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Fiber-Reinforced-Polymer (FRP) strips can be glued to the surface of concrete or masonry structures to
improve their strength. Pull-out tests on FRP bonds have shown a progressive failure of the adhesive joint
involving early-stage cracking parallel to the axis of the FRP stiffener, and an inclined crack initiating at
the free end of the stiffener and extending into the quasi-brittle substrate in the latest stage. The subsur-
face crack produces a characteristic wedge-shaped spall. There is no consensus on the reasons for the
transition from cracking along the bond to cracking within the substrate. Therefore a Linear Elastic Frac-
ture Mechanics model problem is presented here that accounts for and provides improved understanding
of the formation of the subsurface crack. The boundary value problem is solved analytically using the dis-
tributed dislocation technique. Competition between crack extension along the adhesive joint and into
the substrate is quantified using a quantized crack propagation criterion, whereby the crack does not
advance in infinitesimal continuous increments, but instead in finite steps of length comparable to the
characteristic dimensions of the material microstructure. The model predicts results that are in good
agreement with experimental evidence.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

The use of Fiber Reinforced Polymers (FRP) to repair and refur-
bish buildings and bridges is ever-increasing. A noteworthy appli-
cation involves a wet lay-up procedure with epoxy resins to bond
FRP strips or plates to the external surfaces of concrete and
masonry flexural elements to increase their bending strength.
The popularity of this technique has inspired supporting research
that has focused primarily on the characterization of the mechan-
ical performance of the bonded joint. Experiments have provided a
wealth of evidence that the dominant failure mode is debonding
within the adhesive joint, typically occurring a few millimeters
below the adhesive interface. Failure modes such as plate-end deb-
onding are regarded as local failures and have not received signifi-
cant attention. However, understanding the whole process of
debonding and the local failure modes is of importance to the pre-
diction of the ultimate flexural capacity of the reinforced structure,
in particular when it is subjected to seismic actions or accidental
overloads.
A large number of experiments have been conducted in order to
analyze and better understand the debonding phenomenon (Chen
and Teng, 2001). Among the various experimental set-ups, simple
pull-out tests are the most popular. These tests involve a long stiff-
ener,1 bonded to a quasi-brittle substrate, that is gradually pulled at
one end. As also evidenced in Yuan et al. (2004), the failure is charac-
terized by the formation of a cohesive (process) zone, where prior to
neat separation a relative slip between stiffener and substrate occurs
at non-zero shear stress. The progression of the process zone, which
exhibits the distinct phases represented schematically in Fig. 1,
defines the gross response of the stiffener in the pull-out test. In order
to qualitatively describe the debonding phenomenon in all of its
phases, recent works (Franco and Royer-Carfagni, 2013; Franco and
Royer-Carfagni, 2014a,b) have considered the contact problem
between an elastic stiffener and an elastic half-space. Unlike earlier
analyses of such configurations where the substrate is supposed rigid,
these works analytically demonstrated the role played by the deforma-
tion of both adherents, in agreement with previous numerical investiga-
tions (Freddi and Savoia, 2008; Marfia et al., 2011; Grande et al., 2011).
ive bond
carrying
le
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Fig. 1. Schematic representation of the debonding process for long stiffeners. (Franco and Royer-Carfagni, 2014a).
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The process zone, represented by the etched rectangle of length
c in Fig. 1A, nucleates at the loaded end of the stiffener, and it pro-
gresses in a stable manner until it reaches a critical length, indi-
cated by cu in Fig. 1B. The maximal length cu is reached when
the relative slip d0 at the loaded end of the bond reaches the critical
crack sliding displacement, sf , one of the parameters that defines
the shear stress-relative slip constitutive relationship that governs
the cohesive zone. Debonding initiates at this stage, at the critical
value Pu of the applied load. As the stiffener is pulled further its dis-
placement d0 relative to the substrate exceeds the limit value sf

and delamination begins. During this phase, corresponding to
Fig. 1C and D, the length cu does not change appreciably but simply
translates as the delamination propagates along the interface and
reaches the opposite free end. It was demonstrated (Franco and
Royer-Carfagni, 2014a,b) that the resultant of the shear stress in
the cohesive zone equilibrates in practice all of the applied force
P, and thus the pull out force remains almost constant and equal
to Pu during the delamination process.

When the cohesive zone approaches the free end of the stiffener
(Fig. 1E), a strain-softening phase begins. Henceforth the length of
the cohesive zone decreases, causing a reduction of the strength of
the bond. This phase, sketched in Fig. 1F, is often associated with a
snapback response that could not be captured under displacement
control. Eventually the FRP stringer completely separates from the
substrate. Remarkably, such a failure is characterized by the forma-
tion of a characteristic wedge-shaped spall, as shown in Fig. 2 for a
FRP-to-concrete bond. Experiments (Biolzi et al., 2013; Carrara
et al., 2011, 2013; Grande et al., 2011) have evidenced that the
width of this bulb is approximately equal to the width of the FRP
lamina. However, its length is independent of the initial length of
the reinforcement (Biolzi et al., 2013) as confirmed in Fig. 2, where
various bond lengths are compared. This phenomenon is true not
only for concrete, but also for masonry.
Fig. 2. Wedge-shaped detached portions of the substrate in FRP-to concrete bonds w
(a) l ¼ 30 mm, (b) l ¼ 90 mm; (c) l ¼ 150 mm.
The stage at which the bulb-like spall forms corresponds to a
very small bond length, of the order of 30–50 mm, and is associ-
ated with phase F of Fig. 1. The bulb is isolated by an inclined crack
that initiates at the free end of the stiffener, and whose extension
eventually leads to the complete separation of a portion of material
from the substrate. To the authors’ knowledge, there have been
just a few attempts to model this phenomenon (Marfia et al.,
2011). Thus the present study.

A key hypothesis made here that enables interpretation of the
phenomenon is that fractures do not progress continuously and
uniformly, but in discrete steps. In other words, there is a quantized
length for crack propagation, that is attributed to the fact that the
characteristic dimensions of the experiment are comparable to
those of the microstructure of the substrate material. For the case
of artificial conglomerates like concrete, the finite length crack
increment is of the same order as the characteristic size of the con-
stituent aggregates. The justification for the hypothesis is that the
aggregate represents the most brittle constituent in the concrete
mass; when the stress intensity factor of a crack within a portion
of an aggregate reaches a critical value, the crack is prone to extend
through the whole grain, rather than arrest within it. The granular
microstructure of the substrate prevents the possibility of a contin-
uous propagation of cracks. This fact is confirmed by experimental
evidence. Fig. 3 shows a concrete surface from which an adherent
FRP strip was pulled off. Notice the presence of well-marked
grooves on the surface that reflect the discrete steps taken by the
advancing crack front. A theory of ‘‘quantized fracture mechanics’’
has been recently proposed in Pugno and Ruoff (2004) to interpret
the size effect in solids made of quasi brittle materials.

Under reasonable simplifying assumptions, a model problem in
linear elasticity is now proposed. Of course, as clearly evidenced in
Pellegrino et al. (2008), the debonding process has a three-dimen-
sional character since it involves deformations also along the width
ith different initial bond lengths, as per Carrara et al. (2011). Initial bond length:



Fig. 3. Detail of the surface of a concrete support after debonding of the FRP strip
(Mazzotti et al., 2009).
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of the substrate. However, our aim here is to present an analytical
study that, despite its simplicity, can evidence the key-aspects and
the reasons for the occurrence of subsurface crack propagation.
Having in mind an averaged-in-the-width 2-D approach, the stiff-
ener is assumed to transmit shear stresses to a substrate modeled
as a homogeneous isotropic elastic half-plane in generalized plane
stress. The elastic fields are found by means of the distributed dis-
location technique proposed in Eshelby et al. (1951) and developed
by different authors (Dundurs, 1969; Hills, 1996; Ballarini et al.,
1987; Ballarini et al., 1990; He and Hutchinson, 1988). The formu-
lation of the propagation of a crack at the free end of the stiffener
relies on the superposition of two effects: (i) the effect of tangential
forces per unit area on the surface of the half plane and (ii) the
effect of distributed edge dislocations along the crack reference
configuration. The condition that the crack surfaces are traction-
free furnishes an integral equation, which is solved using the prop-
erties of Chebyshev polynomials.

In the proposed model, two mechanisms of degradation are
considered; (a) failure of the adhesive joint, which progresses at
the stiffener-substrate interface when the corresponding shear
stress is greater than the strength of the interface; (b) inclined
cracking, which can develop in the substrate when the strain
energy release associated with its (quantized) propagation is
greater than the corresponding fracture energy of the material.
From the competition between the two mechanisms one can eval-
uate when the inclined crack starts to form and the characteristic
angle of the wedge-shaped bulb. The proposed model problem rep-
resents a simple and intuitive tool to investigate this peculiar phe-
nomenon and provides results that are in very good qualitative
agreement with experiments drawn from the technical literature.
2. The model problem

A simple Linear Elastic Fracture Mechanics model amenable
of an analytical treatment is now presented. It relies on a few
simplifying assumptions.
Fig. 4. Typical experimentally-measured shear-stress s vs. slip s constitutive law at
the interface; trilinear and step-wise approximations.
2.1. Preliminary considerations

The detachment of a bulb from the substrate occurs in the latest
stage of the debonding process, where the surviving bond length is
very small, of the order of 30–50 mm. In the schematic representa-
tion of Fig. 1, this stage is associated with phase F. The character-
istic wedge-like shape of the bulb, represented in Fig. 2, is due to
the nucleation of an inclined crack that initiates at the free end
of the stiffener, and eventually induces the complete separation
of that portion of the substrate.
In general, the stiffener is a very thin strip or plate, with negli-
gible bending stiffness. Therefore, peeling stresses at the interface
are absent because the stiffener is not able to equilibrate trans-
verse loads during small deformations. Thus the only relevant con-
tact stresses are the shear stresses acting along the stiffener-
substrate interface (Franco and Royer-Carfagni, 2014a). Direct con-
sideration of such stresses by-passes the problems usually associ-
ated with the elastic modeling of a bi-material interface and the
complex stress singularities there occurring (Le et al., 2010). There
is general agreement that the strength of the adhesive joint can be
characterized through a shear-bond-stress ‘‘s’’ vs. relative-slip ‘‘s’’
constitutive law. The s� s curve is evaluated by measuring exper-
imentally the strain in the stiffener and the substrate (Ali-Ahmad
et al., 2006). The typical response is illustrated in Fig. 4: the
quasi-linear branch leading to the peak stress is followed by a
strain-softening phase that ends at the zero-stress level associated
with complete debonding. This curve can be approximated by
three straight lines (CNR-DT/200, 2004); an ascending branch up
to the peak stress sf ; a linear strain-softening phase approaching
s ¼ sf where s ¼ 0 and, finally, a zero-stress plateau. In certain
cases, to interpret the gradual debonding process, it is sufficient
to consider a simple step-wise approximation of such a constitu-
tive law (Franco and Royer-Carfagni, 2014a,b) with equal frac-
ture-energy Gf and critical crack sliding displacement sf , so that
the maximum shear stress is sc ¼ 1

2 sf . But if the bond length is
very small, as it is in the final stage of the debonding process, then
the relative displacement at the extremities is moderate. Conse-
quently, one can neglect the strain gradient and assume that the
slip is uniform. The consequence is that the interfacial shear stress
transmitted by the stiffener to the substrate can be considered con-
stant over the entire bond length.

The initiation of the inclined crack is sketched in Fig. 5(a) for a
bond length that reaches the critical value l. Observe that when a
crack of length a, inclined by the angle x, forms at the free end
of the stiffener, a wedge-shaped prism is formed within the sub-
strate. This suggests that the substrate stiffness is locally degrading
in the neighborhood of the crack.

As a first order approximation, the effect of the elastic deforma-
tion of the substrate can be modeled by a set of shear springs à là
Winkler, which connect the stiffener to a support now supposed
infinitely rigid. This scheme is represented in Fig. 5(b). But if a por-
tion of the substrate locally yields because of the formation of the
inclined crack, then the stiffness of the springs tends to zero in a
neighborhood of such a portion. Consequently, there is a local
release of the stiffener, that must be taken into account.



(a)

(b)

Fig. 5. A finite stiffener bonded to the boundary of a semi-infinite plate. (a) Edge crack forming at the free end of the stiffener; (b) Simplified scheme with a set of shear
springs à là Winkler.
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A quantitative interpretation is achieved by considering the
problem of an elastic half plane in generalized plane stress, with
a crack of length a inclined by the angle x. A uniformly-distributed
shear stress q is applied on the free surface of the half-space, for a
length l starting from the crack origin, to represent the contact
stress transmitted by the stiffener over its whole bond length.
The elasticity problem is solved using the method presented in
Section 2.2 and the corresponding solution is recorded in Appendix
A. The normal component of strain err in the direction of the sur-
face of the half-plane, derived according to Eqs. (A.7) and (A.12a),
is drawn in Fig. 6 as a function of the normalized abscissa
n=ða cos xÞ, indicated in Fig. 5(a). Apart from a neighborhood of
n ¼ 0, the analytical solution is in perfect agreement with the
results of numerical simulations performed with the FEM program
Abaqus (ABAQUS, 2010), also reported in the same figure for the
sake of comparison.

The analytical solution predicts a strain singularity at n ¼ 0þ;
then the strain remains almost constant for 0 < n=ða cos xÞ < 1.
Moreover, one finds that the strain energy becomes infinite as
the angle x tends to zero. It should be observed that over the
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Fig. 6. Elastic half plane with an inclined crack, loaded by a uniformly distributed
load for the whole bond length. Normal component of strain in the direction of the
surface of the half-space, as a function of the normalized abscissa n=ða cos xÞ. Elastic
solution, numerical results, approximate Michell solution.
wedge-shaped portion isolated from the substrate by the inclined
crack (Fig. 5(a)), the state of stress is similar to that associated with
the Michell problem of a long wedge subjected to shear loading
along one of the sides (Michell, 1899), as represented in Fig. 7.
The solution by Michell, whose relevant results are given in Appen-
dix A (Eqs. (A.11) and (A.12a)), prescribes a constant strain that fits
very well with the analytical solution and the numerical experi-
ments in the range 0 < n=ða cos xÞ < 1, as represented in Fig. 6.
As x! 0 the displacement becomes infinite and therefore the
elastic strain energy becomes unbounded.

It is important to note that the strain over the portion
0 6 n=a cosðxÞ 6 1 is much higher (in absolute value) than in
the remaining part of the bond length. For the case considered in
Fig. 6, representative of a typical condition (l ¼ 52 mm,
a ¼ 15 mm, x ¼ 30�; q ¼ 3:85 MPa), the strain in the neighborhood
of the crack is more than five times higher than the strain in the
remaining portion. Consequently, in the simplified scheme of
Fig. 5(b), the stiffness of the springs on that left-hand-side portion
would be about 20% of the stiffness of the others.

Deriving an analytical solution to the actual contact problem of
an elastic stringer bonded to an elastic half space with an inclined
crack is a formidable task that is not attempted here. Instead, with
the aim at a qualitative description of the phenomenon, the follow-
ing assumptions are made to achieve a reasonable first-order
approximation:
Fig. 7. Michell problem of a wedge, loaded along one side by shear stresses.
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� the stringer is only able to transmit shear contact stresses
because of its negligible bending stiffness;
� the shear contact stress is constant, because the actual bond

length of the stringer in the latest stage of the debonding pro-
cess is so small that one can assume that the stiffener-substrate
relative slip is constant;
� the shear contact stress is null in the interval

0 6 n=a cosðxÞ 6 1; in fact, one can neglect the stiffness
offered by the substrate in that portion because of the formation
of the inclined crack.

In conclusion, the elasticity problem that will be considered is that
represented in Fig. 8. Here, a linear-elastic, homogenous and iso-
tropic half-plane in generalized plane stress, with an inclined crack
initiating at n ¼ 0, is loaded by an uniformly distributed shear
stress q on the interval a cosðxÞ 6 n 6 l.

Observe that all the aforementioned hypotheses are required,
without exception, for a simple but complete description of the
phenomenon. In particular, it is crucial to consider that there is a
local weakening of the substrate in the neighborhood of the
inclined crack. Here we have made the simplifying, quite drastic,
assumption that the shear contact stress is null in the interval
0 6 n=a cosðxÞ 6 1. Of course, more refined considerations could
be made, but the simplicity of the analytical solutions would be
lost. Comparison with numerical experiments, where such simpli-
fying assumption is not made, will be the subject of future studies.

2.2. Governing equations in linear elasticity theory

The elastostatics problem shown in Fig. 8 can be formulated in
terms of the complex Muskhelishvili potentials (Muskhelishvili,
1975). With respect to a system of polar coordinates as in
Fig. 9(a), centered at n ¼ g ¼ 0, the components of stress in polar
coordinates can be expressed in terms of two analytic functions
UðzÞ and WðzÞ of the complex variable z ¼ nþ ig ¼ reih as

rrr þ rhh ¼ 4Re ½UðzÞ�; ð2:1aÞ

rhh � rrr þ 2irrh ¼ 2e2ih½zU0ðzÞ þWðzÞ�; ð2:1bÞ

rhh þ irrh ¼ UðzÞ þUðzÞ þ e2ih½zU0ðzÞ þWðzÞ�; ð2:1cÞ

in which i ¼
ffiffiffiffiffiffiffi
�1
p

;l is the shear modulus, j ¼ 3� 4m for plane
strain and j ¼ ð3� mÞ=ð1þ mÞ for generalized plane stress, and m is
Poisson’s ratio. Moreover, ð�Þ0 denotes differentiation with respect
to z and ð�Þ implies complex conjugation.

The normal and shear components of stress must be zero on the
crack surfaces, i.e.,

rhh þ irrh ¼ 0; for h ¼ �x; 0 6 r 6 a ð2:2Þ

and must agree with the boundary conditions on the surface of the
half space.
Fig. 8. Model problem for a finite stiffener bonded to the boundary of an elastic
half-space, where an inclined fracture forms.
In the distributed dislocation approach, the problem can be
reduced to that of an elastic half-plane containing a distribution
of edge dislocations on h ¼ �x; 0 6 r 6 a, as described in
Fig. 9(a), and tangential stress qðnÞ applied over the portion
h ¼ 0; a cosðxÞ 6 r 6 l, as indicated in Fig. 9(b).

Eq. (2.2) can then be written as

ðrhh þ irrhÞðdþqÞ ¼ ðrhh þ irrhÞd þ ðrhh þ irrhÞq ¼ 0;
for h ¼ �x; 0 6 r 6 a;

ð2:3Þ

where superscripts d and q indicate the contribution of dislocations
and shear stresses, respectively.

2.2.1. Problem I: elastic half-plane with edge dislocations
Consider a straight crack of length a at an angle h ¼ �x in an

elastic half plane g < 0, as indicated in Fig. 10. The functions UðzÞ
and WðzÞ are holomorphic in this region. If z is a point of the lower
half-plane, clearly z is its mirror image in the upper half-plane.

The solution of the problem of one edge dislocation in an elastic
homogenous half-space is known (Dundurs, 1969). It can be repre-
sented in complex variables form using the analytic continuation
procedure. The complex potentials given by

UdwðzÞ ¼
b

z� z0
; WdwðzÞ ¼

b
z� z0

þ bz0

ðz� z0Þ2
; ð2:4Þ

define the elastic solution at any point z for a dislocation acting at
point z0 in a whole elastic plane. The constant b is defined as

b ¼ l
piðjþ 1Þ ½br þ ibh�

z0

jz0j
; ð2:5Þ

where br and bh represent the radial and circumferential compo-
nents of the Burgers vector.

These potentials produce non-zero tractions along the line rep-
resenting the free surface of the half-plane. To clear these, an addi-
tional set of complex potentials are added. These are determined
using the analytic continuation of (2.4) through the boundary of
the half plane (Muskhelishvili, 1975). In conclusion, one finds that
the potential U in the half plane ImðzÞ � 0 reads

UdcðzÞ ¼ �UdwðzÞ � zU0dwðzÞ �WdwðzÞ; ð2:6Þ

using the notation UðzÞ ¼ UðzÞ, and UðzÞ ¼ UðzÞ. For the particular
case of a half plane with zero tractions on the boundary, using sym-
metry considerations, one can demonstrate (Muskhelishvili, 1975)
that the expression (2.1c) can be simplified and results to be a func-
tion of the potential UðzÞ only. In particular, one finds

rhh þ irrh ¼ UðzÞ þ ð1� e�2ixÞUðzÞ þ ðz� zÞe�2ixU0ðzÞ
� e�2ixUðzÞ: ð2:7Þ

By setting in this expression UðzÞ ¼ UdwðzÞ þUdcðzÞ, as per (2.4) and
(2.6), one obtains the desired solution.

The discrete dislocation at z0 ¼ qe�ix can be replaced by a dis-
tribution of dislocations, BðqÞdq, of the form

BðqÞ ¼ l
piðjþ 1Þ

@

@q
½br þ ibh�e�ix: ð2:8Þ

In this way, maintaining fixed x and integrating over the length of
the crack a, the relevant stresses on the radial line z ¼ re�ix (Fig. 10)
due to the distributed dislocations become

ðrhh þ irrhÞd ¼
Z a

0
BðqÞK1ðr;qÞdq

þ
Z a

0
BðqÞ 2e�ix

r � q
þ K2ðr;qÞ

� �
dq; ð2:9Þ

where K1ðr;qÞ and K2ðr;qÞ are given in Appendix B.



(a) (b)

Fig. 9. Superposition effects: (a) distributed edge dislocation; (b) effect of surface tangential stress.

Fig. 10. An edge dislocation in a half space. Representative variables.
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2.2.2. Problem II: elastic half-plane under surface tangential stress
In the problem of Fig. 11, a distribution of shear stresses qðnÞ,

positive if directed towards the positive n-axis, is applied on the
surface over the length lc ¼ l� a cosx.

The complex potentials for the uncracked half plane are given by

UqðzÞ ¼ �
1

2p

Z l

a cos x

qðnÞ
n� z

dn; ð2:10aÞ

WqðzÞ ¼
1

2p

Z l

a cos x

qðnÞ
n� z

dn� 1
2p

Z l

a cos x

qðnÞ
ðn� zÞ2

ndn: ð2:10bÞ

The relevant stresses on the radial line z ¼ re�ix (z ¼ reix) of Fig. 11,
can be obtained by substituting Eq. (2.10) in (2.7), to give

ðrhh þ irrhÞq ¼
1

2p

Z l

a cos x
qðnÞH1ðr; nÞdnþ

Z l

a cos x
qðnÞH2ðr; nÞdn

" #
;

ð2:11Þ

where H1ðr; nÞ and H2ðr; nÞ are given in Appendix B.

3. Solution of the elastic problem

Taking into account the contributions of the two systems con-
sidered in Sections 2.2.1 and 2.2.2, the condition of traction free
crack surface (2.3) reads
Fig. 11. Elastic half-plane under surface shear stress. Representative variables.
Z a

0
BðqÞK1ðr;qÞdqþ

Z a

0
BðqÞ 2e�ix

r � q
þ K2ðr;qÞ

� �
dq

þ 1
2p

Z l

a cos x
qðnÞH1ðr; nÞdnþ

Z l

a cos x
qðnÞH2ðr; nÞdn

" #
¼ 0: ð3:1Þ

3.1. Approximation in Chebyshev’s series

The integral equation (3.1) can be solved using the method sug-
gested by Erdogan and Gupta (1972), which exploits the properties
of Chebyshev polynomials of the first and the second kind.2 These
polynomials are traditionally defined in the interval ½�1;1�, so the
variables are transformed according to

q ¼ a
2
ðt þ 1Þ; ð3:2aÞ

r ¼ a
2
ðsþ 1Þ; ð3:2bÞ

n ¼ a cos xþ ðl� a cos xÞ
2

ðfþ 1Þ; ð3:2cÞ

to obtain

Z 1

�1
BðtÞK1ðs; tÞdt þ

Z 1

�1
BðtÞ 2e�ix

s� t
þ K2ðs; tÞ

� �
d

þ 1
2p

Z 1

�1
qðfÞH1ðs; fÞdfþ

Z 1

�1
qðfÞH2ðs; fÞdf

� �
¼ 0; ð3:3Þ

where K1ðs; tÞ;K2ðs; tÞ;H1ðs; fÞ and H2ðs; fÞ are reported in Appendix B.
Observe that the kernels K1ðs; tÞ and K2ðs; tÞ appearing in the

integrals of Eq. (3.3) are not regular at all points of the crack, as
can be seen from Eqs. (B.8) and (B.9). They become infinite as both
s and t approach the mouth of the crack (s; t ! �1). The integral
equations are referred to as having Generalized Cauchy kernels
and the Gauss Chebyshev quadrature for standard Cauchy integral
equations does not apply. It is necessary to examine the behavior
of the functions BðtÞ at the ends t ¼ �1.

We argue that at the crack mouth the order of the singularity is
weaker than the square root type, and thus we force the dislocation
density at the crack mouth to be zero, i.e.,

Bð�1Þ ¼ 0: ð3:4Þ

It has been demonstrated that such treatment of the mouth of the
edge crack produces sufficiently accurate stress intensity factors
for the range of angles considered in this study.

For the reasons explained at length in Section 2.1, one can
assume that the surface stress qðnÞ is constant over the length lc ,
i.e., qðnÞ ¼ const: ¼ q. In this situation, Eq. (3.3) becomes
2 The definition and properties of Chebyshev polynomials that are used here, have
been summarized in the Appendix of Franco and Royer-Carfagni (2014a).
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Z 1

�1
BðtÞK1ðs; tÞdt þ

Z 1

�1
BðtÞ 2e�ix

s� t
þ K2ðs; tÞ

� �
dt

þ q
2p

Z 1

�1
H1ðs; fÞ þ H2ðs; fÞ½ �df ¼ 0: ð3:5Þ

Such a singular integral equation can be solved by representing the
dislocation density BðtÞ in terms of a bounded (regular) function
BregðtÞ and a function wðtÞ with proper singularities at the end
points, of the form

BðtÞ ¼ BregðtÞwðtÞ ¼
BregðtÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1� t2
p ; ð3:6Þ

where BregðtÞ is bounded. The regular function can be expressed in
terms of the Chebyshev polynomials of the first kind Tj as

BregðtÞ ¼
Xn

j¼0

XjTjðtÞ; ð3:7Þ

where Xj are complex coefficients. Substituting (3.6) and (3.7) in
(3.5), setting bBreg ¼ Breg=ðqc=ð2pÞÞ, and using the properties of
Chebyshev polynomials, one obtains the discretized form of the
integral equation as

p
n

Xn

k¼1

bBregðtkÞK1ðsj; tkÞ þ
p
n

Xn

k¼1

bBregðtkÞ
2e�ix

sj � tk
þ K2ðsj; tkÞ

� �

þ sgnðqÞp
n

Xn

k¼1

H1ðsj; fkÞ þ H2ðsj; fkÞ
� �

¼ 0;

j ¼ 1; . . . ;n� 1; ð3:8Þ

where tk ¼ cos /k; sj ¼ cos hj and fk ¼ cos dk, while the integration
and collocation points

/k ¼ dk ¼ ð2k�1Þp
2n k ¼ 1; . . . ; n;

hj ¼ jp
n j ¼ 1; . . . ;n� 1;

(
ð3:9Þ

represent the roots of the Chebyshev polynomials of the first and
second kind, respectively. The conditionbBregð�1Þ ¼ 0; ð3:10Þ

which satisfies (3.4), renders the system of equations solvable.

3.2. Stress intensity factors

At the tip of the inclined crack, the complex stress intensity fac-
tor K ¼ KI þ iKII , comprehensive of mode I and mode II opening, is
given by

K ¼ KI þ iKII ¼ lim
r!a
ðrhh þ irrhÞðdþqÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pðr � aÞ
p

: ð3:11Þ

It can be shown that the only unbounded part of the integral equa-
tion (3.1) is the one involving the Cauchy Kernel, so that

K ¼ KI þ iKII ¼ lim
r!a

Z a

0
BðqÞ2e�ix

r � q
dq

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðr � aÞ

p
: ð3:12Þ

In terms of the dimensionless quantities introduced in the previous
section, Eqs. (3.6) and (3.7), together with the properties3 of
Chebyshev polynomials of the first kind for jsj > 1, the relevant
expression reads

K ¼ KI þ iKII ¼
q
2

ffiffiffiffiffiffiffiffiffi
2pa
p

e�ix
Xn

j¼0

Xj; ð3:13Þ

or, equivalently,

K ¼ KI þ iKII ¼
q
2

ffiffiffiffiffiffiffiffiffi
2pa
p

e�ixbBregð1Þ; ð3:14Þ
3 See Appendix of Franco and Royer-Carfagni (2014a).
which are normalized as

Kn ¼
K

q
ffiffiffiffiffiffiffiffiffi
2pa
p ¼ 1

2
e�ix

Xn

j¼0

Xj ¼
1
2

e�ixbBregð1Þ: ð3:15Þ

The value of the function BðtÞ at the end points t ¼ �1 is given by
the interpolation formulas (Hills, 1996; Krenk, 1975)

Bð1Þ ¼ 1
n

Xn

k¼1

sin 2k�1
4n pð2n� 1Þ

� �
sin 2k�1

4n p
� � BðtkÞ; ð3:16aÞ

Bð�1Þ ¼ 1
n

Xn

k¼1

sin 2k�1
4n pð2n� 1Þ

� �
sin 2k�1

4n p
� � Bðtnþ1�kÞ: ð3:16bÞ

Fig. 12 shows the stress intensity factors KI (Fig. 12(a)) and KII

(Fig. 12(b)), evaluated through Eq. (3.14), as a function of the angle
x for different values of the crack length a and a fixed bond length
of the stiffener. Both figures have been obtained using the mechan-
ical parameters of Carrara et al. (2011), whose values are reported
later in Table 1.

It should be noted that in order to achieve a good approxima-
tion of the stress intensity factors the number n of Chebyshev
terms strongly increases as x decreases, i.e., as the crack tends to
be parallel to the surface. This is shown in Fig. 13, which plots
the normalized stress intensity factors KI;n and KII;n, evaluated
through Eq. (3.15), as a function of x for varying n. For the sake
of comparison the graph also reports the results obtained using
FEM program Abaqus. Observe that, for x > 20�;100 terms are suf-
ficient to obtain a very good approximation, but for small values of
Fig. 12. Stress intensity factors at the tip of the crack for different values of crack
length a and a fixed l ¼ 30 mm (mechanical properties of Carrara et al. (2011)).
Stress intensity factor in: (a) Mode I; (b) Mode II.



Table 1
Mechanical properties of materials used in experimental campaigns and parameters of the interface law.

Concrete FRP Interface law

Test Ep ft f 0c da;max W=C a0 tp bp Es ts bs sf sf

[MPa] [MPa] [MPa] [mm] – – [mm] [mm] [MPa] [mm] [mm] [MPa] [mm]

Biolzi et al. (2013) 30500 3.06 32.59 25 0.7 1.00 120 150 170000 1.4 50 7.78 0.26
Carrara et al. (2011) 28700 3.2 32.4 16 0.5 1.44 90 150 168500 1.3 30 7.71 0.15
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x, at least 300 terms are necessary to avoid the classical ‘‘fluctua-
tions’’, as evidenced in Fig. 13(b).
4. Competing mechanisms of failure

In a pull-out test, debonding starts from the loaded end of the
stiffener and progresses parallel to its axis (Fig. 1). When the bond
length reaches a critical value the formation of an inclined crack at
the free end becomes more favorable than continued debonding.
There is thus a competition between two different failure mecha-
nisms, summarized in Fig. 14: interface debonding and crack
diving into the substrate.

When the interfacial tangential stresses at the loaded end
become greater than the maximum allowable tangential stress
for the interface, q0, namely when

s P q0; ð4:1Þ

interface debonding occurs and, consequently, fracture propagates
parallel to the adhesive joint. We use here a yielding criterion,
rather than an energetic criterion à là Griffith, because we repute
that this is the approach that best interprets the debonding mech-
anism. In fact, as evidenced in Franco and Royer-Carfagni (2013),
consideration of the surface debonding within the framework of
Linear Elastic Fracture Mechanics (LEFM) does not allow to com-
pletely describe the process. In particular, it is not possible to give
a consistent definition of the effective anchorage length because
of the presence of stress singularities, which produce a very rapid
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Fig. 13. Normalized stress intensity factors at the tip of the crack as a function of the angl
Influence of the number n of terms of the Chebyshev expansion. (b) Detail in the interv
decay of the contact shear-stress profile at the interface (Franco
and Royer-Carfagni, 2013): relative slip and cohesive contact forces
are major requirements for a correct interpretation (Franco and
Royer-Carfagni, 2014a). Of course, one could relate any cohesive cri-
terion of rupture to an equivalent energetic criterion, but we think
that imposing a limit to the shear stress as per (4.1) is much simpler
and intuitive. As illustrated in Franco and Royer-Carfagni (2014a),
the value of q0 can be determined directly from experimental
measurements.

On the other hand, for the inclined crack of length a and inclina-
tion x that progresses from the free end of a stiffener, the energy
release rate is obtained from its stress intensity factors by using
Irwin’s relation

GxðaÞ ¼
KI;xðaÞð Þ2 þ KII;xðaÞ2

� �
Ep

; ð4:2Þ

where Ep ¼ Ep for plane stress, Ep ¼ Ep=ð1� m2Þ for plane strain, and
in the notation we have emphasized the dependence upon x and a.
When the crack length passes from the value a ¼ a1 to a ¼ a2 > a1,
the corresponding energy release reads

DGx;a1!a2 ¼
Z a2

a1

GxðaÞda: ð4:3Þ

One of the major assumptions in the present theory is that fracture
propagation is quantized, i.e., crack progresses in steps (quanta) of
finite length, which are of the same order of the material intrinsic
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Fig. 14. Competing mechanisms of failure in a pull out test of a stringer bonded to a substrate.
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length scale. Let a	 represent such a quantum, and suppose that the
toughness of the substrate is defined by the fracture energy per unit
area C. Then, the quantized nucleation of the crack at the free end of
the stiffener is governed by an energetic balance à là Griffith that
reads (Li et al., 1995)Z a	

0
GxðaÞda ¼ Ca	: ð4:4Þ

In such an expression we implicitly assume that the fracture energy
is constant, although experimental evidence has shown that the
energy dissipated during the first crack jump is usually smaller than
that dissipated during later jumps. A variable fracture energy could
be incorporated in the proposed model with no major difficulty, but
we will not do it because the qualitative description of the process,
which is our major aim here, remains unaltered. Therefore, the
crack propagates when

G	x P C; with G	x ¼
1
a	

Z a	

0
GxðaÞda: ð4:5Þ

In general G	x is a quadratic function of the stress intensity factors
and, consequently, it is a quadratic function of the shear stress
s transmitted by the stiffener to the substrate. One can normalize
such a quantity and write G	x ¼ G	x;ns2, so that Eq. (4.5) can be
written in the equivalent form

s2 P
C

G	x;n
: ð4:6Þ

Comparing this last inequality with (4.1), the competition between
the two mechanisms of Fig. 14 can be summarized in the following
conditions

s2 P C=G	x;n; ) crack propagation in the substrate;

s2 P q2
0; ) interface debonding:

(
ð4:7Þ

Combining these expressions, following the same rationale pro-
posed by Willis (1967), one obtains

G	x;n q2
0=C > 1; ) crack propagation in the substrate;

G	x;n q2
0=C < 1; ) interface debonding;

G	x;n q2
0=C ¼ 1; ) the two mechanisms are equivalent:

8>>>>>><>>>>>>:
ð4:8Þ

The importance of (4.8) is that it provides a comparison which is
independent on the applied shear stress s. The value of the non-
dimensional quantity G	x;n q2

0=C directly indicates which one of the
mechanisms of Fig. 14 is the most favorable when the stiffener is
pulled until some damage occurs. When G	x;n q2

0=C is less than 1,
propagation along the interface (debonding) occurs first; when it
is greater than 1, formation of an inclined crack is privileged; when
it is equal to 1, both mechanisms are equivalent.
Notice that (4.8) has been derived assuming that the crack sur-
faces are fully traction free, but in quasi-brittle materials like con-
crete a fracture process zone (FPZ) does form also at the free end of
the stiffener, as discussed in Franco and Royer-Carfagni (2014b).
This FPZ has the same effect of an equivalent sharp crack, which
may trigger the initiation of the subsurface inclined crack. Indeed,
the formal equivalence between Barenblatt and Griffith crack prop-
agation criteria is clearly established in Willis (1967), but under
the major assumption that the size of the process zone is small
with respect to the size of the crack, which in general is not true
for concrete. In any case, this rationale may give reasons for an
alternative and equivalent effect to the assumed quantized crack
propagation, but this discussion goes beyond the scope of this
article.

5. Comparison with experiments

In order to make a comparison with experiments, reference is
made to the two campaigns of pull-out tests recorded in Biolzi
et al. (2013) and Carrara et al. (2011). Carbon Fiber Reinforced
Polymer (CFRP) strips were bonded to concrete prisms and sub-
jected to simple pull out tests with a closed loop control that
allowed the capture of snap-back instabilities. Typical specimen
size and measured mechanical properties for the materials used
in such tests are reported in Table 1.

As already discussed in Section 2.1, it is commonly accepted
that the adhesive joint can be characterized by an interface consti-
tutive law of the type represented in Fig. 4, correlating the shear
bond-stress s with the relative slip s of the two adherents through
the adhesive. Supposing that the slip between the two adherents is
constant in practice, from the constitutive law of Fig. 4 it is possible
to consider a definite value for the shear stress transmitted by the
stiffener to the substrate. Failure in the bond occurs when such
stress reaches the critical value, which has been indicated with
q0 in Section 4.

The correct choice of q0 deserves some comments. One could
directly refer to the peak value sf of Fig. 4, which is certainly asso-
ciated with failure of the interface, but there are some uncertain-
ties in the experimental evaluation of the s� s constitutive law.
This is assessed by estimating the slip s by measuring, by means
of gages, the strains in the stiffener and in the substrate. However,
in the latter case the measurement cannot be made immediately
below the stiffener, but instead it is made at one of its sides (Ali-
Ahmad et al., 2006). Moreover, as evident from Fig. 3, debonding
is not a smooth process and the concrete substrate always present
noteworthy inhomogeneities that render any constitutive law valid
only at the qualitative level.

In the theory of debonding presented in Franco and Royer-
Carfagni (2014a,b), a simple step-wise approximation of the con-
stitutive law of Fig. 4 has been sufficient to represent the debond-
ing process in very good agreement with the experimental results.
Therefore, one might assume also here q0 ¼ sc , where sc ¼ sf =2
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represents an average value of the bond strength and corresponds
to the maximum stress in a stepwise approximation that preserves
the same fracture energy of the joint and the same limit slip sf . Ad
hoc experiments would be necessary for a precise evaluation of q0,
but this choice represents a reasonable compromise. In any case,
the results that follow remain valid, at the qualitative level, if
one considered other values of q0.

For the experiments of Carrara et al. (2011), the authors
suggested the values sf ¼ 7:71 MPa and sf ¼ 0:15 mm, so that
sc ¼ 3:85 MPa (Table 1). Fig. 15 shows the ratio G	x;ns2

c =C intro-
duced in (4.8), as a function of the inclination angle x of the crack
for different values of the quantum length a	. The fracture energy C
for the substrate has been evaluated through the empirical model
by Bažant and Becq-Giraudon (2002), which takes into account the
effects of the shape and the surface texture of the aggregates based
upon a large database of test results. In particular, one can consider
the expression for mode I fracture energy of concrete (the domi-
nant fracture mode), which reads

C ¼ 2:5a0
f 0c

0:051

	 
0:46

1þ da;max

11:27

	 
0:22 W
C

	 
�0:30

¼ 0:077 N mm�1; for Biolzi et al: ð2013Þ;
0:11 N mm�1; for Carrara et al: ð2011Þ;

�
ð5:1Þ

where a0 is the parameter that takes into account the shape of the
aggregate (1 for rounded aggregates; 1.44 for crushed and sharp
aggregates), f 0c ¼ fc þ 8[MPa] is the cylinder compressive strength
of concrete (NTC, 2008), da;max is the maximum aggregate size in
the mix and W=C is the water/cement ratio by weight of the mix.
Assumed data are listed in Table 1.

The value G	x;n s2
c=C ¼ 1 defines the limit case that separates the

two different damage mechanisms as per (4.8) of Section 4. From
the graph of Fig. 15, it is then possible to evaluate, for a fixed quan-
tum length a	 of crack-propagation, defined in (4.4), the limit angle
x which marks the transition from one of the damage mechanisms
to the other. For example, the angle x ’ 31� corresponds to a
quantum length a	 ¼ 10 mm, whereas the angle x ’ 21� is associ-
ated with a	 ¼ 20 mm.

For the sake of comparison, we report in Fig. 16 the counterpart
of the graphs of Fig. 15 for the case q0 ¼ sf , i.e., when the peak
shear stress, rather than the average value, is considered. For this
case, x ’ 33� for a	 ¼ 10 mm, and x ’ 26� when a	 ¼ 20 mm. In
general, the higher the value of the critic shear stress q0, the higher
are the inclination angles. It is reasonable to assume that the real
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Fig. 15. Normalized strain energy release as a function of the inclination angle x for
different values of the crack quantum length a	 (mechanical parameters of Carrara
et al. (2011), bond length l ¼ 30 mm, q0 ¼ sc).
situation should correspond to an intermediate value between
q0 ¼ sc and q0 ¼ sf . However, the qualitative aspects of the prob-
lem remain the same.

Fig. 17 reports the counterpart of the graphs of Fig. 16 for the
tests by Biolzi et al. (2013). From Table 1, one has sf ¼ 7:78 MPa
and sf ¼ 0:26 mm. Consequently, for this case, x ’ 17� for
a	 ¼ 10 mm, and x ’ 10� when a	 ¼ 20 mm.

It is important to remark that our results are strongly based
upon the assumption of ‘‘quantized fracture mechanics’’ (Pugno
and Ruoff, 2004). Relaxation of this hypothesis, i.e., assuming that
the crack propagation is smooth and the increment of crack length
is infinitesimal, precludes the interpretation of the phenomenon. In
fact, notice that as a	 ! 0, the corresponding graphs tend to flatten
so that in general, for whatever value of x and q0, one would find
G	x;nq2

0=C < 1. In other words, interface debonding would always be
the preferred mechanism. Therefore, the definition of the ‘‘fracture
quantum’’ has a central role for the description of the propagation
process.

For the case of concrete, the crack quantum length a	 is of the
order of the average size of the aggregate. For the tests of Carrara
et al. (2011), since such average size is in the range 10–15 mm,
one can conveniently consider values of the same order for
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a	. Fig. 15 shows that, with this choice, the critical angle x varies in
the interval 24�–31�. From the pictures recorded in Carrara et al.
(2011), already presented in Fig. 2, it is evident the formation of
wedge-shaped concrete bulbs at the end of the broken specimens.
Such wedges are defined by angles comprised in the interval 18�–
33�, which agree very well with the conclusions of the present
theory.

In the same way, consider the experimental data of Biolzi et al.
(2013). One can assume for a	 the average size of the aggregate,
which is in the range 10–20 mm. Therefore, from the graph of
Fig. 17, it is evident that the critical angle x varies in the interval
10�–17�. Measurements of the bulbs detached in the experiments
(Biolzi et al., 2013) show that the critical angle x varies in the
range 9�–18�, which squares very well with the prediction of the
analytical model.

Notice that since the crack quantum length a	 is associated with
the characteristic size of the concrete aggregates, the graphs of
Fig. 15 are also representative of the size effect due to the substrate
microstructure. In other words, the material intrinsic length scale
governs the angle of inclination of the wedge-shaped spall. Of
course, the size itself of the substrate may also affect the response
of the bonded joint, but the model cannot capture this effect
because the substrate is assumed to be infinite.
6. Conclusions

The pull-out of a FRP stringer adherent to a quasi-brittle sub-
strate such as concrete is characterized by debonding starting from
the loaded end and progressing towards the free extremity of the
stringer (Franco and Royer-Carfagni, 2014a,b). A peculiar phenom-
enon occurs just prior to rupture, when the surviving bond length
is of the order of 30–50 mm. An inclined crack forms at the free end
of the stiffener and extends into the substrate, and in doing so it
defines a wedge-shaped portion of the substrate that eventually
separates as a characteristic bulb that remains attached to the
stiffener.

To our knowledge, this type of failure has not been exhaustively
discussed in the technical literature. This is the motivation for the
present study, where a simplified model problem has been pre-
sented. The model is built upon four hypotheses: (i) the stiffener
bending stiffness is negligible, so that only a tangential traction
develops between the stiffener and the substrate; (ii) when the
inclined crack initiates, the surviving bond length is so small that
the stiffener-substrate relative slip, and consequently the tangen-
tial contact stress, can be considered uniform; (iii) the eventual for-
mation of the inclined crack isolates a wedge in the substrate
immediately underneath the stiffener that produces a localized
release of the stiffener itself, here supposed to be complete (con-
tact stresses directly applied on this portion are neglected); (iv)
the crack propagation occurs through crack increments (quanta)
of small but finite length.

Under the assumption of a linear elastic, homogeneous and iso-
tropic semi-infinite substrate in generalized plane stress, the dis-
tributed dislocation approach has been used to determine the
opening of the inclined crack, the stress intensity factors, and the
energy release rate. The problem is reduced to the solution of a sin-
gular integral equation, representing the condition of zero traction
along the crack surfaces, which has been solved numerically by
using the method proposed by Erdogan and Gupta (1972).

It is concluded that two damage mechanisms are in competi-
tion: debonding along the stiffener-substrate interface or cracking
at the free extremity of the stiffener along an inclined path. In gen-
eral, debonding can occur when the shear contact stress is greater
than the maximum allowable strength of the interface. On the other
hand, the inclined crack opens when the strain energy release
associated with its quantized propagation is not lower than the cor-
responding fracture energy of the substrate itself. Which of the two
scenarios is realized for prescribed values of the crack quantum
(including the angle of extension of the subsurface crack that do
form) is identified using the criterion proposed in Willis (1967).

The hypothesis of ‘‘quantized fracture mechanics’’ is crucial for
the present model, because the inclination of the crack that wins
the competition with interface debonding depends upon the length
of the crack ‘‘quantum’’. This quantity is associated with the char-
acteristic length-scale of the material, which for a natural con-
glomerate, like concrete, is of the same order of the average size
of the aggregate.

Assuming consistent material parameters, the predictions of the
proposed model have been compared with experimental results of
FRP-to-concrete pull-out tests that are available in the literature.
The concrete bulbs that remain attached to the FRP strips have
angles in very good agreement with the proposed analytical model.
The results of this study provide valuable insights that can in the
future be assessed further using computational simulations under
less restrictive assumptions. A similar approach might also be used
to investigate for the possibility of alternative failure mechanisms
in laminated composites under in-plane shear, where the delami-
nation competes with the transverse cracking.
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Appendix A. The wedge-shaped-cracked half-plane, loaded
along the whole bond length of the stiffener

Consider the wedge-shaped cracked elastic half-plane in gener-
alized plane stress of Fig. 5(a), and suppose that the contact
stresses with the stiffener are tangential forces per unit area q,
uniformly distributed along the whole bonded surface. In order to
evaluate the state of stress rrr along such surface, consider the
relation

rrr þ irrh ¼ UðzÞ þ ð1þ e2ihÞUðzÞ � ðz� zÞe2ihU0ðzÞ
þ e2ihUðzÞ: ðA:1Þ

With the same procedure of Section 2.2, the stress is due to the
superposition of the two problems of Fig. 9.

Consider first the half-plane with the inclined crack (Fig. 10).
The stress along the radial line z ¼ re�ih due to a distributed dislo-
cation acting along the crack of length a at z0 ¼ qe�ix;0 6 q 6 a,
are given by setting UðzÞ ¼ UdwðzÞ þUdcðzÞ, as per (2.4) and (2.6), in
(A.1), and reads

ðrrr þ irrhÞd ¼
Z a

0
BðqÞK3ðr;qÞdqþ

Z a

0
BðqÞK4ðr;qÞdq; ðA:2Þ

where K3ðr;qÞ and K4ðr;qÞ are given in Appendix B.
The case of a half-space with tangential stresses applied over

the length l of its boundary can be solved with the same procedure
of Section 2.2 substituting the expression for the complex poten-
tials (2.10) into Eq. (A.1), where in this case the domain of integra-
tion is the interval ½0; l�. The stresses along the line z ¼ re�ih due to
the presence of a distribution of constant shear stress q along the
surface z0 ¼ z0 ¼ n are given by

ðrrr þ irrhÞq ¼
q

2p

Z l

0
H3ðr; nÞdn; ðA:3Þ

where H3ðr; nÞ is given in Appendix B.
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Therefore, the state of stress due to the superposed effects is
given by

rrr þ irrh ¼
Z a

0
BðqÞK3ðr;qÞdqþ

Z a

0
BðqÞK4ðr;qÞdqþ

q
2p



Z l

0
H3ðr; nÞdn: ðA:4Þ

In the special case h ¼ 0 (surface of the half-plane) the integral (A.4)
becomes

ðrrr þ irrhÞjh¼0 ¼
Z a

0
BðqÞK	3ðr;qÞdqþ

Z a

0
BðqÞK	4ðr;qÞdq

þ q
2p

Z l

0

4
n� r

� �
dn; ðA:5Þ

where

K	3ðr;qÞ ¼ 2 � 1
r � qeix þ

r � qeix

ðr � qe�ixÞ2

 !" #
;

K	4ðr;qÞ ¼ 2 � 1
r � qe�ix þ

r � qe�ix

ðr � qeixÞ2

 !" #
; ðA:6Þ

and the last integral is intended as a Cauchy principal value.
The integral (A.5) can be solved using the methods provided by

Erdogan and Gupta (1972) and reported in Section 3.1. By using
relations (3.6) and (3.7) and the property of Chebyshev polynomi-
als, one obtains the integral (A.4) in the discretized form

ðrrr þ irrhÞjh¼0 ¼
p
n

Xn

k¼1

BregðtkÞK	3ðsj; tkÞ

þ p
n

Xn

k¼1

BregðtkÞK	4ðsj; tkÞ

þ q
2p

4 ipþ ln
1� sj

1þ sj

���� ����	 
� �
;

j ¼ 1; . . . ;n� 1; ðA:7Þ

where tk ¼ cos /k; sj ¼ cos hj and the integration and collocation
points are given by Eq. (3.9). The following relation holds

Breg ¼
q

2p
bBreg;

where bBreg is given by the solution of the integral equation (3.8).
For the sake of comparison, one may focus on the wedge-

shaped portion of the substrate isolated by the inclined crack,
and consider for this, as an approximation, the solution given by
Michell (1899) for an infinite wedge loaded by shear stresses on
one of its edges, as represented in Fig. 7. Recall that the stress com-
ponents are given by

rrr ¼ �2A1 cos 2hþ 2A2 � 2A3 sin 2hþ 2A4h; ðA:8aÞ
rrh ¼ 2A1 sin 2h� 2A3 cos 2h� A4; ðA:8bÞ
rhh ¼ 2A1 cos 2hþ 2A2 þ 2A3 sin 2hþ 2A4h; ðA:8cÞ

where the four constants can be obtained through the boundary
conditions

rrh ¼ q; rhh ¼ 0; for h ¼ 0;
rrh ¼ 0; rhh ¼ 0; for h ¼ x:

�
ðA:9Þ

The stress components are therefore

rrr ¼�
q
2

cosð2h�xÞþcosx�2xcoshcosðh�2xÞcscx�2hsinx½ �
xcosx� sinx

; ðA:10aÞ

rrh ¼�q
�coshþxcoshcotxþxsinh½ �sinðh�xÞ

xcosx� sinx
; ðA:10bÞ

rhh ¼
q
2

cosð2h�xÞ�cosx�2xsinhsinðh�2xÞcscxþ2hsinx½ �
xcosx� sinx

: ðA:10cÞ
In the case h ¼ 0, one obtains

rrr ¼
q
2

csc x 2x cos 2x� sin 2xð Þ
x cos x� sin x

; ðA:11aÞ

rrh ¼ q; ðA:11bÞ

rhh ¼ 0: ðA:11cÞ

Finally, the strain components are given, by Hooke’s law, in the
form

err ¼
1
E
ðrrr � mrhhÞ; ðA:12aÞ

ehh ¼
1
E
ðrhh � mrrrÞ; ðA:12bÞ

erh ¼
2ð1þ mÞ

E
rr#: ðA:12cÞ

Remarkably, the simple Michell’s solution, and the elastic solution
for the cracked half plane, overlap on the wedge-shaped cracked
portion, as represented in the graph of Fig. 6.
Appendix B. Green’s functions.

Here is a list of the expressions of the Green’s functions that are
used throughout this article.

K1ðr;qÞ ¼ �
2qi sin x

ðreix � qe�ixÞ2
� 1� e�2ix

ðre�ix � qeixÞ

þ 2rie�2ix sinx
ðre�ix � qeixÞ2

ðB:1Þ

K2ðr;qÞ ¼ �
1

ðreix � qe�ixÞ þ
2qið1� e�2ixÞ sin x
ðre�ix � qeixÞ2

� e�2ix

ðre�ix � qeixÞ þ
8rqe�2ix sin2 x
ðre�ix � qeixÞ3

ðB:2Þ

K3ðr;qÞ ¼ �
1

re�ih � qeix þ
1

re�ih � qe�ix �
1

reih � qe�ix

� e2ih

reih � qeix þ
ð1þ e2ihÞðreih � qeixÞ
ðreih � qe�ixÞ2

þ 4rie2ih sin h

ðreih � qe�ixÞ2
� 4rie2ih sin hðreih � qeixÞ

ðreih � qe�ixÞ3
ðB:3Þ

K4ðr;qÞ ¼ �
1

re�ih � qeix �
ð1þ e2ihÞ

reih � qe�ix þ
1

reih � qeix

þ re�ih � qe�ix

re�ih � qeix þ
2rie2ih sin x
ðreih � qe�ixÞ2

þ e2ihðre�ih � qe�ixÞ
ðreih � qeixÞ2

ðB:4Þ

H1ðr; nÞ ¼
1

n� reix �
e�2ix

n� re�ix ðB:5Þ

H2ðr; nÞ ¼
ð1� e�2ixÞ
n� re�ix þ

2rie�2ix sinx
ðn� re�ixÞ2

ðB:6Þ

H3ðr; nÞ ¼
1

n� re�ih
þ ð1þ e2ihÞ

n� re�ih
þ 2rie2ih sin h

ðn� reihÞ2
ðB:7Þ
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K1ðs; tÞ ¼ �
2ðt þ 1Þi sin x

ððsþ 1Þeix � ðt þ 1Þe�ixÞ2

� 1� e�2ix

ððsþ 1Þe�ix � ðt þ 1ÞeixÞ

þ 2ðsþ 1Þie�2ix sin x
ððsþ 1Þe�ix � ðt þ 1ÞeixÞ2

ðB:8Þ

K2ðs; tÞ ¼ �
1

ððsþ 1Þeix � ðt þ 1Þe�ixÞ

þ 2ðt þ 1Þið1� e�2ixÞ sin x
ððsþ 1Þe�ix � ðt þ 1ÞeixÞ2

� e�2ix

ððsþ 1Þe�ix � ðt þ 1ÞeixÞ

þ 8ðsþ 1Þðt þ 1Þe�2ix sin2 x
ððsþ 1Þe�ix � ðt þ 1ÞeixÞ3

ðB:9Þ

H1ðs; fÞ ¼
1

ðfþ 1Þ � ðsþ 1Þeix �
e�2ix

ðfþ 1Þ � ðsþ 1Þe�ix ðB:10Þ

H2ðs; fÞ ¼
ð1� e�2ixÞ

ðfþ 1Þ � ðsþ 1Þe�ix þ
2ðsþ 1Þie�2ix sin x
ððfþ 1Þ � ðsþ 1Þe�ixÞ2

ðB:11Þ
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