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Microelectromechanical Systems (MEMS) devices typically

need to be designed against a very low failure probability,

which is on the order of 10�4 or lower. Experimental determi-

nation of the target strength for such a low failure probability
requires testing of tens of thousands of specimens, which can

be cost prohibitive for the design process. Therefore, under-

standing the probabilistic failure of MEMS devices is of para-
mount importance for design. Currently available probabilistic

models for predicting the strength statistics of MEMS struc-

tures are based on classical Weibull statistics. Significant

advances in experimental techniques for measuring the strength
of MEMS devices have produced data that have unambigu-

ously demonstrated that the strength distributions consistently

deviate from the Weibull distribution. Such deviations can be

explained by the fact that the Weibull distributions are derived
based on extreme value statistics, which is inapplicable to

MEMS devices where the dimensions of the material micro-

structure are not negligible compared to the characteristic
structural dimensions. This paper presents a robust probabilis-

tic model for strength distribution of polycrystalline silicon

(poly-Si) MEMS structures that could be extended to other

brittle materials at the microscale. The overall failure probabil-
ity of the structure is related to the failure probability of each

material element along its sidewalls through a weakest-link sta-

tistical model. The failure statistics of the material element is

determined by both the intrinsic random material strength as
well as the random stress field induced by the sidewall geome-

try. Different from the classical Weibull statistics, the present

model is designed to account for structures consisting of a

finite number of material elements, and it predicts a scale effect
on their failure statistics. It is shown that the model agrees

well with the measured strength distributions of poly-Si

MEMS specimens of different sizes, and the calibrated mean
strength of the material element is consistent with the theoreti-

cal strength of silicon. Meanwhile, it is shown that the two-

parameter and three-parameter Weibull distributions cannot

provide optimum and consistent fits of the observed size-depen-

dent strength distributions, and thus have very limited predic-

tion capability. The present model explicitly relates the

strength statistics to the size effect on the mean structural
strength, and therefore provides an efficient means of determin-

ing the failure statistics of MEMS structures.

I. Introduction

DURING the early development of Microelectromechanical
Systems (MEMS) technology, structural reliability was

not considered a critical issue because devices were subjected
to relatively small fractions of the materials’ stress and strain
limits. These include the silicon structural components con-
tained in the guts of Analog Devices’ air bag accelerometer
that are protected also from potential environment-induced
material degradation by hermetic sealing. The failure of but
one of 1300 of these devices when subjected to mechanical
shock and a range of temperatures led to their assessment as
structurally highly reliable.1 But note that in applications
that require extremely high reliability, a probability of frac-
ture of 7:7 � 10�4 (1/1300) may not suffice. The Texas
Instruments (TI) Digital Micromirror Device is another cele-
brated device consisting of hundreds of thousands aluminum
mirrors that was tested in excess of one trillion cycles with-
out a single failure.2 As pointed out by Boyce et al.,3 these
successes demonstrated that MEMS devices can be imple-
mented through good engineering practice. However, while
voltage-compensated accelerometers such as those developed
by Analog Devices do not operate near the strain limits,
devices that are designed to operate at high mechanical
power densities and/or large deformation levels will be
required to do so.4 Therefore, there has been a continuing
interest in understanding the reliability of MEMS materials
and structures.4–8

The work-horse material used to fabricate surface
micromachined MEMS devices is polycrystalline silicon
(poly-Si).9,10 The fracture strength of MEMS-scale poly-Si
volumes is governed by processing-induced surface defects,
and less commonly defects within the volume. The stochastic
distribution of surface flaws and the spatial distribution of
stress lead to a wide variation in the material’s nominal ten-
sile strength; from 1 GPa in direct tension to 6 GPa in the
vicinity of stress-concentrating notches.5 In direct tension the
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probability that all flaws including the largest are subjected
to the highest stress is assured. In a notched specimen on the
other hand the largest flaw may experience much lower
values of stress, or alternatively the region of highest stress
may contain relatively small flaws. Petersen11 recognized that
silicon structures “should have the lowest possible bulk, sur-
face and edge crystallographic defect density to minimize
potential regions of stress concentration”; but eliminating
processing-induced defects is not a trivial task. Over the
years, significant variability of fracture strength has also been
observed in MEMS devices made of other materials such as
silicon carbide, ultrananocrystalline diamond and hydrogen-
free tetrahedral amorphous carbon.6,7

Due to the inevitable variability in fracture strength of
MEMS devices, the importance of proof testing has been
emphasized for reliability analysis of MEMS devices.3 The
main challenge in experimental investigation of structural reli-
ability of MEMS devices is to due the fact that the design
should target a failure probability on the order of 10�4 or
lower.5 Due to the limitation of mechanical testing procedures
of MEMS materials, early histogram testing involved small
numbers of specimens,12–15 which could not capture the failure
probability function. To facilitate more efficient histogram
testing of MEMS devices, a slack-chain tester was recently
developed at the Sandia National Laboratories that allows
sequential tension tests on a large number of specimens
(� 1000 specimens) in a short time.8 Nevertheless, the existing
experimental approaches are still hampered by two difficulties:
(1) it is cost prohibitive to experimentally determine the
strength corresponding to a low failure probability (e.g.
Pf � 10�4), which is often required in the design; and (2) it is
unfeasible to perform histogram testing for MEMS devices of
various kinds of geometries since most experimental platforms
are designed for specific types of specimen geometries and
loading configurations. Therefore, fundamental understanding
of the probabilistic failure of MEMS devices subjected to high
levels of and/or different types of mechanical forces is of para-
mount importance for design.

Currently available probabilistic models for predicting the
mechanical failure of MEMS structures are based on classical
Weibull statistics. However, existing histogram testings have
demonstrated that the strength distributions consistently
deviate from those predicted by the two-parameter Weibull
distribution. Figure 1 presents, on the Weibull scale, the
experimentally measured strength histograms of MEMS
structures made of single-crystal Si,7 hydrogen-free tetrahe-
dral amorphous carbon (ta-C)6 and poly-Si.13 It is clear that,
even with a limited number of specimens, these histograms
cannot be fitted by a straight line on the Weibull scale, indi-
cating that the two-parameter Weibull distribution is inade-
quate to describe the failure statistics of MEMS devices.16,17

It should be pointed out that the Weibull distribution can
match well the data in the intermediate range of failure prob-
abilities, but fails to capture the tail part of the probability
distribution, which is essential for very high reliability struc-
tural designs. An attempt to reconcile experimental histo-
gram data with the Weibull approach was proposed using
the three-parameter Weibull distribution.8,14 However, recent
studies have pointed out some theoretical deficiencies of the
three-parameter Weibull distribution for quasibrittle and
brittle materials in terms of its prediction of the scale effect
on the mean structural strength.18,19 Therefore, it has been
generally agreed that the existing probabilistic models for
brittle MEMS structures are still empirical in nature, which
severely limits their predictive capabilities.

This paper presents a robust probabilistic model for
MEMS structures that may lead to eliminating the need of
less preferable costly proof testing approaches to guarantee
the structural safety of devices that will operate at high
mechanical power densities and/or large deformation levels.
The paper is planned as follows: Section II reviews the classi-
cal Weibull statistical model and its key assumptions;

Section III presents a generalized weakest link model for
MEMS structures; Section IV compares the present model
with the existing experimental data on the strength distribu-
tions of poly-Si MEMS structures; Section V demonstrates
the prediction of failure statistics of MEMS structures under
different loading configurations, and Section VI presents the
relationship between the mean size effect curve and the
strength distribution of MEMS devices, which can be used as
an indirect method for determining the failure statistics.

II. Weibull’s Weakest Link Model for Material Strength

Weibull’s weakest link model is probably the most widely
used probabilistic model for brittle material strength.20–24 We
first review this classical model and its underlying assump-
tions as a motivation for the development of the present
model for failure statistics of MEMS structures.

The essence of Weibull’s weakest link model is that the
structure would fail under a load control condition once one
representative material element fails. Such types of structures
are often referred to as being of positive geometry. Typical
examples include bars under uniaxial tension, beams under
flexural loading, and plates under biaxial bending. The over-
all failure probability of the structure Pf can be related to
the failure probability of each representative material element
P1 by the joint probability theorem, that is

PfðrNÞ ¼ 1�
YN
i¼1

f1� P1½rNsð xiÞ�g (1)

where rN ¼ cnPm=bD ¼ nominal structural strength, Pm ¼
load capacity of the structure, D = characteristic size of the
structure, b = width of the structure in the transverse direc-
tion, cn ¼ constant such that rN may carry some physical
meaning, e.g. the maximum elastic stress in the structure in
the absence of stress concentration, N = number of repre-
sentative material elements in the structure, sðxiÞ ¼ dimen-
sionless stress field such that rNsðxiÞ is equal to the
maximum elastic principal stress in the ith material element.
Note that Eq. 1 also assumes that the strength of each mate-
rial element can be treated as a statistically independent
random variable.

Weibull considered that the number of representative mate-
rial elements N is very large. As N becomes large, Pf is deter-
mined by the far-left tail of the failure probability distribution
of one material element. By rewriting Eq. 1 in a logarithmic
form and considering ln (1 � x) � � x (x?0), we have

ln½1� PfðrNÞ� ¼ �
XN
i¼1

P1½rNsðxiÞ� (2)

Based on experimental observations, Weibull further pro-
posed that the far-left tail of P1ðxÞ should follow a power
law, i.e., P1ðxÞ ¼ ðx=s0Þm. Since N is large, we may replace
the sum in Eq. 2 by a volume integral, and Eq. 2 leads to

PfðrNÞ ¼ 1� exp½�CðrN=s0Þm� (3)

where C ¼ l�nd
0

R
V smðxÞdVðxÞ, l0 ¼ size of the representative

material element, and nd ¼ number of spatial dimension of
the structure considered in the model. Equation 3 is the well-
known two-parameter Weibull distribution, and constants m
and s0 are usually referred to as the Weibull shape parameter
(Weibull modulus) and scale parameter, respectively. It
should also be mentioned here that from a pure statistics
viewpoint the Weibull distribution belongs to the class of
extreme value distribution functions, which was first derived
mathematically by Fisher and Tippet25 based on the postu-
late of stability. Weibull20 independently proposed this distri-
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bution function from the weakest link model in conjunction
with extensive histogram testing of various engineering mate-
rials, such as porcelain, portland cement, wood, and cotton
yarn.

Now consider a set of geometrically similar structures of
different sizes D. It is clear that these structures would have
the same dimensionless elastic stress field expressed by the
dimensionless coordinate ξ = x/D. Using this dimensionless
coordinate, Eq. 3 can be written as

PfðrNÞ ¼ 1� exp �W
Dnd

lnd0

rN

s0

� �m� �
(4)

where W ¼ R
V smðnÞdVðnÞ. The mean nominal strength can

be calculated as

�rN ¼
Z 1

0

rNðPfÞdPf ¼
Z 1

0

½1� PfðrNÞ�drN (5)

By substituting Eq. 4 into Eq. 5, we have

�rN ¼ s0Cð1þ 1=mÞlnd=m0 W�1=mD�nd=m (6)

where Γ(x) = Eulerian gamma function. As seen from Eq. 6,
the mean nominal strength decreases with an increasing
structure size as �rN / D�nd=m. This is the Weibull size effect,
which has widely been used to explain the size dependence of
material strength. Such a power-law scaling indicates that the
problem does not involve any characteristic length, which is
evident for Webull’s analysis since the size of the representa-
tive material element is considered to be negligibly small
compared to the structure size, i.e., N?∞.

In summary, the Weibull distribution is anchored by four
fundamental assumptions: (1) the failure of one material rep-
resentative element triggers the structural failure, i.e., a weak-
est link model of structural failure; (2) the random strengths
of material elements are statistically independent; (3) the fail-
ure probability of one material element follows a power law
tail; and (4) the structure is much larger than the representa-
tive material element. As discussed earlier, the assumption of
the weakest link model is generally valid for structures with
a positive geometry. The statistical independence of the mate-
rial strength can be achieved by choosing a material repre-
sentative element with a size larger than the autocorrelation
length of the random strength field. In fact, the stability pos-
tulate for any extreme value distribution can be justified for
correlated random systems (such as percolation models,26–28)
using renormalization group methods, which homogenize the
system recursively up to a scale (of the material element)
where correlations become negligible. The power-law tail of
the strength distribution of material element has recently
been justified by combining the transition state theory and a

multiscale statistical model.19,29 The last assumption, which
is essential for ensuring the Weibull statistics, is often
unmentioned in the application of the Weibull distribution to
material strength. This assumption implies that the size of
the material inhomogeneities must be negligible compared to
the overall structure size. This is consistent with the fact that
the Weibull distribution can provide an optimum fit of
strength histograms of many brittle structures made of fine-
grain ceramics. However, in many cases the number of repre-
sentative material elements in the structure is not sufficiently
large to justify the Weibull distribution.

As mentioned earlier, the failure of poly-Si MEMS struc-
tures usually initiates from the surface defects (i.e., sidewall
grooves), which act as stress concentrators.8 Therefore, we
may consider each of these sidewall grooves as one element
in the weakest link model. In typical MEMS structures that
are used in laboratory tests, the number of such sidewall
grooves is usually on the order of hundreds. This is at least
an order of magnitude less than the required number for the
Weibull model to be valid. This explains the observed devia-
tion of the measured strength histograms of MEMS struc-
tures from the two-parameter Weibull distribution.
Furthermore, the Weibull model also does not explicitly
account for the randomness of the sidewall grooves, which
gives arise to the random local stress field along the sidewall.
In view of this, a more general probabilistic model is needed
to describe the failure statistics of MEMS structures.

III. Generalized Weakest Link Failure Model

Consider a poly-Si MEMS specimen subjected to uniaxial
tension, where the sidewalls of the specimen contain surface
grooves resulted from the manufacturing process [Fig. 2(a)].
It is generally accepted that these surface grooves can be
approximated by V-notches.8,30 The applied tensile stress
reaches its maximum value rN once a localized crack starts
to propagate from one of these grooves. Therefore, the over-
all failure probability of the specimen can be calculated by
using the weakest link model, as described by Eq. 1. Here
the function P1ðxÞ in Eq. 1 represents the probability of the
propagation of a localized crack from one surface groove.
To model the failure statistics of specimens containing a
finite number of surface grooves along the sidewall, we
would need to know the entire function P1ðxÞ. By contrast,
the classical Weibull model only requires knowledge of the
far-left tail of P1ðxÞ. Therefore, the present model can be
regarded as a generalization of the Weibull model, and
herein we refer to it as the finite weakest link model.

It is clear that some kind of failure criterion is needed for
computing P1ðxÞ. In this study, we consider that a localized
crack would start to initiate and propagate from one surface
groove (idealized as a V-notch) once the average tensile stress
�r of the near-tip region reaches the tensile strength ft of the
material, where the average tensile stress is defined as
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Fig. 1. Experimentally measured strength histograms of MEMS structures made of: (a) single-crystal Si, (b) ta-C, and (c) Poly-Si.
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�r ¼ r�1
c

Z rc

0

ryyðxÞdx (7)

where ryyðxÞ ¼ elastic tensile stress along the notch ligament
[Fig. 2(b)] and rc ¼ size of the near-tip region in which the
average stress is computed. The present averaging procedure
can be considered as a simplified version of the nonlocal
approach that accounts for the interaction of the sub-scale
damages inside the fracture process zone (FPZ) formed at
the V-notch tip prior to crack propagation. Therefore, it is
clear that the material tensile strength ft used in the present
failure criterion should be understood as the tensile strength
of the material element, whose size is approximately equal to
the FPZ size.

In this study, we consider rc ¼ 5 nm, which is on the
order of the estimated FPZ size of silicon.8,31 The exact value
of rc can be determined by employing detailed atomistic cal-
culations for the near-tip region, which would provide
insights into the failure behavior of silicon crystals. As will
be discussed later, the choice of rc will affect the calibration
of the probability distribution of the material tensile strength,
but not the qualitative behavior of the present model.

Based on the aforementioned failure criterion, the overall
tensile strength of the specimen can be calculated as
rN ¼ ft=s, where s = dimensionless stress such that
rNs ¼ �r. Then the probability of crack propagation from
one surface groove can be calculated as

P1 ¼ Probð�r� ftÞ ¼ Probðft=s�rNÞ (8)

It is expected that the tensile strength of poly-Si would be
subjected to a certain level of randomness. According to
recent studies on the strength statistics of quasibrittle materi-
als,19,29,32,33 the probability distribution of the material ten-
sile strength can be approximated by a Gaussian–Weibull
grafted distribution function:

FftðxÞ ¼ 1� exp½�ðx=s0Þm� � ðx=s0Þm ðx�rgrÞ (9)

FftðxÞ ¼ Pgr þ rfffiffiffiffiffiffi
2p

p
dG

Z x

rgr

e�ðx0�lGÞ2=2d2Gdx0 ðx[rgrÞ

(10)

where m = Weibull modulus (shape parameter), s0 ¼
Weibull scale parameter, lG; dG ¼ mean and standard

deviation of the Gaussian core, respectively,
Pgr ¼ 1 � exp½ � ðrgr=s0Þm� ¼ grafting probability at which
the Weibull tail ends, and rf ¼ normalizing parameter,
which ensures that Fftð1Þ ¼ 1. Furthermore, the probability
density function (pdf) at the Weibull–Gaussian grafting point
must be continuous, i.e., dPftðxÞ=dxjx¼r�

gr
¼ dPftðxÞ=dxjx¼rþ

gr
.

The Gaussian–Weibull functional form of material
strength distribution may be qualitatively explained as fol-
lows. When the size of the material element approaches the
FPZ size, the material element would exhibit a quasi-plastic
failure behavior, and the consequently the strength of the ele-
ment could be calculated as the sum of strengths of the sub-
scale material elements along the failure surface. By virtue of
the Central Limit Theorem, the strength of the material ele-
ment must approach a Gaussian cdf. Meanwhile, it is obvi-
ous that the far-left tail of the Gaussian distribution would
extend to negative strength values and therefore must be
rejected. Recent studies have shown that the probability dis-
tribution of material strengths at all material scales should
follow a power-law. This power-law tail ensues from the
application of the transition state theory to the nanocrack
propagation through atomic lattices, where the jump of a
nanocrack over one atomic bond can be regarded as the
transition between two metastable states.19,29

Besides the randomness of material tensile strength, the
dimensionless stress s is also a random variable since the
geometry of the surface V-notch is subjected to a certain
level of uncertainty. Here we assume that the V-notches
along the sidewall are noninteracting for calculating the
elastic stress field of the near-tip region. Based on this
assumption, we may calculate the elastic field for a strip of
the specimen that contains a V-notch on one of its sidewalls,
as shown in Fig. 2(b). It is noted that the V-notch on the
other side has no effect on the near-tip stress field of the V-
notch on this side since the width of a typical MEMS speci-
men (on the order of microns) is much larger than the size of
the near-tip region. Therefore, we only need to consider one
V-notch to compute the near-tip elastic stress field. Based on
the known randomness of surface groove geometry, the geo-
metrical parameters of the V-notch, i.e., the notch angle h
and notch depth a, can be randomized to perform a stochas-
tic analysis of the near-tip stress field, from which we can
obtain the probability distribution of the dimensionless
stress, FsðxÞ. It is noted that in this study we did not con-
sider the random crystal orientation since it has recently been
shown that the mismatch of silicons (relatively low anisot-
ropy) crystal orientation does not significantly affect the
near-tip stress field.8

Based on Eq. 8, the probability of crack propagation from
one V-notch tip can be directly described by the probability
distribution of a random variable g ¼ ft=s, i.e.,
P1ðrNÞ ¼ PgðrNÞ. Since both ft and s are random variables,
Eq. 8 can be re-written as

P1ðrNÞ ¼
Z 1

0

FftðxrNÞfsðxÞdx (11)

where fsðxÞ ¼ dFsðxÞ=dx ¼ pdf of dimensionless stress s.
Therefore, the probability distribution of the tensile strength
of the entire specimen can be computed as

PfðrNÞ ¼ 1� 1�
Z 1

0

FftðxrNÞfsðxÞdx
� �2n

(12)

where n = number of V-notches along one sidewall. It
should be emphasized that, when writing Eq. 12, we have
assumed that the strength of each material element is statisti-
cally independent. Such an assumption is reasonable because
the size of the V-notch is considerably larger than the FPZ
size, which is approximately on the same order of the

σN 
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θ 
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σN 
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Fig. 2. Analysis of poly-Si tensile specimens: (a) specimen
geometry, and (b) criterion of crack initiation from a surface groove.
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autocorrelation length of random strength field for brittle
and quasibrittle materials.33,34

We can now easily derive the asymptotic form of PfðrNÞ
when the sidewall consists of a large number of V-notches,
i.e., n?∞. In this case, we just need the left-tail part of
P1ðrNÞ to compute PfðrNÞ. Based on Eqs. 9 and 11, the left-
tail part of P1ðrNÞ can be rewritten as

P1ðrNÞ ¼ Mm
rN

s0

� �m

(13)

where Mm ¼ R1
0 xmfsðxÞdx ¼ mth moment of probability

distribution function FsðxÞ. Following the aforementioned
Weibull analysis, we can readily conclude that, at the large-
size limit, PfðrNÞ must converge to the classical Weibull
distribution:

PfðrNÞ ¼ 1� exp �2nMmðrN=s0Þm½ � (14)

It is clear that, for the case where the number of V-notches
along the sidewall is finite, the strength distribution of the
specimen necessarily deviates from the two-parameter Wei-
bull distribution. It is expected that such a transition from
non-Weibullian to Weibull strength distribution as a function
of the structure size would give arise to an intricate size effect
on the mean structural strength, which must be different
from the classical Weibull size effect. We will discuss this
mean size effect and its implication on reliability analysis in
detail in Section VI.

IV. Model Comparisons with Experimental Data

With the recent development of high-throughput testing tech-
niques, more complete information on the strength statistics
of MEMS devices including its scale effect is available.
Figure 3 shows the measured strength histograms of poly-Si
tensile specimens of two gauge lengths (Lg ¼ 20 and
70 lm).8 These specimens have a nominal width of 2 lm.
The specimens of 70 lm gauge length were tested using an
on-chip tester,35 in which the tensile specimen was loaded by
an on-chip chevron thermal actuator through a prehensile
grip mechanism. The specimens of 20 lm gauge length were
tested using a slack-chain tester,36 in which a series of speci-
mens was placed in a chain and loaded by a custom-built
probe station. The detailed experimental procedure for these
histogram tests can be found in Ref. [28,35]. It should be
pointed out that the present data with a size ratio of 1: 3.5
may not be sufficient to fully justify the predictability of a
probabilistic model. Nevertheless, as will be shown later in
this section, histograms of such a limited size range have
already demonstrated the limitations of the classical Weibull
models, and the main features of these existing histograms
can be well captured by the present model.

(1) Finite Weakest Link Model
We now test the present probabilistic model against this set
of experimental data. According to Ref. [8] there are approx-
imately 50 surface grooves along one sidewall of the tensile
specimen with a gauge length of 20 lm. Therefore, we may
consider a strip of specimen with a length of 400 nm sub-
jected to a unit stress (rN ¼ 1) for calculating the random
dimensionless stress, s, for the notch-tip region [Fig. 2(b)]. As
mentioned earlier, the randomness of the near-tip stress field
is expected to be caused by the randomness of the notch
angle and depth. In this study, we assume that the notch
angle h follows a uniform distribution bounded between 20	
and 140	 whereas the notch depth a follows the Type III
extreme value distribution for the maximum value with an
upper bound of 62 nm.8 The cdfs of h and a can be written
as

FhðxÞ ¼ x� 20

120
(15)

FaðxÞ ¼ exp � h62� xi
28

� �6:5
" #

(16)

where 〈x〉 = max(x,0). Note that the assumed probability
distribution function of the notch depth extends to negative
values, which is physically impossible. However, the left tail
for the negative notch depth is extremely short (i.e.,
Fað0Þ ¼ 6:7� 10�77), which can essentially be neglected in
the sampling process. It is also noted that the aforemen-
tioned bounds of notch angle and depth ensure that, for any
combination of notch angle and depth sampled from the
above distributions, the V-notch can always be contained in
a 400 nm long strip of the specimen.

Based on the assumed probability distribution functions of
the notch angle and depth, we perform stochastic elastic
analysis of the stress field for the strip of the tensile speci-
men, where the random notch angle and depth are sampled
by using the Latin Hypercube Sampling technique. The poly-
Si material is modeled as an isotropic material with a Young
Modulus E = 156 GPa and a Poisson ratio m = 0.22.8

Figure 4(a) presents the simulated tensile stress profile along
the notch ligament for the realization with h ¼ 120	 and
a = 40 nm. Through a sufficient number of realizations, we
obtain the pdf of the dimensionless stress, fsðxÞ, as shown in
Fig. 4(b), based on the calculated stress profile.

The probability distribution function of material strength,
FftðxÞ, needs to calibrated by optimum fits of the measured
strength histograms. Since we have strength histograms of
specimens of two gauge lengths, we choose one of them to
calibrate the function FftðxÞ (Fig. 5) and compare the other
one with the model prediction. Table I presents the statistical
parameters of FftðxÞ calibrated by optimum fits of (1)
strength histogram of specimens of 20 lm gauge length, and
(2) strength histogram of specimens of 70 lm gauge length.
It can be seen that these two calibrations yield very similar
values of the parameters of FftðxÞ, which indicates the consis-
tency of the proposed model.

Figure 6 compares the measured strength histogram of the
specimens that is not used for model calibration with the pre-
diction by the present model. It is seen that, regardless of
which specimen length is used for calibration, the present
model can predict reasonably well the strength distribution
of specimens of the other gauge length. This indicates that
the present model is able to capture the size effect on the
strength distribution of poly-Si MEMS specimens, which is
essential for reliability-based design extrapolation across dif-
ferent specimen sizes. Furthermore, it is interesting to note
that the calibrated mean strength of each material element is
about 20 GPa, which is of the order of the theoretical
strength of silicon.37 It should also be pointed out that the
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Fig. 3. Measured strength histograms of poly-Si MEMS specimens
of two gauge lengths under uniaxial tension.
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calibration of function FftðxÞ depends on the size of the near-
tip region rc. As mentioned earlier, we choose rc ¼ 5 nm
based on the knowledge of the FPZ size, and it gives a rea-
sonable estimation of the mean strength of the material ele-
ment of poly-Si. If another value of rc was chosen, which
would effectively change the value of the dimensionless stress
field, the functional form of the overall failure probability
PfðrNÞ would not be affected and therefore we expected that
Eq. 12 can still match the histograms well. However, the

corresponding values of the parameters for function FftðxÞ
would be different.

From Table I, it is seen that the fitted value of Weibull
modulus is very high. It is noted that the recently developed
probabilistic model, which yields the Weibull–Gaussian func-
tional form of the strength distribution of one material ele-
ment, predicts that the Weibull modulus of material strength
distribution at the nanoscale should be equal to two, and it
would gradually increase as we move up to the
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Fig. 4. Stress analysis of near-tip region of the V-notch: (a) a typical stress profile along the ligament of the notch; and (b) simulated
probability distribution of dimensionless stress s.
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Fig. 5. Optimum fits of the measured strength histograms of poly-Si tensile specimens by the finite weakest link model and the two-parameter
and the three-parameter Weibull distributions.

Table I. Calibrated Statistical Parameters of the Finite Weakest Link Model

Tensile specimens used for calibration m s0 (GPa) lG (GPa) dG (GPa) Pgr rf

Specimens with Lg ¼ 20lm 64 12.60 19.96 3.50 9:40 � 10�4 1.0057
Specimens with Lg ¼ 70lm 65 12.79 19.84 3.40 1:02 � 10�3 1.0061
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macoscale,19,29, for example, the Weibull modulus of con-
crete at the macroscale is 24. Therefore, it is an intriguing
question why the microscale poly-Si MEMS devices would
exhibit such a high Weibull modulus, which deserves further
in-depth studies. One promising means for such investiga-
tions is to use a realistic atomistic simulation tool, such as
stochastic quasi-continuum model, which will provide
insights into various nonlinear mechanisms as well as ran-
dom microstructural properties that could possibly lead to a
high Weibull modulus.

(2) Two-Parameter Weibull Distribution
As a comparison, we also test the commonly used two-
parameter Weibull distribution against this data set. Based
on Eq. 3, the two-parameter Weibull distribution for tensile
specimens can be written as

Pw2ðrNÞ ¼ 1� exp �2nðrN=swÞmw½ � (17)

where sw ¼ Weibull scaling parameter and mw ¼ Weibull
modulus. The values of sw and mw can be easily obtained by
plotting the measured strength histogram on the Weibull
scale and fitting it by a straight line. Similar to the aforemen-
tioned calibration procedure, we determine sw and mw by
optimum fitting either one of the two strength histograms
and compare the other histogram with that predicted by Eq.
17. Table II lists the values of sw and mw determined by fit-
ting the strength histograms of specimens of either of the
two gauge lengths. It can be seen that the calibrated values
do not strongly depend on which strength histogram is used
for fitting. However, similar to Fig. 1, we can see from Fig. 5
that these histograms cannot be optimally fitted by a straight
line on the Weibull scale. Fig. 7 presents the predicted
strength histogram of specimens of the other gauge length by
the two-parameter Weibull distribution with the experimental
data. Clearly, for either of the two calibrations, the two-
parameter Weibull distribution cannot well predict the

strength distribution of specimens. The deviation from the
experimental measurement indicate that the two-parameter
Weibull distribution is insufficient for modeling the failure
statistics of general poly-Si MEMS specimens. As discussed,
the physical reason for such a deviation is that for these two
sets of test specimens the number of potential failure points
(i.e., V-notches) inside the specimen is not sufficiently large
to grant the validity of the Weibull distribution.

(3) Three-Parameter Weibull Distribution
The three-parameter Weibull distribution has recently been
proposed as a remedy for the two-parameter Weibull distri-
bution, in which it introduces a finite strength threshold
under which the structure will never fail. The three-parameter
Weibull distribution for tensile specimens can be written as

Pw3ðrNÞ ¼ 1� exp �2n
hrN � r0im1

s1m1

� �
(18)

where r0 ¼ strength threshold. We can determine m1, s1
and r0 by fitting the strength histogram of specimens of any
size. Table II presents the two sets of values of these three
parameters by optimum fitting of the strength histograms of
specimens of 20 and 70 lm gauge lengths, respectively. The
optimum fitting is shown in Fig. 5. It can be seen that the
calibration result is strongly dependent on the choice of the
strength histogram for fitting.

Figure 8 compares the predicted strength histogram of
specimens that is not used for fitting with the experimental
result. It is interesting to see that, if we calibrate m1, s1 and
r0 based on the strength histogram of specimens of 20 lm
gauge length, Eq. 18 can predict well the strength distribu-
tion of specimens of 70 lm gauge length. On the contrary,
if we calibrate m1, s1 and r0 based on the strength histo-
gram of specimens of 70 lm gauge length, Eq. 18 fails to
predict the strength distribution of specimens of 20 lm
gauge length. This illustrates the lack of robustness of the
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Fig. 6. Comparison between the experimental measured strength histogram of poly-Si MEMS specimens with the prediction by the finite
weakest link model.
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three-parameter Weibull distribution for prediction of failure
statistics of specimens of different sizes, since its prediction
capacity is dependent on which histogram is used for
calibration.

Meanwhile, it should be pointed out that the three-param-
eter Weibull distribution has recently been shown theoreti-
cally unsound for strength statistics of brittle and quasibrittle
structures because (1) it predicts an incorrect size effect on
the mean structural strength at the large size limit,18,38 and
(2) the strength threshold is theoretically unjustifiable since
the probability distribution of the material strength should
have a power-law with zero threshold as implied by the tran-
sition state theory.19

It may be concluded that the aforementioned comparison
with the experiment data on poly-Si tensile specimens of
two different gauge lengths favors the present finite weakest
link model over the classical two- and three-parameter Wei-
bull distributions, even though the size range of the experi-
mental data is narrow. It is interesting to compare the
strength distributions of tensile specimens for a wider range
of gauge lengths predicted by the present finite weakest link
model and the three-parameter Weibull distribution, as
shown in Fig. 9. It can be seen that for n = 50 two models
give a reasonably similar prediction of the failure probability
except for the tail part since these two models are calibrated
based on the test results for specimens of 20 lm gauge
length. At the small-size limit, it is observed that these two
models only differ at the high-probability regime and the
extreme far left tail. At the large-size limit, these two models
give a similar prediction for the high-probability regime and
they deviate from each other significantly at the low proba-
bility regime.

The aforementioned observation can be explained by the
fact that the strength distribution for the high probability
regime of large-size structures is determined by the strength
distribution for the low probability regime of small-size
structures, which is an essential feature of the weakest link
model. This is why we just need the far left tail of the
strength distribution of material element to derive the classi-
cal Weibull distribution. As seen in Fig. 9(b), the finite weak-
est link model and the three-parameter Weibull distribution
give a similar prediction for the bulk part of the strength dis-
tribution for n = 50, we can expect that these models would
also lead to a similar prediction of the strength statistics at

the low probability regime for n = 1, as seen Fig. 9(a). Mean-
while, we do see that these two models differ from each other
at the extremely low failure probability regime as well as the
high probability regime. As n increases from 50, we see that
the difference in prediction by these models starts to propa-
gate into the intermediate and high probability regime. This
is simply because that the difference in the tail behaviors pre-
dicted by these two models is manifested in the different
behavior of the bulk part of the strength distribution as the
specimen size increases.

In Fig. 9, we present the design strengths corresponding
to two tolerable risk levels, i.e., Pf ¼ 10�4 or 10�6. It can
be seen that these two models give a similar prediction of
the design strengths for these two risk levels except for the
large size limit, where the three-parameter Weibull model
would underestimate the design strength. This may be the
reason why the three-parameter Weibull distribution is an
attractive choice since most applications of MEMS struc-
tures lie in the intermediate size range. However, as will be
discussed in the next section, these models will give very
different prediction if we extrapolate to different loading
configurations. Meanwhile, it should emphasized here that,
even if we are interested in the design strength of tensile
specimens of small and intermediate sizes, the application
of the three-parameter Weibull distribution is still ham-
pered by the aforementioned ambiguity of the calibration
results.

It is also worthwhile to point out that, in contrast to the
three-parameter Weibull distribution, which leads to an over-
estimation of the design strength, the optimally fitted two-
parameter Weibull distribution would underestimate the
design strength at Pf ¼ 10�4 or 10�6. The predicted design
strength could be 30% lower than that predicted by the finite
weakest link model, which would lead to an expensive
design. Furthermore, we will demonstrate in the next section
that the two-parameter Weibull distribution may not yield a
conservative design where we extrapolate the results to differ-
ent loading configurations.

V. Design Extrapolations for Specimens Under Different
Loading Configurations

The previous section focused on the extrapolation of strength
statistics of tensile specimens across different specimen sizes.
In the actual applications, MEMS devices may be subjected
to different loading configurations. It is practically impossible
to develop test apparatus for wide ranging loading configura-
tions. Therefore, we have to rely on probabilistic models to
facilitate design extrapolation for specimens under different
loading. As a demonstration, we apply the present model to
predict the failure statistics of poly-Si beams under three-
point bending based on the parameters calibrated by the
aforementioned tensile experiments.

Consider a poly-Si beam under three-point bending
(Fig. 10). We define the nominal strength of the beam as
rN ¼ 3PmL=2bD

2, where Pm = load capacity of the beam,

Table II. Calibrated Statistical Parameters of the Two-
Parameter and Three-Parameter Weibull Distributions

Tensile specimens used

for calibration mw sw (GPa) m1 s1(GPa) r0 (GPa)

Specimens
with Lg ¼ 20 lm

18.25 3.59 5.78 2.22 1.78

Specimens
with Lg ¼ 70 lm

18.45 3.61 3.03 3.66 2.08
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Fig. 8. Comparison between the experimental measured strength histogram of poly-Si MEMS specimens with the prediction by the three-
parameter Weibull distribution.
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L = beam length, D = beam depth, and b = width of the
beam in the transverse direction. For the present calcula-
tions, we consider a set of geometrically similar beams with
L/D = 4 and different lengths L = 4.8,10,20,40,80 lm. It can
be well expected that the failure would initiate from the bot-
tom surface of the beam due to the higher bending stress as
well as the stress concentrations at the surface grooves (Fig.
10). Meanwhile, due to the random material tensile strength
and the geometry of the surface grooves, the failure initiation
location is uncertain.

Similar to the tensile specimens, beams under three-point
bending also belong to the class of structures of positive
geometry. Therefore, we may consider that the beam reaches
its load capacity as long as a localized crack initiates from
one of the surface grooves along the bottom surface of the
beam. Therefore, the overall failure statistics of the beam can
be calculated using the weakest link model, where the beam
can be considered to consist of a number of vertical material
strips, each of which contains a V-notch (Fig. 10). As men-
tioned in the previous section, the width of these material
strip, denoted by l0, is equal to 400 nm. Different from the
foregoing analysis of tensile specimens, these material strips
are subjected to nonuniform bending moments and shear
forces. In this study, we perform finite element (FE) simula-
tions of the entire beam to compute the near-tip stress fields
for all V-notches along the bottom surface. By separating the
random geometrical parameters from the random material
strength, we may calculate the strength distribution of the
entire beam as

PfðrNÞ ¼
Z
~a;~h

PfðrNÞj~a;~hfð~a; ~hÞd~ad~h (19)

¼ E PfðrNÞj~a;~h
h i

(20)

where ~a; ~h ¼ random vectors containing the values of depth
and angle for all V-notches along the bottom surface, respec-
tively, fð~a; ~hÞ ¼ joint pdf of the random notch depth and
angle, PfðrNÞj~a;~h ¼ conditional failure probability of the
beam for a given set of values of ~a and ~h, and E(x) = expec-
tation of x. It is clear that the conditional failure probability
can be calculated using the weakest link model, i.e.,

PfðrNÞj~a;~h ¼ 1�
Yn
i¼1

1� Fft rNsij~a;~h
� �h i

(21)

where n ¼ L=l0, sij~a;~h ¼ dimensionless stress for ith V-notch
such that rNsi is equal to the average tensile stress �r of
near-tip region of this notch, as defined by Eq. 7. In this
study, we numerically estimate the expectation of PfðrNÞj~a;~h
as

E PfðrNÞj~a;~h
h i

¼ 1

Nr

XNr

i¼1

PfðrNÞj~ai;~hi (22)

where Nr ¼ number of realizations. For each realization, we
determine the dimensionless stress field through elastic FE
simulations, where the notch angle and depth are sampled
from their probability distributions as described by Eqs. 15
and 16. We terminate the calculation once the computed
expectation value converges to a relative error less than 5%.

As a comparison, we also calculate the strength distribu-
tion of the poly-Si beams by using the two- and three-param-
eter Weibull distributions. The two-parameter Weibull
distribution for structures with a nonuniform stress field is
given by Eq. 3. Since we only consider possible failure along
the bottom surface, which has a linear stress profile for the
half-span, Eq. 3 can be re-written as

ln
{ln

[1
/
(1

−
P

f
)]

}
-15 

-9 

-3 

3 

0.5 0.75 1 1.25 1.5 

n = 50 

Finite weakest link model 
  

Three-parameter 
Weibull model 

Pf = 10−4 
 

Pf = 10−6 

-15 

-9 

-3 

3 

0.5 0.7 0.9 1.1 

n = 500 

Finite weakest link model 
Three-parameter 
Weibull model 

Pf = 10−4 
 

Pf = 10−6 

-15 

-9 

-3 

3 

0.5 0.6 0.7 0.8 0.9 

n = 5000 

Finite weakest link model 
Three-parameter 
Weibull model  

Pf = 10−4 
 

Pf = 10−6 

-20 

-15 

-10 

-5 

0 

0.5 1 1.5 2 

n = 1 

Finite weakest link model 
Three-parameter 
Weibull model  

Pf = 10−4 

3 

Pf = 10−6 

(a) (b)

(c) (d)

lnσN (GPa) lnσN (GPa)

lnσN (GPa) lnσN (GPa)
Fig. 9. Comparison of the predicted strength distributions of poly-Si MEMS specimens of different gauge lengths by the finite weakest link
model and the three-parameter Weibull distribution: (a) n = 1, (b) n = 50, (c) n = 500, and (d) n = 5000.

l0 

P

L

D

Fig. 10. Geometry of a poly-Si MEMS specimens under flexural
loading.

June 2015 Failure of Poly-Si MEMS Structures 1693



PfðrNÞ ¼ 1� exp �2l�1
0

Z L=2

0

ð2x=LÞmwdx

" #
rmw

N

smw
w

( )
(23)

¼ 1� exp � L

l0ðmw þ 1Þ
rN

sw

� �mw
� �

(24)

For the three-parameter Weibull distribution, a similar
expression can be derived except that a strength threshold r0

is introduced. The probability distribution of the nominal
strength of the beam can be expressed as

PfðrNÞ ¼ 1� exp �s�m1

1

Z
V

hrNsðxÞ � r0im1dVðxÞ
� �

(25)

¼ 1� exp � L

l0ðm1 þ 1Þ 1� r0

rN

	 
m1þ1 rN

s1

� �m1

" #
(26)

Figure 11 presents the comparison of the strength histo-
grams of this set of geometrically similar poly-Si beams
predicted by the finite weakest link model, and the two- and
three-parameter Weibull distributions, where all the model
parameters are based on the calibration results obtained by
optimum fitting of the tensile specimens of 20 lm gauge
length. It is seen that the predictions by these models differ
from each other for beams of all sizes. The difference is much
more significant compared to that for tensile specimens, even
though the bending specimens have a similar characteristic
size as the tensile specimens. This can be explained by the
fact that the nonuniform stress field effectively changes the
structure size for the calculation of the failure probability.
For example, let us consider the two-parameter Weibull dis-
tribution. Comparing Eq. 24 with Eq. 17, it is clear that for
calculating the failure probability the specimen under three-
point bending is equivalent to the tensile specimen with a
gauge length being mw times smaller than the beam length.
In other words, we may view that the three-point bend speci-
mens are equivalent to tensile specimens of a much smaller
size. Now consider the present finite weakest link model.
Unlike the two-parameter Weibull distribution, here the
equivalent size of the tensile specimen cannot be calculated

analytically. However, based on Eq. 13, it is clear that tail of
the strength distribution must follow a Weibull distribution.
Therefore, we can still use the aforementioned equivalent size
implied by the Weibull distribution for calculating the tail
distribution of the nominal strength of the beam. As seen
from Tables I and II, the Weibull modulus for the present
model and the two-parameter Weibull distribution differ sig-
nificantly from each other (i.e., m 
 m1) . This implies that
for the same bending specimen the equivalent tensile speci-
men size implied by the two-parameter Weibull distribution
is much larger than that implied by the present model, which
leads to a large difference in the predicted strength distribu-
tions, as shown in Fig. 11.

The foregoing analysis indicates that, even though for
tensile specimens the finite weakest link model and three-
parameter Weibull distributions may predict a similar design
strength corresponding to a failure probability that is not too
low (Fig. 9), it does not mean that these distributions are
equally good for the same specimens subjected to other load-
ing configurations. This is because the change of the stress field
can lead to a drastic change in the equivalent specimen size,
and these distributions can give very different predictions of
this equivalent specimen size. Therefore, empirical fitting of
histogram of specimens of one size or under one loading con-
figuration is usually insufficient for design extrapolation across
different specimen sizes and loading configurations.

For the viewpoint of design of MEMS devices, Fig. 11
indicates that the conventional Weibull models would pro-
vide a conservative design since they predict a higher failure
probability for a given applied load. However, it should be
emphasized here that the present analysis considers the pre-
diction of the strength distribution of three-point bending
specimens from the measured strength distribution of tension
specimens. If we want to extrapolate from three-point bend-
ing specimens to tension specimens, it is clear that the con-
ventional Weibull models would overestimate the design
strength for a given failure probability compared to the finite
weakest link model. Therefore, it should be cautioned that,
for design extrapolation across different specimen geometries
and loading configurations, the conventional Weibull models
does not always yield a conservative design.

It is also clear from our analysis that, to directly validate
a probabilistic model for structural strength, we need to per-
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Fig. 11. Strength distributions of poly-Si bending specimens predicted by the finite weakest link model, and the two- and three-parameter
Weibull distributions.
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form histogram testing of geometrically similar specimens
with a sufficiently large size range. This approach has two
main advantages: (1) it can provide a more complete model
validation against the size dependence of the strength distri-
bution, which is essential for design extrapolation across dif-
ferent specimen sizes and geometries; and (2) it can eliminate
the need to experimentally measure the far-left tail of the
strength distribution because the tail behavior would be
reflected within the bulk part of the strength distribution of
large-size specimens. Of course the main challenge of the size
effect tests is that it is sometimes difficult to achieve a large
size range because the size of the test specimens is limited by
the test set-up. In such a case, according to the aforemen-
tioned analysis, we may change the loading configurations to
create different stress fields so that we can effectively achieve
a large size range for the same set of specimen sizes. For
example, to achieve the large-size limit for bending speci-
mens, we may perform uniaxial tension tests on the
specimens of the same size, and on the contrary, to achieve
the small-size limit for tensile specimens, we may perform
three-point bending tests on the specimens of the same size.

VI. Mean Size Effect Curve and Strength Distribution

Based on the foregoing analysis in Section IV, it is seen
that the present finite weakest link model agrees well with
the the measured strength histograms of poly-Si tensile
specimens of different gauge lengths and the model calibra-
tion is subjected to a level of minimal ambiguity. As men-
tioned earlier, the finite weakest link model (Eq. 12)
predicts that the probability distribution of structural
strength is strongly dependent on the structure size, and the
direct consequence is a size effect on the mean structural
strength. In this section, we explore the relationship
between this mean size effect and the strength distribution.
The direct implication of this relationship is that it would
allow us to determine the strength distribution directly from
the size effect curve of the mean strength. This concept of
determination of strength distribution based on the mean
size effect analysis has recently been proposed and tested
for quasibrittle structures.39,40 Such an indirect method
would potentially eliminate the need of histogram testing
for reliability analysis of MEMS devices. Instead, we would
just need to obtain the size effect curve of the mean struc-
tural strength, which would involve specimens of four to
five sizes (or loading configurations). For each specimen size
(or loading configuration), only five specimens would be
needed for determining the mean strength. Therefore, the
total number of specimens involved in the test is signifi-
cantly lower than that involved in conventional histogram
testing. Here we formulate the relationship between the
mean size effect curve and the strength distribution for the
aforementioned tension specimens, while the same formula-
tion can directly be applied to structures of other geome-
tries or under other loading configurations.

Based on Eq. 12, the mean structural strength can be
calculated as

�rN ¼
Z 1

0

rNdPfðrNÞ

¼
Z 1

0

1�
Z 1

0

FftðxrNÞfsðxÞdx
� �2n

drN

(27)

We note that the randomness of V-notch geometry can be
accurately determined from the examination of the surface
grooves along the sidewalls, and the probability distribution
of the dimensionless stress, fsðxÞ, can then be calculated from
the stochastic elastic FE simulations. Therefore, the crux of
the problem is to determine the probability distribution of

the material element strength, i.e., FftðxÞ, from the mean size
effect curve.

Figure 12 presents the size effect on the tensile specimens
calculated by Eq. 27, where FftðxÞ is calibrated based on the
strength histogram of specimen of 20 lm gauge length. It is
seen that, on the log–log scale, the mean size effect curve
deviates from the Weibull size effect, which would follow a
straight line on this plot. Within the present framework, this
is clearly due to the fact that there is a finite number of V-
notches along the sidewalls. As expected, when the specimen
length becomes large, the mean size effect does follow the
Weibull size effect. Though Eq. 27 cannot be integrated ana-
lytically, we may construct a general approximate equation
for �rN by anchoring at the small- and large-size limits:19,41,42

�rN ¼ l0
n1
n
þ n2

n

� �r=q� �1=r
(28)

where l0 ¼ mean strength of material element, and n1, n2, r,
and q are constants. Let us denote C1 ¼ lr0n1 and
C2 ¼ lq0n2. Now we relate these constants to the probability
distribution function of material strength FftðxÞ. Based on
Eqs. 9 and 10 , FftðxÞ can uniquely be defined by the follow-
ing four parameters: the Weibull modulus m, the Weibull
scaling parameter s0, the mean of the Gaussian core lG, and
the standard deviation of the Gaussian core dG.

At the large size limit, the strength distribution of the
structure must converge to the Weibull distribution [Eq.
(14)]. The corresponding mean structural strength can be eas-
ily obtained:

�rN ¼ ð2nÞ�1=ms0Cð1þ 1=mÞM�1=m
m (29)

On the other hand, as n?∞, Eq. 28 reduces to
�rN � l0ðn2=nÞ1=q. Comparing this expression with Eq. 29, we
obtain

m ¼ q (30)

s0 ¼ ð2MmÞ1=mC1=q
2 C�1ð1þ 1=mÞ (31)

This implies that constants q and C2 are directly related to
the Weibull modulus and the Weibull scaling parameter.

At the small-size limit, the entire specimen consists of only
two V-notches, one on each sidewall. It is well expected that
the Weibull tail can be neglected for calculating the mean
strength. Therefore, we may replace the Weibull–Gaussian
grafted strength distribution by a Gaussian distribution to
compute the mean strength at the small-size limit, i.e.,:
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Fig. 12. Comparison of the size effect on the mean structural
strength calculated by the finite weakest link model and Eq. 28.
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where Φ(x) = standard Gaussian distribution. Meanwhile,
we can also calculate the derivative of �rN with respect to the
number of V-notches at the small-size limit:
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Based on Eq. 28, these two small-size asymptotes can be
written as

�rN

��
n¼1

¼ ðC1 þ C2
r=qÞ1=r (34)
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����
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¼ � 1

r
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r=qÞ1=r�1 C1 þ rC2
r=q

q

 !
(35)

It is clear that, by equating Eqs. 32 to Eq. 34 and Eq. 33 to
Eq. 35, we can calculate lG and dG from C1, C2, r and q.
Therefore, if we obtain a size effect curve on the mean struc-
tural strength and we fit it with Eq. 28, we can use the fore-
going formulation to determine s0, m, lG and dG, from
which we can further calculate the strength distributions of
the tensile specimens of different sizes by using Eq. 12 as well
as specimens of other geometries or under other loading con-
figurations by using Eq. 19.

We now use the current data on poly-Si tension specimens
to verify the aforementioned formulation. Since we have cali-
brated the strength distribution of material element, i.e., s0,
m, lG and dG, we can directly calculate constants q, r, l0, n1
and n2 based on Eqs. 30–35 and obtain an approximate size
effect curve using Eq. 28. Figure 12 shows that the approxi-
mated size effect predicted by Eq. 28 agrees well with the cal-
culated size effect on the mean strength of tensile specimens,
which verifies the proposed relationship between the mean
size effect curve and the strength distribution.

VII. Conclusions

1. The measured strength histograms of poly-Si MEMS
specimens of two gauge lengths can be well explained
by a finite weakest link model, which explicitly
accounts for both the random material strength and
random geometrical features of the specimen. The
model can be calibrated by optimum fitting of either
one of these two strength histograms, and the choice
of the histogram for fitting has a minimal effect on the
calibration results.

2. It is shown that the two-parameter Weibull distribu-
tions cannot predict the measured strength histograms
of the two sets of poly-Si specimens, due to the fact
that the number of potential failure locations in the
specimen is not large, thus violating the basic assump-
tion of the Weibull distribution. The three-parameter
Weibull distribution can improve the optimum fitting.
However, the model calibration is dependent on the
choice of the histogram for fitting, which severely lim-
its its prediction capability.

3. Due to the size dependence of strength statistics of
MEMS structures, direct experimental validation of
the strength distribution using histogram testing must

involve specimens of different sizes, where the size
range should be sufficiently large. By adopting such a
size effect test procedure, it is unnecessary to directly
measure the tail of the distribution, which is implied
by the bulk part of the strength distribution of large-
size specimens. In experiments, the large size range can
be achieved by either changing the physical size of the
specimen or changing the loading configuration (or
equivalently the stress field).

4. The finite weakest link model predicts a strong size
effect on the strength distribution as well as the mean
structural strength. It is shown that the size effect
curve of the mean strength can directly be related to
the strength distribution. This provides us an efficient
way to determine the strength statistics of MEMS
structures without relying on the laborious histogram
testing, which will greatly reduce the cost for the reli-
ability analysis of MEMS structures.
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