
modulus E¼ 2 G (1þ �). The crack tip occupies the position
x2¼ 0, x1� 0. It is convenient to consider the case of a pressur-
ized crack, for which the crack opening pressure is p(x1).
Denote by q(x1) the bridging forces that oppose p(x1) and resist
the COD. The COD can be determined using the weight func-
tion method and written as

u2ðx1; 0
6Þ ¼ 6

ð0

�1
ðpðsÞ � qðsÞÞmðx1; sÞds (3.1)

If the process of crack advancement occurs at a length scale much
smaller than the characteristic length scales of the physical prob-
lem, one can use the solution of a semi-infinite crack, which for
plane strain reads

m x1; sð Þ ¼
1� �
pG

log

ffiffiffiffiffiffiffiffi�x1
p þ

ffiffiffiffiffiffi
�s
p				 ffiffiffiffiffiffiffiffi�x1

p �
ffiffiffiffiffiffi
�s
p

				
(3.2)

Suppose that the crack advances by n in the positive x1 direction.
The bridging forces and the crack surface displacements become,
respectively, qn(x1) and u2n(x1, 06). It is customary to suppose that
such quantities are related by a constitutive equation of the type
qn(x1)¼ f[2u2n(x1, 0þ)]. This is analogous to f¼ f[2v] of Eq. (2.3),
and we can still suppose that the trend is similar to that of
Fig. 2(b). On the other hand, the form of the opening pressure
p(x1) when the crack advances, i.e., for 0� x1� n, clearly depends
upon the conditions on the far boundary (the applied loads).
We intend to find conditions for the existence of a self-similar
solution, that is, a solution for which the bridging forces and the
CODs become, respectively, qn(x1)¼ q (x1� n) and u2n(x1, 06)
¼ u2(x1� n, 06) in a neighborhood of n¼ 0þ. Supposing that
qn(x1)¼ q (x1� n), then one has

u2nðx1; 0
6Þ ¼ 6

ðn

�1
ðpðsÞ � qðs� nÞÞmðx1 � n; s� nÞds (3.3)

and, differentiating

@

@n
u2n x1; 0

þ� �� �
n¼0

¼ @

@n

ðn

�1
p sð Þ � q s� nð Þ
� �

m x1 � n; s� nð Þ ds

( )
n¼0

¼ p 0ð Þ � q 0ð Þ
� �

m x1; 0ð Þ þ
ð0

�1
q0 sð Þm x1; sð Þ ds

�
ð0

�1
p sð Þ � q sð Þð Þ @

@x1

m x1; sð Þ ds

�
ð0

�1
p sð Þ � q sð Þð Þ @

@s
m x1; sð Þ ds (3.4)

Integrating by parts the last integral and observing from Eq. (3.2)
that m(x1, 0)¼m(x1,�1)¼ 0, the final result is

@

@n
u2n x1; 0

þ� �� �
n¼0 ¼ �

ð0

�1
p sð Þ � q sð Þð Þ @

@x1

m x1; sð Þ ds

þ
ð0

�1
p0 sð Þm x1; sð Þ ds

¼ � @

@x1

u2 x1; 0
þ� �� �
þ
ð0

�1
p0 sð Þm x1; sð Þ ds

(3.5)

An analogous representation holds for u2n(x1, 0�). Consequently,
one obtains that u2n(x1, 06)¼ u2(x1� n, 06) provided that

ð0

�1
p0ðsÞmðx1; sÞ ds ¼ 0 (3.6)

In principle, this condition would rule out, for example, the impor-
tant case in which the crack is orthogonal to the axis of a beam
under flexure; for this case, p0(x1)¼ const. 6¼ 0. However, an esti-
mation of the order of magnitude of this term indicates that, unless
there is a strong variation in p(x1) at x1¼ 0, it provides a second-
order contribution especially when the length of the crack is much
smaller than the reference length-scale of the problem. In other
words, self-similarity is a consequence of the fact that the opening
is universal near the crack tip in terms of asymptotic Williams
solution.

3.2 Closed J-Path Integral Theory for Bridged Cracks:
The Small-Scale Bridging Limit. Consider a generic closed path
P�PþSþS� as represented in Fig. 3(b). This figure, recalling the
case of an elastic interface, is also representative of a bridged
crack since the schematic representation is essentially the same.
Let the cohesive forces per unit area be constitutively regulated
by f¼ f[2v] of the COD 2v. An argument completely identical to
that of Sec. 2.1 shows that, under self-similarity of the crack tip
profile

J ¼ �
ð

PþSþ
r22 x1; 0

þ� � @

@x1

u2 x1; 0
þ� �

ds

þ
ð

P�S�
r22 x1; 0

�ð Þ @
@x1

u2 x1; 0
�ð Þdsþ

ð
P�Pþ
�Wds

þ
ð

S�Sþ
Wds ¼ 0 (3.7)

In other words, the closed-path J-integral is zero. We empha-
size that the integral is evaluated on a closed contour, unlike
in the classical derivation of Ref. [6] in which the branches
P�Pþ and SþS� are missing because the crack is considered
as a barrier.
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Introducing the potential F[2v] of the cohesive forces, defined
similarly to Eq. (2.2), the last two integrals of Eq. (3.7) take the
formð

P�Pþ
�Wdsþ

ð
S�Sþ

Wds ¼ �F½2u2ðx1P; 0
þÞ� þ F½2u2ðx1S; 0

þÞ�

(3.8)

meaning that the integrals on the branches account for the energy
associated with the cohesive forces per unit area while traversing
the crack. It should be noted that the traversing branches may
intersect portions of the cracks where the cohesive forces are null,
i.e., where either the COD is null or the COD is greater than the
critical limit 2v0. Using the same notation as Eq. (2.2), in the first
case the corresponding potential in Eq. (3.8) is null, whereas in
the second case it is equal to 2F0. In general, F[2u2(x1P, 0þ)] and
F[2u2(x1S, 0þ)] take a value between 0 and 2F0.

With no modification, this approach can readily account for the
ACK limit of bridged cracks [21], so named after the seminal
work by Aveston Kooper and Kelly [22]. This condition corre-
sponds to a case in which the COD takes a constant value in the
wake of the crack at distances relatively far from the crack tip.
Such a limit can exist if the remotely applied load is uniform, so
that constant bridging tractions are required to balance the applied
loads, and only if the function f[2v] has an initial strain-hardening
branch [21].

For the interpretation of the first two integrals of Eq. (3.7),
imagine that the applied loads are kept constant. Introduce then,
similarly to what was done in Sec. 2.2, the complementary energy
function U[t], where t represents the boundary tractions on the
crack surface. Let q(x1, 0þ)¼r22(x1, 0þ) and q(x1, 0�)
¼ r22(x1, 0�) denote the tractions applied along the upper and
lower crack surfaces. These are related with the complementary
energy functional by Castigliano’s theorem, as per Eq. (2.10).
Since q(x1, 0þ)¼ q(x1, 0�)¼ q(x1), the complementary energy can
be restated in terms of q(x1) only, so that

@U

@q x1ð Þ
¼ � u2 x1; 0

þ� �
� u2 x1; 0

�ð Þ
� �

¼ �2u2 x1; 0
þ� �

¼ 2u2 x1; 0
�ð Þ (3.9)

Then, reasoning as in Eq. (2.11), one finds

�
ðx1S

x1P

r22 x1; 0
þ� � @

@x1

u2 x1; 0
þ� �� �

dx1

þ
ðx1P

x1P

r22 x1; 0
�ð Þ @
@x1

u2 x1; 0
�ð Þð Þ dx1 ¼

ðx1S

x1P

_U q x1ð Þ½ � dx1

(3.10)

where we have synthetically posed

_U q x1ð Þ½ � ¼ lim
n!0

U q x1 � nð Þ½ � � U q x1ð Þ½ �
n

¼ �2u2 x1; 0
þ� �

lim
n!0

q x1 � nð Þ � q x1ð Þ
n

(3.11)

This contribution represents the energy release rate that is associ-
ated only with the work done by the cohesive forces acting in the
interval x1P� x1� x1S, during a self-similar movement of the
crack profile.

It is interesting to consider as well the small-scale bridging
limit, a condition in which the length k of the cohesive zone is
infinitesimal with respect to the length of the crack. Referring
again to Fig. 3(b), consider a generic closed path P�PþSþS� such
that x1P<�k and x1S> 0. Consider then the same closed-path
J-integral of Eq. (3.7). It is possible to show [23] that, in plane
strain conditions, one has

lim
k!0

ðx1S

x1P

�r22 x1; 0
þ� � @

@x1

u2 x1; 0
þ� �� �


þ r22 x1; 0
�ð Þ @
@x1

u2 x1; 0
�ð Þð Þ
�

dx1

¼ lim
k!0

ð0

�k
�r22 x1; 0

þ� � @

@x1

u2 x1; 0
þ� �� �


þ r22 x1; 0
�ð Þ @
@x1

u2 x1; 0
�ð Þð Þ
�

dx1 ¼ 1� �ð Þ K2
I

2G
(3.12)

where KI is the stress intensity factor for mode I crack opening.
On the other hand, using the same argument of Eq. (3.8), one
finds

lim
k!0

ð
P�Pþ
�Wdsþ

ð
S�Sþ

Wds

� �
¼ lim

k!0

ð
P�Pþ
�Wds

� �

¼ �F½2v0� ¼ �c0 (3.13)

where using a classical notation in LEFM, we have indicated with
c0 the energy necessary to produce the fracture per unit of frac-
tured surface.

The fact that the closed-path J-integral of Eq. (3.7) takes the
null value is then analogous to the classical energetic balance �a la
Griffith.

Thinking of the small-scale bridging limit, one can also directly
evaluate the closed-path J-integral in the case of a sharp crack.
One of the possible contours to be considered is of the type repre-
sented in Fig. 4(a), where the path P�PþSþS�, with x1S ! 0�, is
completed with a small circle C enclosing the crack tip, to avoid
the stress singularity here present.

In the limit in which the contour shrinks on the crack profile,
the only non-null contributions come from the branch P�Pþ and
from the circle C because no forces are applied on the crack surfa-
ces. Reasoning as in Eq. (3.13), the integral on P�Pþ gives the
contribution �c0; the integral on C gives the same result of
Eq. (3.12). Therefore, formally one has

J ¼
ð

P�PþC SþS�
We1 � n� Sn � ru e1ð Þds

¼
ð

P�Pþ
�Wds�

ð
C

Sn � ru e1ds ¼ �c0 þ
1� �

2G
K2

I ¼ 0

(3.14)

Of course, using well-known arguments, it is possible to demon-
strate that the closed-path J-integral always vanishes, whatever
the closed contour considered traverses or does not traverse the
barrier represented by the material discontinuity.

Fig. 4 (a) Closed-path contour for a crack with a tip stress sin-
gularity. (b) A special configuration for which the contour inte-
gral J can be readily evaluated.
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3.3 Cohesive Versus Bridged Cracks. In general, a “bridged
crack” is characterized by tractions that oppose the COD. The
bridging actions may be classified into two distinct categories: (i)
those operating at the small scale, in a neighborhood of the crack
tip and (ii) those associated with large COD in the crack wake.
The contribution (i) involves bridging stresses of the same order
of the elastic modulus of the material that are related with the
strong interaction of the material constituent particles, whereas
(ii) is often associated with a weaker source such as, for example,
the action of fibers embedded in the elastic matrix.

The two effects can certainly be treated simultaneously, but it is
useful to distinguish their two sources. An effective way to do this
is to consider the small-scale bridging limit for the cohesive forces
of (i) and maintain the distributed character of the interaction of
type (ii) in the crack wake. The result is a configuration in
which there are distributed cohesive forces along the crack, but
the crack tip stress intensity factor is not null. It is customary to
refer to this scenario as the bridged-crack model, to distinguish it
from a cohesive zone model, where the stress intensity factor van-
ishes [21].

The closed-path J-integral can be applied to this configuration
with no major variation with respect to what has been presented
so far. Suppose that the force per unit area f[2v] and the corre-
sponding potential F[2v] of Eq. (2.2) are associated with the only
contribution of the type (ii). Consider again the path P�PþC
SþS�, of the same type as that of Fig. 4(a), and calculate the
J-integral in the form

J ¼
ð

P�PþC SþS�
We1 � n� Sn � ru e1ð Þds

¼
ð

P�Pþ
�Wds�

ð
PþSþ

f 2u2 x1; 0
þ� �� � @

@x1

u2 x1; 0
þ� �

ds

þ
ð

P�S�
f 2u2 x1; 0

þ� �� � @

@x1

u2 x1; 0
þ� �

ds�
ð

C

Sn � ru e1ds ¼ 0

(3.15)

Using the same argument of Eq. (2.9), one has

�
ð

PþSþ
f 2u2 x1; 0

þ� �� � @
@x1

u2 x1; 0
þ� �

ds

þ
ð

P�S�
f 2u2 x1; 0

þ� �� � @

@x1

u2 x1; 0
þ� �

ds ¼ 2F 2u2 x1P; 0
þ� �� �
(3.16)

Moreover, comparing with Eq. (3.14) one findsð
P�Pþ
�Wds�

ð
C

Sn � ru e1ds

¼ �2F 2u2 x1P; 0
þ� �� �
� c0 þ

1� �
2G

K2
I (3.17)

Since the value of the J-integral on a closed path is independent
of the path itself, comparing with Eqs. (3.15), (3.16), and (3.17),
an effective way to calculate the stress intensity factor in a bridged
crack comes from the identity

1� �ð Þ
2G

K2
I ¼ c0 ¼ J	 ¼

ð
C

W	e1 � n� Sn � ru e1ð Þds (3.18)

Here, C is again any closed path embracing the crack tip, whereas
we have indicated with W* the effective strain energy, which coin-
cides with the elastic strain energy in the bulk part of the body,
whereas it is represented by the only potential F[2v], associated
with the bridging forces of type (ii) when traversing the crack
discontinuity. In other words, with respect to Eq. (3.17), we are
not considering the contribution c0 while crossing the crack
discontinuity.

In order to illustrate the potential benefit of the method, con-
sider an elementary example that is the counterpart, for bridged
cracks, of a case presented in Ref. [6]. As indicated in Fig. 4(b),
an infinite strip of height 2H is traversed by a semi-infinite central
crack, and the loads are applied by clamping the upper and lower
surfaces and displacing them apart by an amount 2D. The crack is
bridged by forces per unit area obeying to the constitutive equa-
tion f¼ f[2v], with corresponding potential F[2v]. Let C be the
dashed closed contour AP�PþBCD represented in the same figure.
Since the u2 component of displacement is null on the clamped
surfaces, the only nonzero contributions come from the paths
AP�, P�Pþ, PþB, and CD. One thus finds

J	 ¼ �
ð

AP�
W	ds�

ð
P�Pþ

W	ds�
ð

PþB

�W	dsþ
ð

CD

W	ds

(3.19)

The strip is infinite and the branches AB and CD are taken to be
sufficiently far from the crack tip within which the strain is a uni-
form value e22. On CD, one clearly has e22¼D/H, whereas on
AP� and PþB, indicating with 2u2(x1P, 0þ) the COD at x1¼ x1P,
the results comes from the solution of the system of equations

2G
1� �
1� 2�

e22 ¼ f 2u2 x1P; 0
þ� �� �

; e222H þ 2u2 x1P; 0
þ� �
¼ 2D

(3.20)

Therefore, Eq. (3.19) becomes

J	 ¼ 1

2
G

2 1� �ð Þ
1� 2�ð Þ �e2

22;AB þ e2
22;CD

� 
2H � F 2u2 x1P; 0

þ� �� �
¼ 1� �

2G
K2

I (3.21)

In the simplest case in which f[�] is a linear function, i.e., f¼ j�2v,
one obtains

1� �
2G

K2
I ¼ J	 ¼

2 1� �ð Þ
1� 2�

G

� �2

2 1� �ð Þ
1� 2�

Gþ j2H

D2

H
(3.22)

Clearly, when j! 0 the same result of Ref. [6] is recovered.

4 Application to Phase-Field Crack Models

The closed contour J-integral approach is especially useful in
phase-field models of brittle fracture. This is because in phase-field
fractures there is no completely broken material, but instead cracks
are modeled as localized bands with high strains that evolve the stiff-
ness from the value associated with the pristine material to null.
Among the various formulations that have been proposed, a class of
models presents similarities with bridged cracks because a residual
elastic stiffness is assumed to remain in the narrow bands regardless
of the damage that is accumulated there. Such contribution is usually
introduced to stabilize the numerical solution of the problem, but it
can have a significant effect on the mechanics of crack propagation.

4.1 Energetic Derivation of Phase-Field Models for
Bridged Cracks. The characteristic feature of phase-field models is
the presence of an order parameter /, referred to as the phase field,
which quantifies the level of damage and takes the value /¼ 1 in
the sound (undamaged) material, and the value /¼ 0 where the
material is completely damaged (broken). An evolution equation for
this parameter is assumed that makes the damage evolve toward a
relatively narrow band where the strain localizes. Although not
always possible, especially when rate-dependent effects are impor-
tant [10], a convenient way to derive phase-field model for crack
propagation is through a variational approach. There are many

061008-8 / Vol. 83, JUNE 2016 Transactions of the ASME

Downloaded From: http://appliedmechanics.asmedigitalcollection.asme.org/ on 03/29/2016 Terms of Use: http://www.asme.org/about-asme/terms-of-use



possible ways of defining the corresponding energy functional; here,
we will explicitly consider strains energy densities of the type

H u;/½ � ¼ w r/ð Þ þ g /ð Þ 1

2
Crsu � rsu� c

2l

� �
þ c

2l

þ h /ð Þ 1
2

Crsu � rsu (4.1)

where /: X![0,1] denotes the phase field, u: X!Rd is again the
displacement field (d is the dimension where the problem is set), C:
Sym!Sym is the elasticity tensor, l is a characteristic length scale,
and c is a parameter that, as it will result clear later on, is associated
with the fracture energy per unit area. The functions w(�), g(�), and
h(�) take different values according to the proposed model. In gen-
eral, for the consistency of the approach, it is necessary to assume

wð�Þ convex and superlinear; gð0Þ ¼ 0; gð1Þ ¼ 1; g0ð1Þ ¼ 0;

hð0Þ ¼ hð1Þ ¼ 0; 0 � 1� gð/Þ � 1þ hð/Þ (4.2)

Moreover, for convenience, it is useful to refer to a homogenous
isotropic elastic solid by setting

1

2
Crsu � rsu ¼ 1

2
k I � rsuð Þ2 þ 2lrsu � rsu

h i
(4.3)

where k and l are the Lame’s constants.
In the KKL model studied by Karma et al. [11], later developed

in Ref. [12], the authors proposed h(/)¼ 0, g(/)¼ 4 /3� 3 /4,
whereas in the approach by Boudin et al. [13] the choice is

w r/ð Þ ¼ 1

2
cljr/j2; g /ð Þ ¼ 1� 1� /ð Þ2;

h /ð Þ ¼ /2 � 1þ 1� /ð Þ2 þ e (4.4)

In the second approach, the quantity e is introduced into the elastic
part of the energy in order to stabilize the numerical solution of
boundary value problems.

The stress tensor S, dual in energy to rs
u, and the vector x,

dual in energy to r/ and in the following referred to as the “field
vector,” respectively, read:

S ¼ @H
@rsu

¼ g /ð Þ þ h /ð Þð Þ k I � rsuð ÞIþ 2lrsu
� �

;

x ¼ @H
@r/

¼ clr/ (4.5)

The variational problem to be considered is

min
ðu;/Þ2A

ð
X
H½u;/� dx (4.6)

where A denotes the class of admissible functions. In general, it is
required that u and / and their first derivatives are square-summable
functions in X. Traditional geometric or natural boundary conditions
are assumed on the border @X for the displacement field u. With
respect to the phase field, the natural boundary condition is readily
found to be r/�n¼ 0 on @X; this applies where the value of / is
not specified. Minimizers are sought under conditions equivalent to
the irreversibility of crack propagation. To do so, the load history is
divided into n steps i¼ 1,..., n, and the minimization at each step is
performed under the constraint that /i (x)�/i�1(x), 8x � X [24].

The governing equations are the corresponding Euler–Lagrange
equations of the minimization problem, which read

Div S ¼ 0;

Divx ¼ @H
@/
¼ g0 /ð Þ þ h0 /ð Þ
� � 1

2
k I � rsuð Þ2 þ 2lrsu � rsu

� 
� g0 /ð Þ c

2l
(4.7)

It is essential that the quantity e in h(/) of Eq. (4.4) is not zero to
assure that the minimization problem is well-posed, but it is cus-
tomary to consider it as “small” or “negligible.” This is probably
due to a result of variational convergence for the minimization
problem (4.6), referred to in the Introduction. In fact, by setting

e ¼ v
l kþ 2lð Þ

c

� �
(4.8)

it can demonstrated that if v(�) is a function infinitesimal of order
greater than 1, then for l ! 0 the variational problem (4.6) con-
verges [25], in the sense of variational C-convergence, to a more
classical functional associated with an energetic balance �a la
Griffith. In particular, the result is

min
u;/ð Þ2A

ð
X
H u;/½ � dx !C

l! 0

min
u2A		

ð
X nS u½ �

1

2
Crsu � rsu dxþ c meas S u½ �ð Þ

( )
(4.9)

Here, S[u] denotes the set of points where u is discontinuous (the
jump points of the field u), which are obviously correlated with the
location of the crack. It is possible to show that the natural space for
the setting of the variational problem is the space of Special functions
of Bounded Variations SBV, so that S[u] is rectifiable (it is a set of
curves in 2D). Therefore, meas(S[u]) denotes the (Hausdorff) measure
S[u], which in 2D indicates the total length of the propagating cracks.
Therefore, the significance of the second functional of Eq. (4.9) is that
it establishes an energetic competition between the elastic strain
energy stored in the solid, and the energy that is necessary to create
new crack surfaces. It is then customary to think about phase-field
models in the aforementioned limit. However, in the numerical appli-
cations one has to choose the quantity e 6¼ 0 in order to avoid numeri-
cal instabilities. The values commonly used are of the order of
e¼ 0.01, but this implies that the stiffness of the completely damaged
material (/¼ 0) is not null, but of the order of e(kþ 2l). This pro-
vides a contribution that, in the limit of sharp cracks, is equivalent to
the bridging of the crack lips by forces that are proportional to the
COD. Such contribution cannot in general be neglected while calcu-
lating the energy release rate associated with the propagating crack.

4.2 The Generalized Eshelby Energy–Momentum Tensor.
In order to consider the additional dependence on the phase-field / in
the energy density function (4.1), it is necessary to introduce a GEM
tensor that extends to phase-field models the Eshelby tensor [2]. Such
a tensor, already proposed by Hakim and Karma [12], reads

TG ¼ H I�ruTS�r/
 x (4.10)

It is useful, for the following considerations, to report a direct
verification of the fact that, if TG is regular, for any closed path
C� X, the contour integral is null, i.e.,

JG ¼ r �
ð

C
TGn ¼ 0 (4.11)

where r is any constant vector, and n is the outward unit normal
to C. In fact, if B denotes the sub-body enclosed by C, recalling
Eq. (4.5) one hasð

C
H r � n ds

¼
ð

B

rH � r dx

¼
ð

B

@H
@rsu

� r rsuð Þrð Þ þ @H
@r/

� r r/ð Þrð Þ þ @H
@/
r/ � r


 �
dx

¼
ð

B

S � r ruð Þrð Þ þ x � r r/ð Þrð Þ þ @H
@/
r/ � r


 �
dx (4.12)
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Moreover, integrating by parts and recalling Eq. (4.7), the result is

r �
ð

C
Hn ds ¼

ð
C

STru rþ r/ � rð Þx
� �

� nds

�
ð

B

Div S � ru rð Þ þ Divx� @H
@/

� �
r/ � rð Þ


 �
dx

¼
ð

C
Sn � ru rþ r/ � rð Þx
� �

� nds

¼ r �
ð

C
ruTSþ r/
xð Þ
� �

nds (4.13)

from which Eq. (4.11) directly follows. Observe that a key
hypothesis for the derivation of Eq. (4.11) is that no singularities,
either in the strain or in the phase-field, are present inside the
material. This hypothesis is verified in practice, because the mate-
rial adapts to any possible stress concentrator by a variation of its
stiffness, controlled by the phase field. Obviously, the generalized
Eshelby tensor reduces to the classical expression where the mate-
rial is sound, because in this case /¼ 1 and r/¼ 0.

4.3 An Illustrative Example. In order to illustrate the use of
the GEM tensor, it is useful to refer to the problem of the long
strip extended between two platens, already considered in
Sec. 3.3. This configuration is once more schematically repre-
sented as in Fig. 4(b), the difference being that now there is no
crack, but instead a band of a certain width representing the phase
field. A region that represents the counterpart of the crack tip can
only be approximately localized, and we will suppose that the ori-
gin of reference system is located within this region. Because of
symmetry, the displacement field and the phase field will be sym-
metric with respect to the line x2¼ 0.

Consider again the path C represented by the dashed closed
contour ABCD shown in Fig. 4(b). In this case, the distinction of
the branch P�Pþ on AB is not possible, because it is not possible
to identify the surfaces of the crack. In fact, the field / varies
smoothly while passing from x2¼�H to x2¼þH; there is no neat
transition between /¼ 0 and /¼ 1. A rough technical solution,
sometimes adopted, could consist of identifying the crack as the
region in which /�/0< 1, but there is a great ambiguity in the
definition of the value /0.

Consider the minimization problem (4.6), in which the energy
density (4.1) is defined by Eqs. (4.3) and (4.4). The boundary con-
ditions in terms of the displacement u are the same of those con-
sidered in Sec. 3.3. Concerning the phase field, on the clamped
borders we may equivalently consider either the natural boundary
conditions of the variational problem (4.6), i.e., r/�n¼ 0, or the
geometric conditions /¼ 1, as explained in Ref. [26]. Let us con-
sider an advancement of the crack in the direction of positive x1,
so that r¼ e1 in Eq. (4.11). On the paths AD and BC, one has that
r�(r/ 
 x)n¼x�n r/�e1, which is null in any case if one
assumes for x the expression (4.5). Therefore, the contribution of
the GEM on these paths is zero. Moreover, if the paths AB and
CD are sufficiently far from the origin, not only Sn but also x�n is
null, because the field / is in practice independent of x1, i.e.,
/,1¼ 0. Therefore, on such paths, the only nonzero contribution
comes from the integration of the energy density H.

Consider first the path AB. One needs to calculate

e1 �
ð

AB

TGn ¼ �
ðH

�H

H u x1P; x2ð Þ;/ x1P; x2ð Þ
� �

dx2

¼ �
ðH

�H

g /ð Þ þ h /ð Þð Þ 1
2

kþ 2lð Þ u2;2ð Þ2



þ 1

2
cl /;2

� �2 þ c
2l

1� g /ð Þð Þ
�

dx2 (4.14)

But this integral coincides with the energy per unit x1-width of the
body in a portion sufficiently far from the origin, where the

dependence upon x1 can be neglected. Since the solution corre-
sponds to the minimizer of the variational problem (4.6), the fields
that must be considered in the integral (4.14) coincide with those
that minimize the integral itself. In other words, sufficiently far
from the “crack-tip” the problem becomes one-dimensional.

The Euler–Lagrange equations associated with the minimiza-
tion of Eq. (4.14) are

@

@x2

g /ð Þ þ h /ð Þð Þ kþ 2lð Þu2;2

� �
¼ 0

�cl /;22 þ g0 /ð Þ þ h0 /ð Þ
� � 1

2
kþ 2lð Þ u2;2ð Þ2 � g0 /ð Þ c

2l
¼ 0

(4.15)

Clearly Eq. (4.15)1 represents equilibrium in the x2 direction,
while Eq. (4.15)2 is the balance of the phase field.

From Eq. (4.15)1, one has that

u2;2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c=l

kþ 2l

s
c

g /ð Þ þ h /ð Þ (4.16)

where c is a dimensionless constant. Inserting this result in
Eq. (4.15)2, one obtains

�cl /;22 þ
c
2l

c2 g0 /ð Þ þ h0 /ð Þ
g /ð Þ þ h /ð Þð Þ2

� g0 /ð Þ
" #

¼ 0 (4.17)

This expression can be conveniently rewritten in the form

�cl /;22 �
c
2l

@

@/
V /ð Þð Þ ¼ 0 ; with V /ð Þ ¼ c2

g /ð Þ þ h /ð Þ þ g /ð Þ

(4.18)

As suggested for the 1D problems considered in Refs. [11] and
[12], it is convenient to consider a mechanical analogy, in which
x2 plays the role of time, and / represents the position of a ficti-
tious particle. Therefore, Eq. (4.18) represents the motion of such
particle in the potential V(/). With this analogy, the solution cor-
responds to the motion of the particle that starts at time x2¼�H
from /¼ 1, with a negative velocity /,2, to reach a minimum
/¼/m at x2¼ 0, where the velocity vanishes. From this turning
point, it follows the time reversed motion and the particle comes
back to /¼ 1 at x2¼þH. The possibility of integrating the equa-
tions of motion requires the conservation law

1

2
cl /;2

� �2 þ c
2l

V /ð Þ ¼ c
2l

V /mð Þ (4.19)

Since the outward path �H to 0 (/¼ 1 to /m) is symmetrical with
respect to the return path 0 to H (/m to /¼ 1), it is sufficient to
consider just one of the two paths and to multiply by two the cor-
responding result. Considering the return path 0 to H (/m to
/¼ 1), one has from Eq. (4.19) that

/;2 ¼
1

l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V /mð Þ � V /ð Þ

q
) dx2 ¼

lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V /mð Þ � V /ð Þ

p d/

(4.20)

Then, Eq. (4.14) becomes

ðH

�H

H u x1P; x2ð Þ;/ x1P; x2ð Þ
� �

dx2 ¼ c
ð1

/m

1þ V /mð Þ � 2g /ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V /mð Þ � V /ð Þ

p d/

(4.21)
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In order to solve the problem, one needs to calculate the constants
/m and c. Recalling Eqs. (4.20) and (4.16), these can be found
from conditions

2H ¼
ðH

�H

dx2 ¼ 2

ð1

/m

l d/ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V /mð Þ � V /ð Þ

p
) H

l
¼
ð1

/m

d/ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V /mð Þ � V /ð Þ

p (4.22)

and

2D ¼
ðH

�H

u2;2dx2 ¼ 2

ð1

/m

c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c= l kþ 2lð Þð Þ

p
d/

g /ð Þ þ h /ð Þð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V /mð Þ � V /ð Þ

p
) D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ 2l

c=l

s
¼ c

ð1

/m

1

g /ð Þ þ h /ð Þ
d/ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V /mð Þ � V /ð Þ
p

(4.23)

where 2D denotes the total elongation of the strip in the x2 direc-
tion. It is important to distinguish in the expression (4.14) the part
that is associated with the elastic strain of the material, say Eel,AB,
from that that is expended in the modification of the phase field,
referred to as Epf,AB. One clearly has

Eel;AB ¼
ðH

�H

g /ð Þ þ h /ð Þð Þ 1
2

kþ 2lð Þ u2;2ð Þ2dx2;

Epf;AB ¼
ðH

�H

1

2
cl /;2

� �2 þ c
2l

1� g /ð Þð Þ

 �

dx2 (4.24)

Using Eqs. (4.16) and (4.23), one finds

Eel;AB ¼ 2

ðH

0

c
2l

c2

g /ð Þ þ h /ð Þ dx2

¼ c
l

c

ð1

/m

c

g /ð Þ þ h /ð Þ
d/ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V /mð Þ � V /ð Þ
p ¼ cD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c
l

kþ 2lð Þ
r

(4.25)

On the other hand, from Eq. (4.16), one also finds that the stress
component r22(x1AB, 6H), in a neighborhood of x2¼6H, where
/ffi 1, takes the form

r22 x1AB;6Hð Þ ¼ g 1ð Þ þ h 1ð Þ
� �

kþ 2lð Þu2;2 x1AB;6Hð Þ

¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c
l

kþ 2lð Þ
r

(4.26)

so that Eq. (4.25) reads

Eel;AB ¼
1

2
r22 x1AB;6Hð Þ2D (4.27)

This is nothing but Clapeyron theorem for linear elastic materials.
The evaluation of the second term of Eq. (4.24) is less straightfor-
ward, but can be readily obtained in the limit case H/l� 1. In the
mechanical analogy with the motion of the particle, this means
that the time H that is necessary to pass from /¼/m to /¼ 1
tends to infinity. Therefore, following the same argument of
Ref. [12], this means that in the energetic balance of Eq. (4.19)
one has V(/m)¼V(1)þOe, where Oe is an infinitesimal quantity.
Recalling Eq. (4.19), this gives conditions

c2

g /mð Þ þ h /mð Þ þ g /mð Þ ¼ c2

g 1ð Þ þ h 1ð Þ
þ 1þ Oe (4.28)

from which one finds

c2 ¼ 1� g /mð Þ þ Oeð Þ g 1ð Þ þ h 1ð Þ
� �

g /mð Þ þ h /mð Þð Þ
g 1ð Þ þ h 1ð Þ
� �

� g /mð Þ þ h /mð Þð Þ
(4.29)

Then, after substitution in Eq. (4.18), one obtains

V /mð Þ�V /ð Þ ¼ 1� g /ð ÞþOeþ q /;/mð Þ
with q /;/mð Þ

¼ 1� g /mð ÞþOeð Þ g /mð Þþ h /mð Þð Þ g /ð Þþ h /ð Þ� g 1ð Þ� h 1ð Þ
� �

g 1ð Þþ h 1ð Þ
� �

� g /mð Þþ h /mð Þð Þ
(4.30)

Using the expressions (4.4) for g(�) and h(�), and recalling that
/m� 1, one finds, up to first order in /m, that

q /;/mð Þ ¼
1� /m 2� /mð Þ þ Oeð Þ /2

m þ e
� 

/2 � 1
� �

1� /2
m

ffi /2
m þ e

� 
/2 � 1
� �

(4.31)

and

c2 ¼
1� /m 2� /mð Þ þ Oeð Þ 1þ eð Þ /2

m þ e
� 

1� /2
m

ffi /2
m þ e

� 
(4.32)

where “ffi” means “up to higher order terms in /m.” If in the
expression (4.30), the quantity q(/, /m) is neglected together with
Oe with respect to the other, one simply obtains that

Vð/mÞ � Vð/Þ ffi 1� gð/Þ ¼ ð1� /Þ2 (4.33)

Consequently, substituting in Eq. (4.24), taking into account
Eqs. (4.19) and (4.20), one finally obtains

Epf;AB ¼ 2

ð1

/m

c
2l

V /mð Þ � V /ð Þ þ 1� g /ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V /mð Þ � V /ð Þ

p l d/

ffi 2c
ð1

/m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g /ð Þ

p
d/ ¼ 2c

ð1

/m

1� /ð Þd/ ¼ c (4.34)

If the term q(/, /m) in Eq. (4.30) is not neglected, the calculations
become more complicated. The term Epf,AB would result in
general different from c, but it could be calculated with a simple
numerical approach. In order to complete the evaluation of
the contour integral JG of Eq. (4.11), one needs to
evaluate the value on the path CD. Here, the calculation
is straightforward because here /¼ 1 and, consequently,
u2,2(x1CD, x2)¼ cost ¼D/H. Therefore

e1 �
ð

CD

TGn ¼
ðH

�H

1

2
kþ 2lþ eð Þ u2;2ð Þ2dx2

¼ 1

2
kþ 2lþ eð Þ D

H2

2

2H ¼ kþ 2lþ eð ÞD
H

2

(4.35)

In conclusion, using the previous results, one obtains

0 ¼ JG ffi �rðx1AB;6HÞD� cþ ðkþ 2lþ eÞD2=H (4.36)

from which it is possible to calculate r(x1AB, 6H) and, from
Eq. (4.26), the constant c.
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The displacement u2(x1AB,x2) can be obtained as the parametric
plot of [x2(/), u2(/)], for / varying in the range / �[/m,1],
through the relationships

x2 /ð Þ ¼
ðx2 /ð Þ

0

dx2 ¼
ð/

/m

l d/ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V /mð Þ � V /ð Þ

p ;

u2 /ð Þ ¼
ðx2 /ð Þ

0

u2;2dx2 ¼
ð/

/m

c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cl= kþ 2lð Þ

p
d/

g /ð Þ þ h /ð Þð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V /mð Þ � V /ð Þ

p
(4.37)

In these expressions, all the parameters are known once the values
of c and /m have been determined.

4.4 The Energy Release Rate of a Phase-Field Crack and
the Effective GEM (EGEM) Tensor. In order to correlate the
phase-field approach with classical LEFM, it is important to
define what in terms of LEFM is the energy release rate. One
could consider an argument similar to the one that, for the case of
bridged cracks, has brought to the definition of the effective strain
energy W* and of the J* integral of Eq. (3.18).

For the case of phase-field cracks, differently from Eq. (4.10),
the EGEM tensor can be defined as

T	G ¼ H	I�ruTS�r/
 x ; H	 ¼ H�Hpf (4.38)

where Hpf is the part of the energy density that is associated with
the intrinsic dissipation from the phase field. To illustrate, assum-
ing an energy density of the type of Eq. (4.1), one has that

H	 ¼ H	 u;/½ � ¼ g /ð Þ þ h /ð Þð Þ 1
2

Crsu � rsu ;

Hpf ¼ Hpf /½ � ¼ w r/ð Þ þ 1� g /ð Þð Þ c
2l

(4.39)

Reasoning as in Eqs. (4.12) and (4.13), it can be proved that

J	G ¼ r �
ð

C
T	Gn ¼ r �

ð
C

TGn� r �
ð

C
Hpfn ¼ �r �

ð
C
Hpfn

(4.40)

Therefore, if one considers a path C that traverses the band of
damaged material, and if r denotes the direction of the propagat-
ing band, then the integral involving Hpf can capture a quantity
that is associated with the rate of energy dissipated during the
propagation process. In the energetic balance �a la Griffith, such
quantity can be associated with the elastic energy release rate. The
conclusion is therefore that

energy release rate ¼ �J	G ¼ �r �
ð

C
T	Gn

¼ �r �
ð

C
ðH	I�rsuTS�r/
 xÞn

(4.41)

where C is any path traversing the damaged band. Of course, one
should make sure that indeed the path traverses the whole band
and passes through regions that are not affected by the propaga-
tion of the band. For example, if a path of the type P�PþSþC
S�P� is considered, one should choose it sufficiently far from
the band tip, so that /ffi 1 at points P�, Pþ, Sþ, S�, and on the
circle C. If this is not the case, when the crack advances the inte-
gral JG

* would capture only the rate of dissipation of the energy
associated with the transformations occurring in the region com-
prised inside the path C. In other words, if the movement of the
band produces a variation of the phase field also in material por-
tions that are not enclosed by C, this contribution would be lost
while evaluating JG

*.

Finally, note that there is a strict correlation between the J*

integral defined in Eq. (3.18), which refers to bridged cracks, and
the integral JG

* of Eq. (4.40), associated with phase-field cracks.
The correlation is provided by the C-convergence result (4.9) for
the case in which the model is of the type considered in Ref. [13].
In fact, since in the limit l ! 0, the phase-field model converges
(more precisely C-converges) to the sharp crack model, in this
case the integral JG

* of Eq. (4.40) would tend to J* of Eq. (3.18).

5 Conclusions

An alternative application has been proposed for the use of the
J-integral to calculate the energy release rate of a moving crack.
The main difference with respect to the classical method, origi-
nally developed by Rice, consists in considering closed paths that
traverse the crack discontinuity, picking up in the branch com-
prised by the crack gap various possible sources of dissipation. By
means of paradigmatic examples, it has been shown that the
closed-path J-integral method can be readily applied to bridged
crack models (nonvanishing crack tip stress intensity factor) as
well as to traditional cohesive zone models (vanishing stress
intensity factor) providing, in the small-scale bridging limit, the
classical energetic balance �a la Griffith. In fact, this extended
form of the J-integral results to be null on every closed path, a
finding that is equivalent to state that the energy release rate on
the moving crack must equal the energy dissipated to break the
material ligaments. A proper definition of the energy momentum
tensor allows us to sort out the two aforementioned contributions
and to calculate the energy release rate. The method provides a
parallelism with the use of Eshelby’s energy–momentum tensor
on dislocations, whose flux is calculated on closed path embracing
the source of imperfection.

It was also demonstrated that the proposed method can be use-
ful in the formulations of phase-field models of crack propagation,
where there is no material discontinuity and sharp cracks are sub-
stituted by thin bands where damage accumulates. The use of
the closed-path approach eliminates the need to identify precisely
the boundary of the propagating band, as instead required in the
approach proposed by other authors. Moreover, appropriately
introducing an enhanced form of GEM tensor for phase-field mod-
els, it is possible to calculate, with the contour integral, the energy
release rate associated with a propagating band. With some modi-
fication, the method could certainly be applied also when other
phenomena of interaction occur at the crack surfaces, an example
of which could be represented by the effects of the electric fields
and chemical transformations.

The results shown in this article have been verified through a
direct calculation in the near-tip region approximation of a
straight semi-infinite crack (or damage band), quasi-statically and
monotonically propagating in an infinite medium. Recent works
have proved that the use of Eshelby’s energy momentum tensor
and the J-integral has a wide applicability, because it can be
applied to a class of materials much broader than only superelastic
materials, i.e., materials for which the stress can be uniquely
derived from a potential. However, a more general proof of the
applicability of the closed-path approach on dissipative interfaces,
including time-dependent situation, is still required. Dissipative
media indeed present difficulties since the governing equation is
not self-adjoint. In the cases considered in this article, the diffi-
culty is by-passed, because only monotone loading histories and
smoothly propagating cracks (or damage bands) are considered.
Certainly, loading–unloading conditions should be regarded with
great care, and the correct application of the closed-path J-integral
is yet to be established, especially when dynamic aspects are of
importance. Further attention should also be paid at more complex
crack geometries, other than the straight crack configuration ana-
lyzed here.

In summary, the proposed application of the J-integral on
closed paths appears promising, because it is very general, it
applies to both sharp cracks and damage bands, and it can in
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general take into account the most various forms of damaging
interaction between material particles. The proposed method
opens the possibility of including the effects of chemical proc-
esses and electromagnetic fields.
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