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Today, the Mohs scale is used profusely throughout educa-

tional systems without any persuasive understanding of the

fundamental principles. Why one mineral has a scratch hard-

ness over the next culminating in a scale of 1 (chalk) to 10
(diamond) has no atomistic or structure-sensitive basis that

explains this outcome. With modern computationally based

atomistic and multiscale models, there is increasing promise of

defining the pressure and rate-dependent parameters that will
allow a fundamental understanding of the Mohs scale. This

study principally addresses the combined fracture and plasticity

parameters that qualitatively affect fracture at the nanoscale.
A physical model wherein the crack tip under a scratch is

shielded by dislocations is supported by molecular dynamics

(MD) simulations in both ductile aluminum and brittle silicon

carbide. Next, this model is applied to nanoindentation data
from the literature to produce a ranking of Mohs minerals

based on their fundamental properties. As such, what is pre-

sented here is a first step to address the flow and fracture

parameters ultimately required to provide a figure of merit for
scratch hardness and thus the Mohs scale.

I. Introduction

THE Mohs scale was introduced almost 200 yrs ago as a
simple way to rank mineral hardness.1 Since then, multi-

ple scientific papers from mathematical physicists,2 physical
chemists,3 civil engineers,4 and materials scientists5 have
debated the role of plasticity and fracture on scratch hard-
ness and ultimately the Mohs ranking. After the adoption of

the Mohs scale, there was little progress in understanding the
necessary materials science represented by the seminal contri-
butions to fracture mechanics of Griffith6 and to dislocation
plasticity of Taylor7 that are prescient to the hypotheses pre-
sented here. It is proposed that the next breakthrough point
was the bold contribution of David Tabor3 who proposed
that scratch hardness was controlled by properties associated
with plastic deformation. Up until then, most agreed that all
of the MOHS minerals were brittle with little if any plastic
deformation. Tabor’s paper was followed by others, includ-
ing a significant work in 1982 by Trepied and Doukhan at
the Universite’ Lille who discussed that scratches nucleated
plastic deformation via dislocations in all MOHS minerals.8

Significant progress toward the understanding of a type of
scratch test used by the geotechnical engineering community
in drilling applications was made by Richard et al.,9 who
demonstrated that the compressive strength of rock can be
inferred by making scratches shallow enough to prevent sig-
nificant chipping. These authors recognized that the compres-
sive strength would not be measured for deep scratches,
which could be associated instead with fracture toughness.
The transition from ductile to brittle fracture in similar appli-
cations was shown through simulations by Huang and De-
tournay10 to be modulated by the rock material length scale
involving the nominal compressive strength and fracture
toughness. More recently, Akono, Reis and Ulm at MIT11

published a paper in Phys. Rev. Lett. stating that scratching
is fracture dominated using a simple continuum fracture
mechanics model. Within 2 yrs, a rebuttal was published12

showing several reasons why the generality of being able to
predict fracture toughness using a scratch test might be lim-
ited to special cases of deep cuts and scratches that produced
cracks parallel to a cutter prolongation. This, which is more
in line with the work of Huang and Detournay, is relevant to
this study as many researchers5,13–16 report predominant
cracks from scratches on Mohs minerals to be perpendicular
to the scratch groove rather than being parallel to it. The
history of the Mohs scale demonstrates that the properties
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governing scratch hardness are still mysterious. The simple
model to be presented here is not proposed to be the defini-
tive answer but will be demonstrated to represent an impor-
tant step toward understanding the Mohs scale.

II. Background

This model addresses the initiation of damage in a crystal or
the first grain of a polycrystalline array where both deforma-
tion and fracture causes cracking. At increasingly larger
scales, this could easily lead to branched cracking causing
more macroscopic separation of material at deeper scratches.
Our hypothesis is that both plasticity and fracture are an
integral part of any model that proposes to “demystify” the
Mohs scale. Many empirical attempts have been proposed
leading to a characterization of resistance, R, to scratching
or wear, W, as

R ’ W�1 �Km
ICH

n (1)

where m and n are 1;1,17 ¾;½,18 4/3;�1/919 depending on the
types of measurements and material classes evaluated. Here,
KIC is the plane strain fracture toughness and H is the hard-
ness, often related to the yield or flow strength by a propor-
tionality constant of approximately 2–3. A number of other
theoretical attempts have been made involving elastic strain
energy density,20 linear elastic fracture mechanics,21 and a
proposed correlation to surface energy.22 Most recently, a
long-needed study of the Mohs minerals was conducted by
Broz, Cook, and Whitney,5 wherein KIC, H, and indentation
elastic modulus, E*, were measured by nanoindentation and
microindentation (Vickers). They concluded there was no sim-
ple progression of any one or combination of parameters that
could simply explain the Mohs scale. The recently proposed
concept23 that hardness should be strongly related to (csl)

1/2,
where cs and l are the Griffith surface energy and shear mod-
ulus, is consistent with Eq. (1) as this parameter is propor-
tional to fracture toughness. With relatively recent collections
of material parameters,5,8,21,23–62 this has some credibility in
Fig. 1. While the correlation is strongly implied, virtually all
values of observed KIC are greater than those calculated from
surface energy considerations alone. Except for the lowest
fracture toughness material, there appears to be a nearly uni-
form factor of two increases in the apparent KIC over the
value associated with the Griffith surface energy concept indi-
cating an additional energy dissipation process. Nevertheless,
the fact that cracking occurs in the state of stress associated
with scratching even in tougher intermetallics,63 indicates that
the fracture process is also integral to the Mohs hardness
scale. Such a depiction along with scratch-induced fractures
of Al3Sc is shown in Figs. 2(a) and (b).

The apparent toughness can be reconciled with the Griffith
energy by admitting the presence of dislocation shielded
cracking, which is an appropriate physical mechanism for
combining brittle fracture and plastic energy dissipation into
the scratching or indentation process. This led us to propos-
ing a simple model for hardness based on plasticity, elastic-
ity, and fracture. Recently, this has been applied to known
literature for the fracture toughness of oxides, nitrides, car-
bides, silicates, and diamond.5,8,21,25–62 Such a model is sche-
matically shown in Figs. 2(c) and (d). As shown in Fig. 2(c),
a conical indenter with a spherical tip comes in contact with
a surface, exceeding the theoretical stress for dislocation
nucleation, sytheo, where y denotes yield. Several dislocation
loops are nucleated on an inclined slip plane with the leading
edge component outpacing the trailing screw components. In
the second view, Fig. 2(d), a second slip plane is activated by
the stress concentration at the contact edge. These two paral-
lel slip planes, as observed in transmission electron micros-
copy,24 can be only a few nanometers apart. At the same
time a crack is nucleated, with the crack-front driving force

in equilibrium with the resistive forces of the lattice and the
shielding forces of the emitted dislocations. With further
loading crack-tip forces can exceed discretized dislocation
forces causing instability at sftheo, where f denotes fracture. It
is this incipient fracture toughness, KIC, that we propose can
be modeled by the combined properties of elasticity, plastic-
ity, and flow stress (or hardness).

The essential question being explored in this study can be
posed by considering the relationship of materials properties
to fracture toughness. At the high end of the hardness scale
we have low fracture toughness due to low ductility and at
the low end we have low fracture toughness due to low mod-
ulus and viscosity. In between, there are instances of very
high modulus and the highest ductility, which maximize frac-
ture toughness. Based on these observations, the natural
question is how to assess where in this general classification
scheme the hardness scale switches over from a dependency
on the plastic resistance to a dependency on the elasticity
and fracture resistance. The opposing hypothesis offered here
is that all three properties are ever present in this classifica-
tion scheme, which does not require some spline fit as a new
mechanism kicks in.

Several recent events have led to the hypothesis that either
a gradual or nearly discontinuous change in properties can be
accommodated by a concept that includes plasticity, elasticity,
and fracture toughness. This is not a new concept as many
have attempted, both experimentally55,64,65 and theoreti-
cally,20,21 to explain more fundamentally the concept of hard-
ness. It appears, however, that there have been no successful
attempts to explain hardness in terms of elastic, plastic, and
fracture (or surface energy) parameters. The well-defined role
of plasticity in Mohs hardness, besides the original study of
Tabor,3 has been debated even in the last few years.11,12

Recently, both experimentally55,66–68 and theoretically,69 it
has been shown that dislocation plasticity accompanies or
precedes fracture of ceramic and mineralogic materials.
Room-temperature dislocation microplasticity has been
shown from indentations into Al2O3,

70 MoSi2,
55 6HSiC,65 and

MgO.68 Most recently, Sumiya, et al.66 have shown room-
temperature dislocation plasticity in barium/cadmium mixed
oxalate crystals and high-quality synthetic diamond. Probably
most telling was the careful experimental study by Page
et al.65 which demonstrated by back-thinning of films previ-
ously nanoindented that dislocation emission preceded micro-
crack formation in 6HSiC. In large-scale computation
of 3CSiC, this sequence was later simulated atomistically by
Kikuchi et al.69 who showed that dislocation nucleation pre-
ceded fracture. In our own study of silicon nanospheres,71

Fig. 1. Comparison of [2Ecs]
1/2 to KIC.
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and more recently, nanocubes,72 a clear demonstration of
residual plastic deformation with no evidence of fracture at
over 50% strain in an in situ transmission electron microscope
compression experiment was found. These observations in sil-
icon nanospheres led to a model correlating the crack exten-
sion force or fracture toughness for semiconductors and
ceramics to modulus and yield strength. This is given by23

KIC ¼ 4

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lrysNb

1 � v

r
(2)

with rys the yield stress, b the Burgers vector, and N the
number of geometrically necessary dislocations that accom-
modate the nonrecoverable indenter displacement. Here, we
propose that the model presented in Eq. (2) has much
broader implications and can be applied to a variety of Mohs
minerals. First, results from molecular dynamics simulations
will be used to verify the physical model presented in Fig. 2
and thereby the application of Eq. (2) to a more diverse set
of materials. Then we will present a ranking of Mohs
minerals based on nanoindentation-derived properties for
verification.

III. Results and Discussion

(1) Molecular Dynamics Simulations
The relationship between nanoscratching and plasticity has
been recently addressed through molecular dynamics in alu-
minum.4 Together with Tabor’s original hypothesis,5 the con-
cept of Eq. (1) has some qualitative credibility for Mohs
hardness as wear and scratch hardness are conceptually
related. Here, we demonstrate a dislocation pile-up of loops
at the leading edge of a scratch in an aluminum simulation
box. The scratching simulations included in this study com-
bine molecular dynamics (MD) simulations with molecular
statics (MS) minimizations and have the same basic setup,
shown in Fig. 3. The system is composed of a rigid spherical
indenter and a deformable block-shaped substrate which are
modeled by aluminum atoms governed by the embedded
atom model Mishin potential.73

For the simulated scratch test in aluminum, the indenter is
dragged at constant speed of 10 nm/ns in the [100] direction
and indentation depth of 2 nm for a distance of 10 nm at
room temperature. A 2 nm layer of atoms at the bottom of
the simulation box is kept fixed as a rigid boundary (blue

region in Fig. 3). Another layer of atoms (red region in
Fig. 3) maintains the temperature using the Langevin ther-
mostat. For more information see Ref. [74].

The dislocation network underneath the scratching path is
visualized by centro-symmetric parameter in OVITO soft-
ware.75 In Fig. 4(a), the dislocation network is shown where
atoms are colored based on their centro-symmetric parame-
ter, whereas atoms with perfect FCC lattice have been
removed. In addition, dislocations have been depicted in
Fig. 4(b) using the Dislocation Extraction Algorithm.76

The concept of dislocation-shielded cracking under scratch
conditions was explored in a much more brittle material.
Molecular dynamics simulations of silicon carbide were car-
ried out using in-house codes with Vashishta’s empirical
potential.77 This potential has been shown to correctly repro-
duce melting temperature, dislocation structures, stacking
fault energy and cohesive energies of zinc-blende, and hexag-
onal phases of SiC, as well as high-pressure phase transfor-
mation to the rocksalt structure. Elastic constants predicted
by our simulations are C11 = 390.1 GPa, C12 = 142.1 GPa,
C44 = 133.6 GPa.

For the SiC simulations the sample size is
390 �A 9 350 �A 9 400 �A. The tip, with a spherical geome-
try with a 10 nm radius of curvature, is made of amor-
phous SiC. During sliding simulations, the atoms of the
tip are not allowed to relax (the tip is rigid) and only
repulsive interactions between the tip and the samples are
included. The addition of adhesive forces is not expected

(b)(a)

(d)(c)

Fig. 2. The role of plasticity and fracture together during scratching: Normal loads would not induce cracking in Al3Sc but as depicted in (a) a
lateral scratch would as shown in (b) (scale bar 10 lm); An indenter contacts a surface to nucleate dislocations in (c) at sytheo on an inclined slip
plane. A parallel source nucleates in (d) at higher loads. This increased load is sufficient to exceed the theoretical stress for fracture, s f

theo.

Fig. 3. Schematic simulation setup and related parameters.
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to change the deformation mechanisms, although it will
change the measured normal and lateral forces. The tip is
sliding over the (110) surface along the ½1�10� directions.
Atoms in the bottom 2 nm region and 2-nm-thick vertical
region far away from the sliding tip are kept fixed to pro-
vide rigid boundaries. Sliding velocity is 50 m/s. Tempera-
ture of the system is maintained close to 300 K using the
Langevin thermostat.

Dislocations are visualized using the shortest-path ring
analysis.78 In simulations, dislocations were found to glide
on the {111}12 110h i slip systems. Details of the dislocation
dynamics can be found in Ref. [79] The average normal and
lateral (friction) forces for the sliding conditions shown in
Fig. 5(b) are 2.1 and 0.24 lN, respectively.

Next we explore the plasticity/fracture interactions to
facilitate understanding the complexity of a lateral scratch.

For the case of low hardness and low modulus materials it
is clear that plasticity or viscoelasticity would precede any
fracture, but it is not so clear for high hardness and mod-
ulus materials. With these atomistic simulations, we illus-
trate that dislocation nucleation precedes any fracture, as
one might expect for aluminum in Fig. 5(a). However,
even in Si72 and SiC,79 which are quite brittle, plasticity
precedes fracture. With an amorphous SiC indenter
scratching a 3C zinc blende structure of silicon carbide,
similar dislocation loops being emitted are seen in
Fig. 5(b). This and other experimental evidence lead to the
proposed hypothesis that both dislocation emission and
fracture are necessarily involved in scratch testing crystal-
line materials. It is worth noting that these simulations do
not fully capture the effects of length scale, strain rate and
image forces and as such it is premature to quantitatively
be incorporated in the analysis presented here. However,
these results strongly support the physical interpretation of
scratch hardness being dictated by both fracture and plas-
ticity through dislocation-shielded cracks underneath the
scratch.

(2) Ranking Mohs Minerals by Their Properties
Having provided evidence of the importance of both plastic-
ity and fracture to scratch hardness, an appropriate way to
rank Mohs minerals based on properties governing these
processes is presented. For 15 relatively brittle substances
including diamond, applying Eq. (2) predicted indentation
measured values of KIC with a single value of N = 12. To
obtain a more precise accounting of how relevant such a
relationship might be, previously published data for flow and
fracture of silicon nanospheres were used. Measured values
of compressive yield stress, fracture toughness and both a
zero pressure and a pressure corrected form of the shear
modulus were utilized in Table I. Pressure corrected moduli
following the Murnaghan relationship, as utilized else-
where,79, 80 may overcompensate as these nanospheres are
not under pure hydrostatic compression. Nevertheless, the
result in Fig. 6(a) for six silicon nanospheres,71,80,81 bulk sili-
con81 and two forms of diamond,5,23,82 natural and nearly

(a)

(b)

Fig. 4. Dislocation network in single crystalline Aluminum under
scratch test: a) atomistic view: Atoms are colored based on the
centro-symmetric parameter and FCC atoms are removed. b)
Dislocation lines (red), stacking faults (blue), and surfaces (gray) are
shown using dislocation extraction algorithm (DXA). The scratch
test has been performed in [100] direction on (001) plane.

(a) (b)

Fig. 5. Atomistic simulations showing plasticity during scratching: (a) Dislocation network in single crystalline Aluminum submitted to a
scratch test. (b) Molecular dynamics simulations of sliding friction. SiC sample scratched on (110) surface along the 1�10

� �
direction at the

average load of 2.1 lN. Dislocations are visualized using shortest-path ring analysis and color corresponds to the depth under the surface.

Table I. Correlations for Silicon Single Crystal Bulk and Nanospheres Without and with Pressure Corrected Moduli

Silicon type E (Gpa) l (Gpa) m b (nm) H (Gpa) rys (Gpa) sys (Gpa) KIC (MPa�m)1/2 [lrysb]
1/2† (MPa�m)1/2 [lrysb]

1/2† (MPa�m)1/2

Bulk 160 60.5 0.218 0.236 12.0 4.0 2.67 0.70 0.247 —
216 nm dia. 197 80.9 0.236 — 5.6 3.74 0.80 0.283 0.327
93 nm dia. 207 85.0 0.236 — 9.2 6.14 1.09 0.362 0.429
63.5 nm dia. 248 102 0.236 — 16.2 10.8 1.98 0.480 0.623
50.2 nm dia. 323 133 0.236 — 31.2 20.8 3.10 0.666 0.986
44 nm dia. 317 130 0.236 — 32.5 21.7 3.07 0.680 0.997
38.6 nm dia. 363 149 0.236 — 45.7 30.5 3.97 0.806 1.26

†The second to last column uses 60.5 GPa for the shear modulus, whereas the last column uses the pressure corrected value, lm, from the Murnaghan relation.
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defect-free chemical vapor deposited, is remarkable. The
number of shielding dislocations that would be needed to sat-
isfy Eq. (2) is 9. It is not a coincidence that the permanent
displacement in these nanospheres at the time of fracture was
4.6 � 1 nm on average representing 19 dislocations if Nb

were taken as the normal displacement, which considering
there are two contact surfaces matches well.

As both diamond and corundum were both included in
the original study23 and these are both Mohs minerals, this
led us to the ultimate conclusion that all of the Mohs miner-
als might conform to such a criterion. Fracture toughness
values for Mohs minerals were only reported for those with
hardness values ranging from 3 to 10 due to either no radial
cracks forming for talc (Mohs = 1) or inconsistency in gyp-
sum (Mohs = 2).3 Two extremely hard materials, cubic
BC2N and CVD grown diamond are included at the high
hardness end. With the collected data,5,8,21,23–62 the Mohs
fracture toughness prediction gives Fig. 6(b), which is not
quite as linear as Fig. 6(a). It also requires N = 6 to be
consistent with Eq. (2) which is easily within the validity of
this approximation.

Returning to the original question of what hardness is, the
case is made that for very hard minerals, oxides, nitrides,
carbides, and semiconductors, it is the combined resistance
to penetration composed of deformation and fracture. This is
particularly relevant to scratching where the strain energy
release rate is absorbed by a combination of plowing and
cracking. As hardness is proportional to flow stress, the
simplest of interpretations from Eq. (2) is that

H ¼ a0K2
IC=lNb (3)

Given that atomistic simulations would rather deal with
surface energies,15 as K2

IC � 2Ecs for a Griffith relation, which
can be modified to account for plasticity by replacing cs with
ceff (described later) and E = 2(1 + v) l for isotropic elastic-
ity, with a0 = 5.5/tanh as a lower bound,

H ¼ 36ceff=Nb tan h (4)

Here, Nb is the surface displacement required to nucleate
cracking and h is the angle between the emitted dislocation
array and the normal to the surface. Figure 6(c) shows the
correlation to have a scatter band of a factor of six for hard-
ness. Values of N tan h would need to vary between 5.5 and
30 to validate Eq. (4) for nanoscratching. This is not unreal-
istic considering the variations in slip systems activated, in
crystal orientations probed, and in the Peierls–Nabarro
forces required. Thus, the combination of Eqs. (2) and (4)
are proposed to represent the materials properties relation-
ships needed to reproduce the ranking present in the Mohs
scale. To fully explain a size effect that is implicit in Eq. (4),
one can examine the original paper23 which can be used to
show that the total plastic Tabor3 strain to nucleate fracture
was double for the smaller nanoparticle of 39 nm versus the
larger 216 nm one. Specifically, the plastic strains were 0.29
versus 0.145. At such strain levels, cs would be replaced by
ceff which would include both surface energy and plastic
energy dissipation. As a result, this alone would give a size
effect as ceff would be greater for the smaller particle. Here,
ceff is the strain energy density times the unit volume per
sphere area fracture. In addition, the number of dislocations
contributing to hardening in the smaller particle would be
less, such that the ratio of ceff/N in Eq. (4) would be larger.
Note this is a qualitative argument and detailed discretized
dislocation simulations would be required to confirm this.
Because of the large local pressures that can be developed in
nanoindentation or nanoparticle compression, the Murna-
ghan83 relation for pressure corrected modulus was also used
in Table I. This strongly suggests that hardness is a combina-
tion of a fundamental parameter, cs, a material length scale,
b, an orientation factor, and the number of dislocations emit-
ted along with their shielding effectiveness. Considerably
more research is needed to identify how effective such shield-
ing is in different material classes. In addition, more sophisti-
cated models using unstable stacking energies84 and a more

(a)

(b)

(c)

Fig. 6. Correlation of materials properties that define the Mohs
ranking: (a) Correlation of KIC to modulus, yield stress, and the
Burgers vector based on Eq. (2); A Mohs scale (b) for fracture
toughness of 8 Mohs minerals and two superhard cubic boron
carbonitrides; (c) correlation for hardness of 6 Mohs minerals and
seven additional carbides, nitrides, oxides, and silicides.
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self-consistent model appropriate to both ductile and brittle
behavior should be examined.

IV. Summary

To summarize, it has been demonstrated that a Mohs frac-
ture toughness scale ranks the Mohs minerals and is
strongly connected to the fundamental elastic-plastic and
fracture properties of the minerals. This in turn leads to a
proposed relationship for hardness of such brittle materials
as connected to the surface energy and plastic surface
displacement to nucleate cracking in a scratch mode.
Together, these are proposed as a basis for the Mohs
hardness scale.
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