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Abstract: Engineering structures are often designed to have complex geometries, which could introduce stress singularities that are weaker
than the conventional21=2 crack-tip singularity. Extrapolating the results of small-scale laboratory tests to predict the response of a full-scale
structure comprised of quasi-brittle materials requires an understanding of how the weak stress singularities modify the classical energetic and
statistical scaling theories of quasi-brittle fracture. Through a theoretical and numerical study, a new scaling law for quasi-brittle fracture is
derived, which explicitly relates the nominal structural strength to the structure size and the magnitude of the stress singularity. The theoretical
analysis is based on a generalized weakest-link model that combines the energetic scaling of fracture with the finite weakest-link model. The
model captures the transition from the energetic scaling to statistical scaling as the strength of the stress singularity diminishes. The new scaling
law is in close agreement, for the entire range of stress singularities, with the size effect curves predicted through finite-element simulations of
concrete beams containing an arbitrary-angle V-notch under Mode-I fracture. DOI: 10.1061/(ASCE)EM.1943-7889.0000693. © 2014
American Society of Civil Engineers.
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Introduction

The designs of large-scale engineering structures, such as bridges,
dams, aircraft, and ships, usually rely on the results of reduced-
scale laboratory testing. Therefore, understanding the size effect
on structural strength is of paramount importance for ensuring
a safe and reliable design. Many of these engineering structures
are made of quasi-brittle materials, which are brittle hetero-
geneous in nature, as exemplified by concrete, fiber-reinforced
composites, ceramics, rocks, and others at the microscales and
nanoscales. It is well known that quasi-brittle structures exhibit
a size-dependent transitional failure behavior, where small-size
structures fail in a quasi-plastic manner and large-size structures
fail in a perfectly brittle manner. The underlying reason is that the
size of the material inhomogeneities is not negligible compared
with the structure size. The transition from ductile to brittle re-
sponse can be characterized by the so-called size effect on the
nominal structural strength. The nominal strength is a load pa-
rameter usually defined as sN 5 cPmax=bD for two-dimensional
(2D) structures and sN 5 cPmax=D2 for three-dimensional (3D)
structures, where Pmax is the maximum load capacity of the
structure,D is the characteristic size of the structure to be scaled, b
is the width of the structure in the third (transverse) direction, and c
is a constant such that sN reduces to some familiar parameter such
as the maximum stress in the structure in the absence of the stress

concentration. So far, two independent mechanisms have been
identified that explain the size effect on the nominal strength
(Ba�zant 2004, 2005): one is based on the statistics of random
material strength, and the other is based on the energetic argument
of material fracture.

The statistical scaling theory usually applies to structures forwhich
the peak load is reached when a macrocrack initiates from one ma-
terial representative volume element (RVE). In other words, the
failure statistics of the structure can be described by the weakest-link
model, where each link corresponds to one RVE. Research on sta-
tistical scaling has a long and rich history dating back to Leonardo da
Vinci (1945, p. 546), who first speculated this type of scaling phe-
nomenon. Mariotte (1686, p. 249) proposed a qualitative explanation
of the statistical size effect that attributes the size effect to the ran-
domness ofmaterial strength. The formal mathematical framework of
the statistical size effect on structural strength initiatedwith Fisher and
Tippet’s (1928) seminal work on the extreme value statistics.Weibull
(1939) independently investigated the extreme value statistics and
applied it to describe the random material strength, i.e., the Weibull
distribution. The Weibull distribution directly yields the Weibull
size effect, which has been successfully applied to perfectly brittle
structures including fine-grain engineering and dental ceramics. The
applicability of the Weibull distribution for brittle structures is at-
tributed to the fact that the size of their RVEs is orders of magnitude
smaller than the structural dimensions. This implies an infinite
weakest-link model (i.e., infinite number of RVEs) and the corre-
sponding probability distribution of structural strength can be de-
scribed by the extreme value statistics.

In contrast with perfectly brittle structures, the RVE size of quasi-
brittle structures is not negligible compared with the structure size,
and thus, the number of RVEs in the weakest-link model must be
finite. The infinite weakest-link model only requires knowledge
of the far-left tail of the cumulative distribution function (cdf) of
RVE strength. But the finite weakest-link model requires the entire
strength cdf of one RVE to be known. Recent studies (Ba�zant and
Pang 2006, 2007; Ba�zant et al. 2009; Le et al. 2011) have shown that
the strength cdf of one RVE can be derived from atomistic fracture
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mechanics and a hierarchical multiscale transition model. The re-
sulting finite weakest-link model predicts an intricate scale effect
on the strength cdf of the structure, varying from the Gaussian
distribution grafted by a power-law tail for small-size structures to
the Weibull distribution for large-size structures. Such a non-
Weibullian strength cdf for intermediate-size structures agrees well
with the experimentally observed strength cdfs of structures made
of various quasi-brittle materials such as composites and engi-
neering and dental ceramics (Ba�zant and Pang 2007; Ba�zant et al.
2009; Le et al. 2011). In the meantime, the finite weakest-link
model leads to a non-Weibullian size effect on the mean structural
strength, which matches the predictions of other mechanical models
such as the cohesive crack and nonlocal models.

The energetic scaling theory applies to structures that contain
a large preexisting stress-free crack formed prior to the maximum
load. The existence of the stress-free crack causes significant stress
concentration so that the crack growth is guaranteed to emanate from
its front. Therefore, whatever randomness exists in material strength
will not affect the scaling of mean strength. Extensive studies have
shown that an approximate form of this size effect, which is in
agreement with experiments on concrete, ceramics, composites, and
sea ice, can be derived from the equivalent linear elastic fracture
mechanics based on the asymptotic expansion of the energy release
rate function or the J-integral (Ba�zant 1984, 2004, 2005; Ba�zant and
Kazemi 1990; Ba�zant and Planas 1998). In contrast with the
aforementioned statistical scaling theory, this type of size effect
is usually referred to as the energetic (or deterministic) scaling.A recent
study also investigated the energetic scaling of fracture of structures
with a reentrant corner with a sharp angle under Mode-I loading
(Ba�zant and Yu 2006).

It is clear that the statistical and energetic scaling theories rep-
resent two limiting cases: (1) statistical scaling theory is limited to
structures without stress singularities, where in principle the damage
could initiate at any location within the structure; and (2) energetic
scaling theory applies to structures with relatively strong stress
singularities, where the location of damage is predetermined. This
indicates that the type of scaling mechanism depends on the order of
stress singularities of the structure. As the stress singularities of the
structure diminish, the energetic scaling should transition to the
statistical scaling. However, it is not clear how the scaling mecha-
nism transits between these two limiting cases. Understanding such
a transitional scaling behavior is important, because many modern
engineering structures often contain geometric discontinuities that
produce weak stress singularities. The simplest case is a homoge-
neous structure with a reentrant corner, i.e., a V-notch, where the
notch angle governs the order of the stress singularity. This study
aims to formulate a universal size effect equation for quasi-brittle
structures that bridges the existing statistical and energetic scaling
theories through theoretical and numerical investigations on the
fracture of structures with a V-notch under Mode-I loading.

Review of Energetic and Statistical Scaling Theories

Consider a homogeneous structure of positive geometry containing
a V-notch and subjected toMode-I loading (Fig. 1), where the notch
angle is denoted by g. Positive geometry, which is typical of most
structural geometries, is defined such that the peak load is reached
once the fracture process zone (FPZ) is fully developed (Ba�zant
2005). In this paper, the authors also assume that the notch is
sufficiently deep, i.e.,a5 a=D. 0:1, where a is the notch depth and
D is the depth of the structure. In general, the stress concentration at
theV-notch tip is governed by two distinct stress singularities, which
represent the symmetrical and antisymmetrical deformation modes

(Williams 1952; Carpenter 1984; Sinclair et al. 1984; Liu et al. 1998).
For Mode-I fracture, only one stress singularity l prevails, which
corresponds to displacements that are symmetric about the center-
line of the notch. This section reviews the existing energetic and
statistical scaling theories for the two limiting cases.

Case of Strong Stress Singularity

If the stress singularity is sufficiently strong, then the FPZmust form
at the notch tip. Therefore, the corresponding scaling mechanism is
deterministic in nature. The fracture of the V-notch has been ana-
lyzed both theoretically and experimentally (Ritchie et al. 1973;
Carpinteri 1987; Seweryn 1994; Dunn et al. 1996, 1997; Gomez and
Elices 2003). Three commonly used fracture criteria are as follows:
(1) the peak load is reached when the stress intensity factor reaches
a critical value (Carpinteri 1987;Dunn et al. 1996; Gomez andElices
2003), (2) the peak load is attained when the stress at a certain
distance cf from the notch tip reaches the material tensile strength
(Ritchie et al. 1973; Ba�zant and Yu 2006), and (3) the peak load is
realized when the energy release rate of an equivalent crack that
represents the FPZ reaches a critical value, i.e., the fracture energy
(Le et al. 2010; Le 2011). These criteria are all cast in the framework
of linear elastic fracture mechanics, which can be used to derive the
large-size asymptote of the size effect. For Mode-I loading, all three
criteria essentially yield the same form of the power-law size effect.
Among these criteria, the second criterion is relatively straight-
forward to use, because the first criterion adopts a geometry-
dependent critical stress intensity factor, which needs to be measured
for every notch angle (Ba�zant and Yu 2006), and the third crite-
rion requires determination of the energy release at the tip of an
equivalent crack through the solution of an ancillary boundary value
problem (Leguillon 2002; Le et al. 2010; Le 2011).

Based on the Williams solution, the stress field near the notch tip
under Mode-I loading can be expressed as

sij ¼ Hr lfijðu, gÞ (1)

where r 5 radial distance from the notch tip; fijðu, gÞ 5 dimen-
sionless function describing the angular dependence of the stress;
l 5 order of stress singularity; and H 5 stress intensity factor.
Dimensional analysis allows the stress intensity factor H to be
written as

H ¼ sD2lhðgÞ (2)

wheres5 nominal stress5 cP=bD;P5 applied load; c5 constant;
b 5 width of the structure in the transverse direction; and hðgÞ
5 dimensionless stress intensity factor, which depends on the ge-
ometry of the structure. Considering the second failure criterion, the
nominal strength can be calculated as

sN ¼ ft9cðgÞ
�
D=cf

�l (3)

Fig. 1. Structure with a V-notch under Mode-I fracture
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where cðgÞ5 h21ðgÞ f21
uu ð0, gÞ; and ft9 5 tensile strength. Eq. (3)

represents the large-size asymptote of the energetic size effect law.
The small-size asymptote is relatively easy to obtain, because for
small-size structures, the FPZ occupies the entire crack ligament.
Consequently, the ligament must behave like a crack filled with
plastic glue. At this plastic limit, the size effect must vanish. An
approximate equation that bridges these two asymptotes has been
proposed (Ba�zant and Yu 2006; Le 2011)

sN ¼ ss

h
1þ �

D=D0g
�1=bg

ilbg

(4)

where ss 5 nominal strength at the small-size limit; bg 5 model
parameter; and D0g 5 transitional size. Eq. (4) clearly indicates the
effect of the stress singularity on the scaling law for the case where
the stress singularity is sufficiently strong. When l521=2 and bg

5 1, Eq. (4) represents the classical Type-2 size effect (Ba�zant 1984,
2004), which applies to structures with a large preexisting crack.

Case of Zero-Stress Singularity

The limiting case of the zero-stress singularity corresponds to
unnotched structures, for which it is uncertain where damage initiates
and localizes. The structure reaches its peak load once any one of
the RVEs is damaged, and thus, the RVE is defined as the smallest
material volume whose failure triggers the failure of the entire
structure. The size of the RVE is approximately two to three times
the size of material inhomogeneities. Statistically speaking, the
structure can be represented by a chain of RVEs. Because the RVE
size is about the same as the autocorrelation length of the random
strength field (Grassl and Ba�zant 2009), the RVE strength can be
treated as an independent random variable, and the failure proba-
bility of the structure can then be written as

Pf ðsNÞ ¼ 12 ∏
n

i51
f12P1½sNsðxiÞ�g (5)

where P1 5 cdf of RVE strength; n 5 number of RVEs in the
structure; and sðxiÞ 5 dimensionless stress field such that sNsðxiÞ
5maximum elastic principal stress at the center of the ith RVEwith
a coordinate xi.

Based on atomistic fracturemechanics and a statistical multiscale
transition model, it has been shown that the cdf of RVE strength can
be approximated by a Gaussian distribution grafted by aWeibull tail
at a probability within the range of 1024e1023 (Ba�zant et al. 2009;
Le et al. 2011), i.e.

P1ðsÞ ¼ 12 exp
�
2hsim=sm0

� �
s,sgr

�
(6)

P1ðsÞ ¼ Pgr þ rfffiffiffiffiffiffi
2p

p
dG

ðs
sgr

e2ðs92mGÞ2=2d2Gds9 �
s$sgr

�
(7)

where hxi5maxðx, 0Þ; mG and dG 5 mean and standard deviation
of the Gaussian core if considered extended to2‘; s0 and m5 scale
and shape parameters of the Weibull tail (m is also called the Weibull
modulus); rf 5 scaling parameter required to normalize the grafted
cdf such that P1ð‘Þ51; Pgr 5 grafting probability 512 exp½2ðsgr

=s0Þm�, and the continuity of the probability density function at the
grafting stress requires that ðdP1=dsÞjs1

gr
5ðdP1=dsÞjs2

gr
.

The mean strength of the structure can be calculated as sN

5
Ð 1
0 sNdPf 5

Ð ‘
0 ½12Pf ðsNÞ�dsN . By considering structures of

different sizes, the authors readily obtain the size effect on the mean
structural strength. Though it is impossible to derive a closed-form

expression, an approximate equation for this size effect has been
proposed, which is referred as the Type-1 size effect (Ba�zant and
Novák 2000; Ba�zant 2004, 2005)

sN ¼
�
Na

D
þ
�
Nb

D

	rnd=m
1=r
(8)

where nd 5 dimension of scaling; and Na, Nb, and r 5 constants,
which can be directly related to the statistical parameters of the cdf of
RVE strength, i.e.,mG, dG, and s0, based on the small-size and large-
size asymptotes (Cannone Falchetto et al. 2013). It should be pointed
out that Eq. (8) does not apply as D→ 0, which makes sense be-
cause the continuummodel breaks down for structures of very small
size. A recent study (Le et al. 2012) has shown that for small and
intermediate-size structures the size effect derived from this finite
weakest-link model with the use of elastic stresses agrees well
with the prediction from the nonlinear deterministic calculation.
This is because the mean size effect behavior for small-size and
intermediate-size structures is mainly caused by the operative stress
redistribution mechanism, which can be well predicted by a non-
linear deterministic calculation. At the same time, this mechanism
can also be captured by the finite weakest-link model, where the
statistical multiscale transition model used for the formulation of the
cdf of RVE strength consists of statistical bundles and chains that
represent the damage localization and load redistribution mecha-
nisms at different scales (albeit only the elastic stresses are used) (Le
et al. 2011, 2012). For large-size structures, the zone of stress re-
distribution is negligible compared with the structure size, and the
size effect is mainly caused by the randomness of material strength,
which cannot be captured by the deterministic calculation. There-
fore, the size effect curve for the case of the zero-stress singularity
can be completely explained by the finite weakest-link model.

Generalized Weakest-Link Model for Transitional
Scaling Behavior

For structures with a wide V-notch and therefore a weak stress
singularity, there is no guarantee that the FPZ would form at the tip
of the V-notch. This means that the failure of the structure can be
statistically represented by the weakest-link model. On the other
hand, there exists a singular stress field at the V-notch tip even
though the degree of stress concentration is not significant. Fur-
thermore, the fracture of the V-notch itself is associated with an
energetic scaling law shown as Eq. (4), which cannot be represented
by the existing finite weakest-link model. This prompts us to derive
a new scaling model by generalizing the classical finite weakest-link
model to include the energetic scaling of fracture of the V-notch.

In the proposed generalized weakest-link model, the singular
stress zone is isolated from the remaining part of the structure
(Fig. 1), where the singular stress zone can be determined by
comparing Eq. (1) to the numerically simulated elastic stress field.
Because the singular stress zone is influenced by the presence of the
V-notch, whose fracture exhibits an energetic scaling [i.e., Eq. (4)],
the authors propose to include this energetic scaling for the cal-
culation of the failure probability of the singular stress zone

Pf ,VI
ðsNÞ ¼ 12 ∏

N1

i51
f12P1½mðDÞsNsðxiÞ�g (9)

mðDÞ ¼
h
1þ �

D=D0g
�1=bg

i2lbg

(10)

where the parameters in the scaling term mðDÞ follow the same
definitions as those in Eq. (4); and N1 5 number of RVEs in the
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singular stress zone. For the remaining part of the structure, a
conventional weakest-link model can be used, i.e.

Pf ,VII
ðsNÞ ¼ 12 ∏

N2

i51
f12P1½sNsðxiÞ�g (11)

whereN2 5 number of RVEs in the region outside the singular stress
zone. Therefore, the failure probability of the entire structure can
easily be written as

Pf ¼ 12
�
12Pf ,VI

��
12Pf ,VII

�
(12)

fromwhich themean structural strength can be calculated. Similar to
the conventional weakest-link model, a closed-form solution is not
expected. In this paper, the authors seek an approximate scaling
equation through asymptotic matching.

At the large-size limit, the failure probability of the structure is
governed by the tail part of the strength cdf of one RVE. Based on
the fact that lnð12 xÞ� 2x for x→ 0, theweakest-linkmodel for 2D
structures can be rewritten as

Pf ðsNÞ ¼ 12 exp

2
642 ð

VI

mmðDÞs m
NhsðxÞim
sm0

dVðxÞ
l20

2

ð
VII

s m
NhsðxÞim
sm0

dVðxÞ
l20

3
75 (13)

where l0 5RVE size. Because sðxÞ represents the normalized elastic
stress field, the linear transformation of the coordinate, i.e., j5 x=D,
can be used to rewrite Eq. (13) as

Pf ðsNÞ ¼ 12 exp

(
2
h
mmðDÞC1 þC2

i
D2

l20

�
sN

s0

�m
)

(14)

C1 ¼
ð
VI

hsðxÞimdVðjÞ, C2 ¼
ð
VII

hsðxÞimdVðjÞ (15)

Based on Eq. (14), the mean strength can easily be calculated

sN ¼ s0
h
mmðDÞC1 þC2

i21=m
G

�
1þ 1

m

	�
l0
D

	2=m
(16)

whereGðxÞ5Gamma function. Eq. (16) indicates that the large-size
asymptote of the size effect curve differs from the classical Weibull
size effect because of the fact that the authors introduced the en-
ergetic scaling term for the failure statistics of the singular stress
zone. It should be pointed out that the authors use the integral form
for the weakest-linkmodel. In principle,C1 is infinite because of the
singular stress field. However, in the spirit of the weakest-link
model, the singular stress at the V-notch tip should not be in-
cluded (Ba�zant and Xi 1991; Ba�zant et al. 2010). Therefore, when
evaluating C1, the authors exclude the region where the radial
distance from the notch tip is less than a certain distance dc. As will
be discussed later, the choice of dc is not particularly important for
the present formulation.

At the small-size limit, the entire structure consists of a very small
number of RVEs. Therefore, it is expected that the RVEs in the
singular stress zone govern the failure of the entire structure. For
structures without stress singularities, it has been shown that

the small-size asymptote of the size effect can be expressed as
sN } ðD=DbÞ21=r , whereDb and r can be determined from the mean
and standard deviation of the Gaussian part of the cdf of RVE strength
(Cannone Falchetto et al. 2013). In the present model, the stress that
governs the failure of the singular stress zone is scaled by the en-
ergetic scaling term. Therefore, the corresponding size effect at the
small-size limit can be expressed as sN }m21ðDÞðD=DbÞ21=r.

Because the present model is developed within the framework of
the weakest-link model, the entire size effect curve can be approxi-
mated by a function similar to Eq. (8). Meanwhile, it is also clear that,
as the stress singularity is sufficiently strong, all the scaling terms
associated with the weakest-link model should vanish. This transition
is expected to occur in a very narrow range of stress singularities,
which is in this paper approximated by a Gaussian function. There-
fore, the authors propose the following scaling equation,which bridges
the limiting cases of strong and zero-stress singularities:

sN ¼ s0

(
C1½mmðDÞC1 þC2�2r=m

�
Dþ ls
l0

�22r=m

� exp
h
2ðl=l1Þ2

i
þ m2rðDÞDb

exp
h
2ðl=l2Þ2

i
Dþ lp

)1=r

(17)

where s0 5 reference stress; and C1, r, l1, l2, ls, lp, and Db

5 constants. Note that, slightly different from the formof Eq. (8), the
authors purposely introduce constants ls and lp to regularize the
functional behavior as D→ 0. The large-size and small-size
asymptotes yield

s0C
1=r
1 ¼ s1=r0 Gð1þ 1=mÞ (18)

ss ¼ s0

n
Db=lp þ C1ðC1 þC2Þ1=mðls=l0Þ22r=m

� exp
h
2ðl=l1Þ2

io1=r
(19)

The small-size strength limit ss ðD→ 0Þ can usually be obtained by
simple plastic analysis, where the ligament is considered to be filled
up with a plastic glue.

Fig. 2. Numerical simulation of three-point bend beams
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It is clear that Eq. (17) converges to Eqs. (4) and (8) as the two
limiting cases. For the transition between these two limits, the size effect
consists of both energetic and statistical components. At the small-size
limit, the size effect is mainly governed by the statistical scaling
component, because the energetic scaling term predicts a weak size
effect. At the large-size limit, the scaling is governed by the Weibull
statistics modified by an energetic scaling term, which leads to a com-
pound energetic-Weibull statistical scaling. The detailed calibration of
Eq. (17) will be presented in the “Numerical Simulation” section.

Though the focus of this study is on Mode-I fracture, the present
framework can be readily extended to general mixed-mode fracture
(Le 2011; Le and Xue 2013), which is applicable to bimaterial

structures. When dealing with mixed-mode fracture, the energetic
term would contain two distinct stress singularities, and the large-
size asymptote of the energetic size effect has to be derived from an
energetic argument (Le 2011).

Numerical Simulation

Model Description

To verify the proposed analytical model, the authors investigate the
size effect on the strength of concrete beams with a V-notch under

Fig. 3. Simulated nominal stress–relative displacement curves
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three-point bending [Fig. 2(a)]. The beam has a 6:1 span-to-depth
ratio, and the notch depth is 20% of the beam depth. In the simu-
lation, the authors consider five different notch angles, i.e., g5 0,
90, 120, 135, and 170�, and a series of geometrically similar spec-
imens with a size range 1:2:4:8:16:32:64:128. (The depths of the
smallest and largest specimens are 37.5mmand 4.8m, respectively.)
Based on theWilliams solution, these notch angles correspond to the
following orders of Mode-I stress singularity: l520:5,20:4555,
20:3843, 20:3264, and 20:0916. In addition to this set of spec-
imens, the authors also include the size effect simulation of flat
beams with a maximum size ratio 1:64 [Fig. 2(b)], which corre-
sponds to the case of zero-stress singularity.

It is well known that concrete exhibits a complex constitutive
behavior. Extensive efforts have been devoted to numerical mod-
eling of the fracture of concrete (Mazars 1986; Lubliner et al. 1989;
Lee and Fenves 1998; Jirásek and Zimmermann 1998; Ba�zant et al.
2000). Because the authors are interested in static Mode-I fracture,
they adopt the default plastic-damage model in ABAQUS 6.11,
because it is sufficient for the purpose of the current study; a de-
tailed description of this constitutive model can be recovered from
Dassault Systèmes Simulia (2011). The material properties are
chosen as follows: Young’s modulus E5 30 GPa, Poisson ratio
n5 0:2, tensile strength ft95 3 MPa, compressive strength fc9
5 30 MPa, and Mode-I fracture toughness Gf 5 100 N ×m21.
Though the authors specify the compressive strength, the com-
pressive region of the beam is expected to remain elastic. Therefore,
the nonlinear part of the compressive behavior is not of particular
interest for the current study. All specimens undergo displacement-
controlled loading.

In this study, the numerical simulation is performed within
a deterministic framework. Previous studies have shown that the
deterministic simulation with a strain-softening constitutive model
can successfully capture the entire size effect for the case of strong
stress singularity and the size effect for the small and intermediate
structure sizes for the case of zero-stress singularity (Ba�zant 2004,

2005; Ba�zant et al. 2007). Therefore, the authors expect that for the
case of weak stress singularity the deterministic numerical model is
sufficient for simulating the size effect for the small and intermediate
structure sizes. For the large-size asymptote, the deterministic
simulation cannot yield the Weibull statistical scaling. In this study,
the authors mainly focus on the small- and intermediate-size range,
which is applicable to most engineering designs. Therefore, only
deterministic simulation is necessary. As will be shown later, the in-
fluence of theWeibull scaling component only prevails in structures of
very large size.

In the finite-elementmodeling, the notch tip is considered to have
a very small width, i.e., 5 mm, which is a constant for all the ge-
ometries and sizes. For the deterministic simulation, the damage
occurs near the midspan of the beam. Therefore, to reduce compu-
tational efforts, the authors model the middle portion of the beam
with a refined mesh (i.e., 5 mm) and the damage plasticity model,
whereas the rest part of the beam is modeled by a coarse mesh with
a purely elastic model. For each specimen, the assumed region
where the nonlinear material model is used is further checked as part
of the simulation. As the notch angle increases, this nonlinear region
becomes larger. It should be pointed out that the present modeling is
not as efficient as the crack band model and the nonlocal model,
where larger element sizes can be used. However, the use of the
crack band and nonlocal models requires extensive modeling efforts
with special cautions such as the choice of the crack band width
(Ba�zant and Planas 1998; Jirásek and Bauer 2012) and treatment of
the nonlocal weighting function along the structural boundary
(Ba�zant et al. 2010).

Results and Discussion

Fig. 3 presents the simulated nominal stress–relative deflection
curves for specimens of all sizes and all different notch angles, where
the nominal stress is defined as s5P=bD and the relative

Fig. 4. Profile of normal stress along the ligament
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displacement is defined as d5D=D (D is the load-point displace-
ment). It is observed that, as the structure size increases, the postpeak
softening portion of the load-deflection curve becomes steeper,
which implies a more brittle failure behavior. It should be noted that
for large specimens (i.e., D$ 1:2 m) the postpeak behavior is not
captured, which indicates that a snap-back instability may have
occurred. It is noted that the snap-back behavior could be captured
by loading the specimens by the crack mouth opening displacement.

This is not done, because the authors are interested only in the peak
load. The size-dependent failure behavior can also be explained by
the nonlinear fracture process. Fig. 4 shows the normal stress profile
along the notch ligament at the peak load for beams with a sharp
notch (i.e., g5 0�). Similar stress profiles are observed for beams
with other notch angles. The FPZ can be determined as the region
where a strain-softening behavior occurs. As seen, at the large-size
limit, the FPZ becomes negligible compared with the structure size,

Fig. 5.Size effect curves for notched beams: (a)–(e) simulated size effect curveswith optimumfits byEq. (17) for individual notch angles; (f) 3Dplot of
simulated effects of structural size and notch angle on nominal strength
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whereas at the small-size limit the FPZ occupies a large part of the
structure and the stress in the FPZ exhibits more or less a plastic
profile. This implies that the structure would behave in a quasi-
plastic manner at the small-size limit and in a brittle manner at the
large-size limit, which is consistent with the conclusion drawn from
the postpeak behavior of the load-deflection curves.

For the 2D specimens studied, the authors define the nominal
strength of the beam simply as sN 5Pmax=bD, where b5 1. Fig. 5
presents the simulated size effects on the nominal strength for
different notch angles, and Fig. 6 presents the simulated size effect
curve for specimens without notches. At the small-size limit, the
nominal strengths of all the specimens are almost the same, whereas
the large-size asymptotes of the size effect vary with different notch
angles [Fig. 5(f)]. As the notch angle increases, which implies that
the stress singularity becomes weaker, there is a clear change in the
curvature of the size effect curve.

The simulated size effect curves are now compared with the
proposed approximate size effect equation. As mentioned earlier,
Eq. (17) contains the energetic and statistical scaling terms. For the
energetic scaling term mðDÞ, previous study (Ba�zant and Yu 2006)
has shown that parameter D0g varies with the notch angle as D0g

5D0cðgÞ=cð0Þ, where D0 5D0g at g5 0. Elastic analysis directly
yields c5 2, 1:836, 1:624, 1:485, and 1:089 for g5 0, 90, 120,
135, and 170�. The parameter bg is introduced for a better fitting of
size effect data. Therefore, in principle, bg may vary with the notch
angle. For the case of zero notch angle, the classical Type-2 size
effect indicates that bg should be equal to 1. However, for other
notch angles, bg may take other positive values. In this study, the
authors leave bg as a calibration constant for every notch angle
except for the zero notch angle.

For the statistical scaling terms, constants C1 and C2 for the
Weibullian part can be easily determined by linear elastic analysis. In
this paper, the authors assume that the RVE size l0 is equal to 37.5
mm, which is about three times the size of the typical maximum
aggregate da (Ba�zant and Pang 2007). Furthermore, when calcu-
lating C1, the authors exclude the notch tip region with a radius dc
5D=400 to avoid an infinite value ofC1. It should be noted that the
authors only need dc for the size effect curves for the case of weak
stress singularity. The choice of dc is not particularly important,
because the authors further introduced two Gaussian functions to
describe this transitional scaling mechanism, and different values of
dc will be compensated by function exp½2ðl=l1Þ2�, which is em-
pirically determined by the optimum fit of the data. Other parameters
associated with the statistical scaling components can be determined
based on the size effect curve of the unnotched beam. The Weibull
modulusm for concrete is known to be 24 (Ba�zant and Novák 2000;
Ba�zant and Pang 2007). Previous studies have shown that Db is
approximately equal to 4da (Ba�zant 2005), which is about 50mm for
this study. As shown in Fig. 6, r, lp, ls, and s0 can be determined by
the optimum fitting of the size effect curve of the flat beam.

The reference stress s0 can then be determined based on the
nominal strength at the small-size limit. As mentioned earlier, the
structural strength at the small-size limit can be calculated by
a plastic analysis, where it can be assumed that the FPZ behaves in
a plastic manner as shown in Fig. 7. The stress profile of the FPZ
(Fig. 4) further verifies such a plastic model. Therefore, regardless of
the notch angle, the nominal strength at the small-size limit can be
calculated as ss 5 16=75 ft95 0:64 MPa. Similarly, it can easily
be shown that ss for the unnotched beams considered in the sim-
ulation is equal to 1 MPa. With Eq. (19), the authors can calculate
s0, which is expected to vary with the notch angles, and Eq. (18)
yields constant C1. The last two parameters l1 and l2 can be de-
termined by fitting the simulated size effect curve for the case of
weak stress singularities.

The aforementioned procedure is now applied to calibrate
Eq. (17) from the simulated size effect curves. By fitting the size
effect curve for the case of an unnotched beam, the authors obtain
lp 5 40 mm, ls 5 150 mm, r5 0:88, and s0 5 0:448 MPa. Based on
the size effect curves for the series of V-notch specimens, D0

5 90 mm, l1 5 0:301, l2 5 0:208, and bg 5 1, 1, 1:5, 2, and 1:1 for
g5 0, 90, 120, 135, and 170�. Figs. 5 and 6 show that the simulated
size effect curves can be well fitted by Eq. (17). It should be pointed
out that the simulated size effect curve does not match well with
Eq. (17) at the large-size limit for beams with a 170� V-notch
and unnotched beams. This is because of the fact that de-
terministic simulation was used, which cannot capture the as-
sociated large-size asymptote of the classical Weibull scaling
relation. Furthermore, it is observed that such a difference occurs
for very large beam size (i.e., D$ 1:2 m), which indicates that
deterministic calculation is sufficient for most normal-size concrete
beams.

It should be emphasized that the proposed size effect equation is
limited to the case of deep notches. If the notch depth becomes
shallow (for instance a=D, 0:05), it is expected that the statistical
scaling components will play a dominant role regardless of the notch
angle, which represents another type of transition between the en-
ergetic and statistical scaling mechanisms. Fig. 8 presents the nu-
merically simulated size effect curve for different a-values (i.e., a
5 0, 0:05, 0:1, and 0:2) for various notch angles, which clearly
demonstrates such a transition. This transition behavior has been
analytically and experimentally studied for structures with
a preexisting crack (Ba�zant and Yu 2009; Zegeye et al. 2012;
Hoover et al. 2013). Nevertheless, a general scaling law that
accounts for both effects of stress singularities and notch depth is
still to be explored.

Fig. 6.Simulated size effect curves for unnotched beamswith optimum
fits by Eq. (17)

Fig. 7. Plastic analysis at small-size limit
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Conclusions

This study shows that the scaling of quasi-brittle fracture strongly
depends on the stress singularities of the structure. Such dependence
can be derived from a generalized weakest-link model, where the
classical energetic scaling of fracture is incorporated into the clas-
sical finite weakest-link model. For the case of strong stress singu-
larity, the scaling of structural strength is purely energetic, which can
be obtained from fracture mechanics. For the case of zero-stress
singularity, the size effect can be explained by the random mate-
rial strength through the finite weakest-link model. For the case
of weak stress singularity, the scaling of fracture is governed by
both energetic and statistical mechanisms. The present computational

study indicates that for small- and intermediate-size structures the
scaling behavior can alternatively be captured by nonlinear deter-
ministic simulations regardless of the order of stress singularities.
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