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Mesoscale simulation techniques are becoming increasingly important due to the interest

in complex mechanical problems involving nanomaterials. We propose applying the

established macroscopic modeling concept of distinct spherical elements down to the

mesoscale to simulate mechanical behavior of carbon nanotube systems. Starting from a

microscopic description, the important interactions are encapsulated into two types of

contact models that act simultaneously. Each individual nanotube is coarse-grained into a

chain of spherical elements interacting by parallel-bonded contacts, representing

the short-ranged covalent bonding. An anisotropic van der Waals model with aligning

moments acts at the contact between elements located in different tubes to represent the

long-ranged interactions. The promising potential of the proposed methodology to

model large scale carbon nanotube assemblies is illustrated with several examples,

including self-folding of individual nanotubes, mechanical testing of nanotube ropes, self-

assembly of a high-porosity nanotube paper, and mechanical testing of a low-porosity

nanotube paper.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Carbon nanotubes (Iijima, 1991) (CNTs) possess mechanical and physical properties that render them attractive for
numerous technological applications. Their promise, however, can be realized only through improved understanding of the
mechanical, electrical and thermal properties not only of individual tubes but also bundles, ropes, papers and other CNT
assemblies (Dalton et al., 2003; Filleter et al., 2012; Harris et al., 2012; Hobbie et al., 2010; Hutchens et al., 2012; Shuba
et al., 2012).

Valuable insights into individual CNT mechanics have been obtained from microscopic simulations (Dumitrică et al.,
2003, 2006; Dumitrică and Yakobson, 2004; Jeong et al., 2007; Nikiforov et al., 2010; Zhang et al., 1998, 2009) using
techniques like molecular dynamics (MD). Unfortunately, performing exhaustive simulations at the atomistic scale for CNT
systems of scientific and engineering significance remains computationally prohibitive. Therefore, mesoscopic approaches
have been developed to make simulations of CNT systems manageable (Buehler, 2006; Cranford and Buehler, 2010; Hahm
et al., 2012; Huang et al., 2008; Liba et al., 2008; Shi et al., 2008; Volkov et al., 2008; Volkov and Zhigilei, 2010a, 2010b,
2010c; Xie et al., 2011; Zhigilei et al., 2005; Zou et al., 2009; Wang et al., 2012). Two such mesoscopic models have gained
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www.elsevier.com/locate/jmps
www.elsevier.com/locate/jmps
dx.doi.org/10.1016/j.jmps.2012.10.016
dx.doi.org/10.1016/j.jmps.2012.10.016
dx.doi.org/10.1016/j.jmps.2012.10.016
mailto:broberto@umn.edu
mailto:dtraian@me.umn.edu
mailto:td@me.umn.edu
mailto:td@me.umn.edu
dx.doi.org/10.1016/j.jmps.2012.10.016


I. Ostanin et al. / J. Mech. Phys. Solids 61 (2013) 762–782 763
popularity—the bead-and-spring (BS) model (Buehler, 2006; Cranford and Buehler, 2010; Hahm et al., 2012; Xie et al.,
2011) and the mesoscopic-force-field (MFF) model (Volkov et al., 2008; Volkov and Zhigilei, 2010a, 2010b, 2010c; Zhigilei
et al., 2005). Nevertheless, in spite of such developments, simulations of collective CNT behavior have not kept pace with
the demand from many areas ranging from nanoelectromechanical systems, nanocomposite materials, mechanical energy
storage, or nanotoxicology.

The BS model was appropriated from the coarse-grained modeling of organic polymers (Rouse, 1953; Underhill and
Doyle, 2003; Zimm, 1956). As the name suggests, a CNT is represented by a collection of point masses connected by linear
springs. Simulations based on BS model were successfully carried out to study various behaviors of hundreds of CNTs on
a timescale approaching microseconds (Buehler, 2006). The MFF model describes the motion of a CNT in terms of the
dynamics of nodal point masses, connected by flexible cylinders. The advanced features of the numerical method
developed on this model are the adaptive meshing technique that allows reduction in the number of degrees of freedom,
and the physically realistic potential of van der Waals (vdW) dispersive interactions.

Modeling CNT systems requires accurate accounting for both covalent and vdW forces. It is beyond the scope of this
paper to review the coarse graining schemes of these forces employed in the BS and MFF models. It is however important
to recognize that any coarse graining procedure should agree with the microscopic description or experiment in the
features deemed important for the problem at hand. For example, it is known from experiment that in metallic and
semiconducting CNT films, the constituent CNTs form large close-packed bundles (Thess et al., 1996; Hobbie et al., 2010;
Harris et al., 2012), which are entangled, Fig. 1. This self-organization is attributed the vdW interactions among CNTs.
Attempts to simulate the bundling process with the two methods applied to an identical CNT film configuration led to
different outcomes (Volkov et al., 2008): While the configuration evolved using the BS model remained organized in
randomly oriented individual CNTs and small bundles of just few CNTs, the MFF simulation obtained large bundles
composed of approximately 50–100 CNTs, in agreement with experimentation (Harris et al., 2012; Hobbie et al., 2010).
This qualitatively different behavior can be attributed to the way in which the long-range vdW interaction between CNTs
is being captured in the two mesoscopic models. While in the BS model the intertube interaction is modeled with a
spherically symmetric potential associated with pairs of beads, the same interaction is described more realistically in MFF
by considering the vdW coupling of cylindrical elements of arbitrary lengths and orientations (Volkov and Zhigilei, 2010a).
Similarly, in the work by Volkov and Zhigilei (2010a), the BS model was used to generate self-equilibrated specimens of
CNT film. The obtained film structure exhibited bundles composed of just few CNTs.

Recently, we proposed (Anderson et al., 2010) distinct-element-method (DEM) modeling of CNTs. DEM, the macroscopic
method introduced by Cundall and Strack (1979, 1988), and Hart et al. (1988) more than 30 years ago, was developed for
simulating the mechanical properties and response of macroscopic geological materials (Pande et al., 1990) and structures
by representing them as a large numbers of interacting rigid spherical particles. In DEM, a CNT is therefore represented by
a chain of rigid spherical particles interacting with each other via prescribed contact models informed by the results
obtained from simulations at the atomistic scale. Existing and available robust procedures for identifying the particles in
contact (Cundall and Strack, 1988), stable time integration scheme (Hart et al., 1988) and great versatility and popularity of
existing codes (Itasca CG Inc., 2008) are convincing arguments for further developing a DEM-based mesoscopic model for
CNTs. By solving the technical aspects related with encapsulating the long-range microscopic vdW interaction into a vdW
contact model, in this paper we enable large-scale simulations of CNT systems and place DEM as an advanced alternative
methodology to the existing approaches. With respect to BS, MFF and other mesoscopic models (Liba et al., 2008; Wang
et al., 2012), the main conceptual advances here are the treatment of the spherical particles as rigid bodies and the coarse
Fig. 1. A CNT semiconducting film imaged with TEM, showing the organization of constituent single-wall CNTs into large bundles. Vertical and horizontal

sizes of the image represent 500 nm. (Image courtesy E. Hobbie.)
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graining of the microscopic covalent and vdW forces into contact models leading to both moments and forces acting on the
coarse grained spherical particles. The importance of these features is discussed in the presented example simulations.

While sharing the particle-discretization-of-the-continuum basis with other macroscopic methods, such as smoothed
particle hydrodynamics (Gingold and Monaghan, 1977; Desbrun and Gascuel, 1996; Hoover, 2006) or materials point
method (Sulsky et al., 1994), DEM is generally distinguished by the explicit accounting for the rotational degrees of
freedom of particles (considered to be spherical or more complicated geometries, depending on the application) as well as
by the introduction of the contact laws between particles. At the mesoscale, DEM was previously used to model powders in
which each particle is considered to be either a whole or a part of a granular medium (Dutt et al., 2005) and also to model
rock in which the particles and contacts are considered to be grains and cement, respectively (Potyondy and Cundall,
2004). To our knowledge, this is the first time when the method is used to model CNT systems. Furthermore, the model
developed here could be further adapted to simulate deformation of other more complex semi-flexible random fiber
networks encountered in biological and nonliving systems (Hatami-Marbini and Picu, 2009).

2. Distinct element method for CNTs

DEM is a technique that computes the damped dynamics of a collection of interacting classical spherical particles with
uniformly distributed mass m and moment of inertia I. The state variables for each particle include position, translational
velocity, and angular velocity. Specifically, the translational motion of the center of mass of a particle is described in terms
of its position x and velocity v. The rotational motion is monitored by the angular velocity x. The dynamics is described by
laws of classical mechanics

F¼m €x,

M¼ I _x, ð1Þ

where F and M are the resultant force and moment vectors that arise from the interaction of a particle with other
elements. To solve these equations numerically, an artificial dissipative damping (for both force and moment equations),
referred to as local damping in Itasca CG Inc. (2008), is also introduced for the purpose of stabilizing the assemblies
of moving particles under external load, and for relaxing the system into a metastable state. The magnitude of each
component of the damping force and moment is proportional to the corresponding component of the resultant force and
moment, and they act in a direction to oppose the corresponding velocity and angular velocity. The proportionality
constant x, referred to as the local-damping constant, ranges from 0 to 0.7. Only accelerated motion is being damped.

In our scheme, Eqs. (1) are solved using an explicit leapfrog finite difference algorithm involving a timestep Dt.
According to this scheme, translational and rotational velocities are iterated at the mid-interval, from t�0:5Dt to tþ0:5Dt as

vðtþ0:5DtÞ ¼ vðt�0:5DtÞþ
FðtÞ

m
Dt,

xðtþ0:5DtÞ ¼xðt�0:5DtÞþ
MðtÞ

I
Dt: ð2Þ

The position of a particle is iterated from t to tþDt as

xðtþDtÞ ¼ xðtÞþvðtþ0:5DtÞDt: ð3Þ

The timestep Dt is dynamically adjusted to ensure the stability of the scheme ((2), (3)). While the above algorithm does not
provide a thermodynamic integration like in coarse-grained MD approaches (Buehler, 2006; Zhigilei et al., 2005), it is
known to work very well for larger scale mechanical simulations.

The forces and moments on each interacting particle are derived from a contact model prescribed in advance. Various
contact models of mechanical nature are already in place (Itasca CG Inc., 2008) permitting for DEM macroscopic
simulations in various areas of science and engineering. Compelled to apply DEM at the nanoscale, we proposed (Anderson
et al., 2010) a mesoscopic CNT model consisting of a chain of spherical particles whose interaction is dictated by a standard
parallel bond contact (Potyondy and Cundall, 2004) and a special van der Waals contact. In the following we give a concise
overview of this model and illustrate its application to a (10,10) CNT.

We homogenize an undeformed CNT into a cylindrical shell with finite thickness (Fig. 2) and partition it into identical
mass representative elements (REs) of finite lengths T. Each spherical particle represents a mass RE. As an example, in
Table 1 we chose to partition a (10,10) CNT with diameter 2rCNT ¼ 13:560 Å into mass REs with T ¼ 2rCNT . This way, each
mass RE contains approximately 220 carbon atoms. Parameters m and I are equal with the mass and moment of inertia of a
cylindrical RE taken with respect to the CNT long axis. It follows that the spherical particle has a radius

r¼
ffiffiffiffiffiffiffi
2:5
p

rCNT : ð4Þ

The spherical particles are equispaced at a distance T apart. Their centers are located on the CNT long axis.
Although the focus of this paper is a hierarchical multiscale modeling of CNT systems, a hybrid atomistic-DEM

multiscale modeling based on this framework can be imagined at this stage. Coarse grained spherical elements can
be coupled with explicit atomistic modeling that model regions with high local strains, where nonlinear deformations
or fracture may develop. To facilitate this development, the REs may be selected as an integer number of repetitive
translational units of the intrinsic CNT lattice. In addition, the representation of a translational unit could be changed in the



Fig. 2. Coarse graining of a CNT into cylindrical mass and stiffness representative elements (REs). The inertial and elastic properties of REs are lumped

into the collection of spherical particles and parallel bonds.

Table 1
Parameterization of the spherical particles and parallel bonds for a (10,10) CNT. m, r, I are the mass, radius, moment of inertia of each spherical particle.

T is the interparticle spacing. A , I and J are the interface cross section area, moment of inertia and polar moment of inertia respectively. The normal kn and

shear ks stiffness (measured per unit area) are based on microscopically computed Young’s Y¼1029 GPa and shear G¼459 GPa elastic constants.

m (amu) r (Å) I (amu� Å2) T (Å) A (Å2) I (Å4) J (Å4) kn (eV/Å4) ks (eV/Å4)

2649 10.72 1.218�105 13.56 142.7 3480 6960 0.474 0.211

Fig. 3. Detail showing a parallel bond interface located halfway between the centers of two spherical particles and the restoring forces and moments

developed in response to relative displacements.
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course of the simulation, from the coarser spherical element to the finer atomistic level or vice versa. The treatment of the
spherical particles as rigid bodies and thus the knowledge of the relative displacements and angular orientations between
the spherical elements keeps open the possibility of performing a reverse spherical DEM element-atomistic mapping
(Ensing and Nielsen, 2010).

The linking of the microscopic deformations to that of the mesoscopic model is performed here using the
phenomenology of elastic continuum. We idealized the CNT wall as an isotropic elastic shell of thickness h¼3.35 Å with
prescribed density and elastic constants. Young’s (Y) and shear (G) elastic moduli associated with this shell are obtained
from accurate atomic-level simulations (Zhang and Dumitrică, 2008). The shell is partitioned into REs of length T that are
located in between the centers of the spherical particles. The elastic constants of an elastic RE are lumped into a parallel
bond contact between the neighboring particles. These bonds, formed between any two neighboring particles in the chain
of spherical particles representation of the CNT, can be imagined as flat interfaces of hollow circular cross sections (Fig. 3).
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They contain uniformly distributed linear springs with normal kn and shear ks stiffness (measured per unit area)
representing the elastic response of an RE of length T. These stiffness are

kn ¼ Y=T,

ks ¼ G=T: ð5Þ

When the contact is formed in the straight CNT, the total contact forces and moments are initialized to zero. The
deformation of the chain of bonded elements under external loads results in nodal displacements in generalized coordinates
(Fig. 3), describing relative stretch (Dx), shear (Dy), bending angle (Dy) and torsion (DjÞ. The restoring contact forces
(normal force DFn and shear force DFs) and moments (bending moment DMn and twisting moment DMs) are developed
according to the incremental laws

DFn ¼�knADx,

DFs ¼�ksADy,

DMn ¼�knIDy:

DMs ¼�ksJDj: ð6Þ

Here A, I and J are the interface cross section area, moment of inertia and polar moment of inertia respectively. The parallel
bond was originally introduced as an interface of circular cross section, an approximation that is suitable for multi-walled
CNTs with closed core (Anderson et al., 2010). For the case of single-walled CNTs, we adjusted the contact to a hollow
circular cross section. Then, the area, moment of inertia, and polar moment of inertia associated with the parallel bond are

A ¼ 2phrCNT ,

I ¼ phrCNT ðr
2
CNTþ0:25h2

Þ,

J ¼ 2I : ð7Þ

Up to this point the development of the mesoscopic model has been pursued by a straightforward appropriation of the
macroscopic DEM methodology. With the minimal parallel bond contact model that captures the short-ranged covalent
binding of C atoms, one can study the deformations and acoustic vibrations of an individual realistic CNT. Table 1 gives the
parametrization of inertial and elastic properties of a (10,10) CNT. In most application CNTs are present in the form of
ropes, cables, and papers. Their collective mechanical behavior originates not only on the covalent but also weak van der
Waals (vdW) C-C interactions, that build up over extended contacts. To make the DEM methodology viable for such
simulations, the main challenge is to derive a contact model that can efficiently capture these non-bonding vdW
interactions between CNTs.

We now introduce such a vdW contact model, which will lead to additional forces and moments acting on the
collection of spherical particles. Broadly, physical theories of van der Waals forces can be generally separated into two
camps: microscopic and macroscopic theories. The microscopic theory is a bottom-up approach based on the atom–atom
dispersion interaction of London (1930), in which the total interaction is thought of as a sum of contributing part of the
microscopic constituents. Under the assumption of pairwise additivity, the microscopic dispersive interactions sum to
describe the total interaction between mesoscopic or macroscopic bodies. In an opposite top-down fashion, macroscopic
theories of Hamaker and Lifshitz (Dzyaloshinskii et al., 1961; Hamaker, 1937) start with the dispersive energy between
macroscopic bodies. Again under the assumption of additivity, the effective microscopic contributions can be backed out of
these theories.

Here we base our model on a microscopic theory in which the interaction between two C atoms located on different
CNTs is given by the standard Lennard-Jones (LJ) potential

vðdÞ ¼ 4e d0

d

� �12

�
d0

d

� �6
" #

ð8Þ

with parameters d0 ¼ 3:851 Å and e¼ 0:004 eV. This interaction occurs only if the distance d between atoms is less than a
cutoff radius parameter, which is typically chosen to be of the order of few nm. Assuming that atoms are uniformly
distributed over the cylindrical surfaces of two interacting CNTs, Fig. 4(A), we can calculate the potential energy of
interaction of two CNTs as

V ¼ r2

Z
S1

Z
S2

vðdÞ dS1 dS2, ð9Þ

where S1 and S2 are the surfaces of first and second CNTs, r¼ 4=ð3
ffiffiffi
3
p

a2
C�CÞ is the area density of carbon atoms on a CNT

surface (here aC2C ¼ 1:42 Å is the equilibrium carbon–carbon bond length). If two CNTs are crossed, the energy of
interaction is finite, even in the case of infinite tubes. In the case of two parallel CNTs one can consider the interaction
energy per unit length, considering the interaction between the finite RE of the first CNT with infinite second CNT,
and normalizing the result with the RE length T. We build our coarse grained model under the requirement that this
interaction energy, such as the one shown in Fig. 4(B), should be regained by summing the vdW contact energy among the
REs located on the different CNTs. The proposed vdW contact model is a function of intercenter distance and the mutual
orientation of REs. In the next section we describe the construction of this vdW contact model.



Fig. 4. (A) Schematics of two aligned infinitely long CNTs. (B) Plot of the interaction potential of two (10,10) parallel nanotubes (measured per length) as

a function of the normalized intertube distance, as described by Eq. (10).
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In DEM logic, the interaction between particles are incorporated using the concept of contact between distinct
elements. To each spherical particle is associated a spherical distinct element such that when these elements overlap, a
contact is formed. We note that the particle radius r resulting via our coarse graining procedure of a CNT (Fig. 2), may or
may not lead to interpenetration. Nevertheless, this concept, designed for mechanical contact models, is used here to
activate the interactions important at the nanoscale. To activate both the parallel bond and vdW contact models, we
associate to each spherical particle a distinct spherical element, with radius equal to half the microscopic vdW interaction
cutoff radius. Only nearest-neighbor spherical particles within the same CNT will form parallel bonds. By contrast, the vdW
interaction typically involves one spherical particle from one CNT, in vdW contact with several spherical particles located
on a second CNT. We emphasize that the role of these associated spherical distinct elements is only to activate the
interactions and determine the forces and moments acting on the spherical particles with mass m and radius r.

3. Contact models for vdW interactions

3.1. An isotropic contact model of dispersive interactions

In the most general case of arbitrarily positioned CNTs, the integral (9) is too complex to be solved in closed form.
However, assuming parallel and identical CNTs, Fig. 4(A), and taking the near limit, the integral takes a transparent
analytical form (Anderson, 2010). The interaction energy per unit length writes

VðLÞ=T ¼ 4E A

Da�
B

Db

� �
: ð10Þ

Here, D¼ ðL=rCNT Þ�2 is the normalized intertube center to center distance. The parameters of this potential are
E¼ 3pd6

0r2e=8r3
CNT , A¼ 21d6

0a=32r6
CNT , with the dimensionless constants a� 0:41 and B� 1:31. The plot of this potential

for two (10,10) CNTs is given in Fig. 4(B). Note that the powers of D, a¼ 9:5 and b¼ 3:5, are different from the ones of the
microscopic LJ potential (8) and arise via the integration procedure (Anderson, 2010). The two terms in (10) have the
evident repulsion and attraction meaning. It follows that this potential has an optimal intertube separation

L0 ¼ rCNT
aA

bB

� �1=ða�bÞ
þ2

" #
: ð11Þ

In the following, Eq. (10) will serve as a reference for designing vdW contact models. As V(L) captures the interaction
energy between one RE segment of length T located on first the CNT and the second infinitely long CNT, Fig. 4(A), it
becomes immediately clear that the total vdW interaction energy can be regained by summing the pair interaction
between face-to-face REs of length T located on different CNTs. Thus, Eq. (10) suggests a naı̈ve contact model in which each
two aligned REs of length T located on different CNTs interact via the spherical symmetric vdW contact model V(R), where
R represents the distance between the centers of the spherical particles. It is evident that because the underlying
integration has been performed with the CNTs being parallel, this model will be inappropriate for describing the
interaction of the crossed CNTs. Nevertheless, this contact model introduces significant artifacts even when the tubes are
parallel.

We illustrate the later deficiency with an example consisting of two interacting (10,10) CNTs of the length
LCNT ¼ 20:3 nm represented by 15 identical spherical particles, such as the ones indicated in Table 1. Let VDEM be the
DEM model intertube potential energy defined as the superposition of all VðRÞf cðRÞ pairwise contact interactions between
the spherical elements of first and second CNT. The smooth cutoff function fc(R) (see Appendix) ensures the absence of
energy jumps in the tube–tube potential, associated with cutoff radii of pair interactions.
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Consider first the perfectly aligned case. The radius of the vdW distinct element was chosen 4rCNT ¼ 2:71 nm, which
means that one RE located on one CNT interacts with few REs on the second CNT. Although the face-to-face first-neighbor
contacts will bring the major contribution to VDEM, there are non-negligible contributions from the second- and third-
neighbor interactions. There is a quick remedy for this issue facilitated by the transparent V(R) form. To restore VDEM(L) to
the desired shape, we still used the functional form of V(R) but the parameters A, E, and b parameters slightly adjusted to
match L0, VðL0Þ, and the far field scaling. The original and adjusted parameters of pair potential of interaction between
segments of (10,10) tubes with length T ¼ 2rCNT are listed in the first and second line of Table 2, respectively.

Next, consider the interaction of misaligned CNTs. The coordinate z describes the misalignment of these adjacent CNTs,
Fig. 5(A). The VDEMðL,zÞ, plotted in Fig. 5(B), displays correct intertube spacing and binding energy at z¼0. However, for
misaligned configurations we note a corrugated relief with periodicity T. Of course, this periodic structure of the potential
is an artifact of the model. Physically, it introduces unwanted high adhesive shear strength between two parallel CNTs and
a preference for staggered (such as z¼T) alignments. At this point, it is important to note that the unwanted corrugation
artifact is an attribute of the spherical symmetry of the potential used in the contact model.

It should be mentioned that at the microscopic level, there is a real corrugation effect associated with the graphitic
lattice structure of the tube walls and their registry. This effect was discarded in our vdW integration procedure in which
atoms were uniformly distributed over cylindrical surfaces. We do not intend to capture this microscopic effect here, since
the difference in energy between the maximum and minimum energies associated with this corrugation is small compared
for example to the amount of vdW energy associated with bringing two tubes close to their optimal vdW separation
(Carlson and Dumitrică, 2007). Unfortunately the staggering-induced corrugation becomes large for REs with large T, and it
can significantly influence the outcome of a coarse grained simulation. As we already mentioned, these large artificial
barriers prevent the long-range rearrangements of individual CNTs into continuous networks of bundles (Volkov et al.,
2008). An ad hoc way to reduce the amplitude of this corrugation is to decrease T, thus to increase the number of particles
representing the CNT (Anderson et al., 2010). However, this approach reduces the computational effectiveness of the
methodology, making it unattractive for large-scale applications.
3.2. Anisotropic vdW contact model

The isotropic model (10) with parameters given in Table 2 provides the basis for developing a vdW contact model with
the following attributes: (i) It has a simple analytical expression and (ii) captures short-range anisotropy to convey the
form factors of cylinders and thus to correctly describe the shear interactions between parallel CNTs. (iii) Along with
normal and shear forces, it includes moments that tend to align nanotube segments. More specifically, the new model
incorporates two adjustments. Firstly, we consider interacting parallel segments and introduce an axial anisotropy of the
contact that ensures the smoothness of the potential. Secondly, we introduce the adjustment related to aligning moments
that are present in the case of non-parallel axes of the cylindrical segments. For both adjustments, we ensure correct far
field behavior by introducing decay and smooth cutoff multipliers.
Table 2
Parameterization of the isotropic contact vdW model for the interaction between two (10,10) CNTs. The first line

lists the value of the parameters as obtained by direct integration. The second line lists adjusted parameters to

correct the next-nearest contacts. The radius of the vdW distinct element is 2.71 nm.

ET (meV) A B a b

97.45 0.0104 1.31 9.5 3.5

71.24 0.0223 1.31 9.5 4

Fig. 5. (A) Intertube coordinate system. For an easier visualization, the radius of each spherical element was chosen T/2. (B) Surface plot of the interaction

potential of two parallel finite (10,10) CNTs as a function of normalized intertube distance L and normalized misalignment z. For this example, rCNT ¼ T=2.
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3.2.1. Interaction between parallel REs

In this subsection we focus only on the interaction of two parallel nanotubes. To restore the smoothness of the
interaction we propose to introduce axial anisotropy of the contact model, which now takes a functional form depending
on both the center to center distance R between the spherical elements and the misalignment angle y, Fig. 6(A).

We adjust the axial dependence of the potential using Fourier series with fitted coefficients to counter the energetic
preference for staggered orientation. After the adjustment, expression V(R) of the vdW contact model remains unchanged,
but the normalized distance D takes the form

Dk
ðR,yÞ ¼

R

rCNTYk
ðyÞ
�2: ð12Þ

The angular function YkðyÞ of the order k writes

Yk
ðyÞ ¼ 1þ

Xk

i ¼ 1

Ci½ð�1Þi�1
þcosð2iyÞ�: ð13Þ

We will refer to the contact model V(R) with the adjustments (12) and (13) as Vk
ðR,yÞ. We label the resulted DEM intertube

potential as Vk
DEMðR,zÞ. The set of k constants Ci can be determined via nonlinear fitting, by requiring equal values of the

intertube potential for kþ1 misaligned states evaluated at the equilibrium intertube distance L0

Vk
DEMðL0,zi ¼ iT=2kÞ ¼ Vk

DEMðL0,0Þ, i¼ 1,: :,k: ð14Þ

Note that the expression (13) is equal to 1 for y¼ p=2. However, because the next-nearest contacts are altered by the
angular adjustment, the resulting intertube potential VDEM

k
will be affected even in the case of aligned CNTs (z¼0).

Therefore, the obtained potential should be renormalized so that it would give the correct value of adhesion energy for
aligned configuration. This can be easily achieved by rescaling E to an appropriate KE value.

The parametrization of anisotropic adjustment of vdW contact model for (10,10) CNT is given in Table 3 below (the
correction function used 3 harmonics). The resulting interaction between two (10,10) CNTs with aspect ratio of 15 is
shown in Fig. 6(B). Our procedure of the potential ‘‘ironing’’ appears to be very effective. As one can see from the
comparison of Figs. 5(B) and 6(B), the corrected pair potential gives more realistic potential, with suppressed periodic
structure associated with spherical elements. Fig. 7(A) gives a polar plot of the obtained Y3

ðyÞ from which it becomes
apparent that the potential V3

DEM flattening via angular adjustment is due to shrinking of the real distance between
misaligned REs (yap=2Þ. We emphasize once more that all these adjustments do not affect the intertube interaction of the
perfectly aligned CNTs. This can be seen in Fig. 7(B), which compares V3

ðL,0Þ with the intertube potential obtained by the
microscopic integration.

3.2.2. Interaction between crossed REs

Having solved the problem of formation of deep potential wells, we now focus on the case when two CNTs are crossed,
with a crossing angle g. This extension is done in such a way, that the crossing angle g and anisotropy correction angle y
are orthogonal coordinates. One possible solution is to use the concept of ‘‘neutral’’ plane (Fig. 8). Within this approach the
Fig. 6. (A) Polar coordinate system associated with pairs of spherical elements located on parallel CNTs. (B) Surface plot of the corrected intertube

potential for the interaction of two parallel and finite (10,10) CNTs.

Table 3
Parametrization of anisotropic adjustments of the vdW contact between two (10,10) CNTs.

C1 C2 C3 K Cg d

0.3440 0.0270 �0.0015 0.524 90 �7.5



Fig. 7. Details on the anisotropic vdW contact model for (10,10) CNTs. (A) Polar plot of Y3
ðyÞ. y¼p=2 corresponds to face-to-face interaction between

REs. (B) Corrected total potential as a function of normalized intertube spacing in comparison with the analytical intertube potential, multiplied by the

length of the CNT.

Fig. 8. The definition of angle variables (y and g) for the case of two (A) parallel and (B) crossed CNTs. The empty circles mark the centers of spherical

particles.
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angle y in the case of crossed CNTs is defined as an angle between the contact unit vector n
!

R (directed from element 1 to
element 2 ) and vector sum of first ( n

!
b1) and second ( n

!
b2) axial directions. This definition incorporates the limit case of

parallel nanotubes and preserves kinematical independence between y and the crossing angle g, which allows to treat
them as independent variables. The normal (FR) and shear (Fy) contact forces lay in uniquely defined ‘‘neutral’’ plane,
which does not depend on permutation of first and second CNTs. An aligning moment (Mg), acting between two
misaligned CNT segments may be introduced as discussed below.

3.2.3. Aligning moments

The integrated LJ potential of two cylindrical segments depends on the angle g between their axes. This leads to the
presence of contact moments, that tend to align cylindrical segments. In the case of aspect ratios of the segments close to
1, angular dependence of the potential can be neglected, what is typically done in BS models. However, correct aligning
moments are important for self-assembly processes. If we would like to consider an anisotropic nature of vdW interaction,
that is predicted by macroscopic theories (Rajter et al., 2007), it is important to have the technical possibility of
incorporation of the aligning moments. In this case the potential given by expressions (10), (12), and (13) has to be
enriched with an additional multiplier, that favors certain orientations:

UðR,y,gÞ ¼ Vk
ðR,yÞGðR,gÞ: ð15Þ

Similar to adjustment ((12) and (13)), such multiplier may be obtained as a Fourier series with respect to the angle g.
We find that anisotropy of the numerically integrated potential of two interacting cylinders is well described by a single
harmonic adjustment

GðR,gÞ ¼ 1þWgðRÞð1�cosð2gÞÞ: ð16Þ

Here, the function WgðRÞ determines the strength of anisotropy and the correct power of its decay with distance. Note that
GðR,gÞr1, ðGðR,0Þ ¼ 1Þ.



Fig. 9. (A) The geometry of the crossed cylindrical segments. (B) Numerically integrated anisotropy function Sn
ðRÞ, fitted with analytical expression (17).

(C) Numerically integrated potential of interaction as the function of the crossing angle g for few separation distances R (solid line) as compared to the

analytical potential described by expressions (15)–(17).
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Consider the approximation of anisotropy of LJ potential Un, numerically integrated over the cylindrical segments with
T ¼ 2rCNT (Fig. 9(A)). We assume that

WgðRÞ ¼ CgðR=rCNT Þ
d: ð17Þ

We introduce the anisotropy function of the potential U as

SðRÞ ¼
1

2

UðR,y,g¼ 0Þ�UðR,y,g¼ p=2Þ

UðR,y,g¼ 0Þ

����
���� ð18Þ

and the same function for numerically integrated potential

Sn
ðRÞ ¼

1

2

Un
ðR,g¼ 0Þ�Un

ðR,g¼ p=2Þ

Un
ðR,g¼ 0Þ

����
����: ð19Þ

In the case of the potential given by expressions (10), (12), and (13)) with the adjustment (15)–(17) we have
SðRÞ ¼WgðRÞ. In the case of numerically integrated potential this function can be found directly. We assume that it depends
only on the intercenter distance R. Fig. 9(B) gives the numerical solution for Sn

ðRÞ for few different distances R, presented
in logarithmic coordinates. The numerical solution is fitted with the function CgðR=rÞd. The parameters Cg and d found by
numerical fitting are given in Table 3.

Fig. 9(C) presents the comparison between analytical potential (15) and numerically integrated one, given as functions
of the crossing angle g for selected values of normalized separation distances R=rCNT . It is observed that the analytical
expressions (15)–(17) provide good representation of the angular dependence of the potential of two aligned (y¼ p=2)
cylinders.

For the values of R smaller than Rm ¼ 2:75rCNT we assume that the anisotropy function is constant and equal to
SðRmÞ ¼WðRmÞ. It is important to note that our adjustment (15)–(17) captures the angular dependence of the potential only
for the attractive part of the potential, which is of practical importance for self-assembly problems. We do not consider the
dependence associated with the repulsive part (2rCNT oRoRm), which may favor misaligned states.

3.2.4. Corrected potential and the final vdW contact model

Summarizing the previous subsections, we can write down the vdW contact of spherical elements as

UðR,y,gÞ ¼ f cðRÞV
k
ðR,yÞGðR,gÞ, ð20Þ

Vk
ðR,yÞ ¼ 4KE A

ðDk
ðR,yÞÞa

�
B

ðDk
ðR,yÞÞb

 !
, ð21Þ

Dk
ðR,yÞ ¼

R

rCNTYk
ðyÞ
�2, ð22Þ

GðR,gÞ ¼ 1þWgðRÞð1�cosð2gÞÞ, ð23Þ
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Yk
ðyÞ ¼ 1þ

Xk

i ¼ 1

Ciðð�1Þi�1
þcosð2iyÞÞ, ð24Þ

WgðRÞ ¼ CgðR=rCNT Þ
d: ð25Þ

The parameters for vdW contact model are presented in Tables 2 and 3; the smooth cutoff function fc(R) is given in the
Appendix. Normal force, shear force and aligning moment acting between two distinct elements can be found as

FR ¼�
@U

@R
, Fy ¼�

1

R

@U

@y
, Mg ¼�

@U

@g
: ð26Þ

The corresponding stiffness are

kR ¼
@2U

@R2

����
����, ky ¼

1

R2

@2U

@y2

����
����, kg ¼

1

R2

@2U

@g2

����
����: ð27Þ

4. Mesoscopic DEM simulations of CNTs

We now demonstrate the suitability of the created model to investigate the mechanics of a wide range of (10,10) CNT
systems, including CNT films.

4.1. Adhesive shear strength and viscous friction of CNT sliding

In this example we demonstrate the importance of the created anisotropic vdW contact model. We consider the
adhesive shear strength and viscous friction coefficient of two CNTs. These parameters are important for estimation of the
macroscopic mechanical properties of CNT-based materials. The simulation setup for determining adhesive shear strength
is as follows: two (10,10) CNTs of the same length LCNT ¼ 40:7 nm originally are parallel and aligned, with intercenter
distance L0 (Fig. 10(A)).

In one set of simulations, CNT 1 is fixed at one of its ends, and CNT 2 is pulled in a force controlled mode. We can
measure the adhesive shear strength as a minimum force F0 sufficient to fully separate CNT 2 from CNT 1. The simulation
has been performed for the model of vdW interactions based on both the simple isotropic contact model and for the
anisotropic model described in Sections 3.1 and 3.2, respectively. The results of both simulations are summarized in
Table 4. As a reference, the line before last in Table 4 indicates the lowest possible value z, which is the cohesive energy per
unit length predicted analytically with the potential (10) z¼ VðL0Þ=T . Note that z does not depend on LCNT.
Fig. 10. (A) Adhesive shear strength and viscous friction coefficient measurement—schematics of the DEM simulation setup. (B) Averaged forces

measured in displacement control DEM sliding simulations as functions of velocities for three different damping coefficients.

Table 4
Adhesive shear strength between two parallel CNTs for different intertube vdW

contact models. The last line is based on the work of Filleter et al. (2012) and refers

to (27,0) CNTs.

V F0 (eV/Å) F0=LCNT (eV/Å2) F0=LCNT (pN/Å)

VDEM 8.590 0.021 33.85

V3
DEM

0.295 7.25�10�4 1.16

z 0.224 5.51�10�4 0.88

MD 0.1970.06 (4.5771.52)�10�4 0.7370.25
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On one hand, simulations using the isotropic contact gives high adhesive strength, which is typical for pair potential
models. The value obtained here of 33.85 pN/Å qualitatively agrees with the previously reported value of 26.86 pN/Å for
(5,5) CNTs (Buehler, 2006) obtained from BS simulation with Lennard-Jones pair potential between beads. On the other
hand, the adhesive shear strength predicted by the model with anisotropic vdW contact is 1.16 pN/Å. This is close to the
lowest bound limit, of 0.88 pN/Å, and the MD obtained value of approximately 0.73 pN/Å (Filleter et al., 2012).

A second set of simulations were performed in a displacement controlled mode, when the CNT 2 is pulled horizontally
with a prescribed velocity v0. The results of such a test (Fig. 10(B)) utilizing the anisotropic vdW contact obtains that
within a certain range of velocities, the average force acting on the edge element depends linearly on speed. Fig. 10(B)
allows us to estimate viscous friction coefficient: for x¼ 0:4 (see Section 2), which is used in further simulations, it is equal
to 4:3� 10�5 mN s=m. This value is orders of magnitude smaller than the 10 mN s=m realistic value used with the isotropic
vdW model (Cranford and Buehler, 2010). We recall that x was introduced to solve the technical difficulties associated
with the numerical integration of the equations of motion (1). As the viscous behavior depends on x, this example points
out that care must be exercised in simulations in which the dynamic aspect of CNTs sliding against each other is dominant.
Also, it points out the need to account for the realistic viscous behavior.

Note that in the limit of zero velocity Fig. 10(B) gives the value of force sufficient to overcome the static friction and
start the CNT sliding motion. Due to topology of the vdW potential this value does not coincide with the value of force
needed to fully separate the two CNTs, which is approximately 1.5 times larger.
4.2. CNT ring self-assembly and stability

In this example we demonstrate the importance of both the created anisotropic vdW contact model and the DEM ability
to simulate a self-assembly processes. Unclosed CNT rings are often encountered in experiments involving isolated CNTs
(Martel et al., 1999). The CNT ring formation was previously considered in Anderson et al. (2010) using the isotropic vdW
contact model, based on pair potential (10). Reasonable smoothness of the intertube interaction was achieved there by
choosing very small ratio of T=rCNT , i.e. a much finer coarse-grading than the one exemplified here in Section 2. This has
lead to a computational time of about 2 h on a standard laptop. Here, based on an anisotropic contact model, the numerical
solution of the same problem was obtained in approximately 1 min. The (10,10) CNT of length LCNT ¼ 271:2 nm was
represented by 200 elements. The initial and final configuration of the CNT ring given in Fig. 11(A) demonstrates that the
method is able to handle large displacements caused by the vdW forces, a feature which will be important for simulating
processes by which CNT films develop bundles. The simulation of the relaxation required 24,000 time steps or 0.6 ns.
Fig. 11(B) shows the evolution of the different energy terms. As can be seen from the plots, the final equilibrium state is
characterized by the balance of elastic strain energy and vdW potential energy.

From the continuum perspective, the equilibrium parameters of a CNT ring can be predicted with the simple analytical
model described next. Consider the ring shown in Fig. 11(C), with radius Rr, length LCNT, and overlap length Dl. We assume
Fig. 11. CNT ring relaxation. (A) Evolution of the CNT ring shape during the DEM simulation. (B) Evolution of energy terms during the simulation.

(C) Schematics for the simplified analytical model. (D) Potential energy as a function of the overlap segment length for the analytical model.
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for simplicity the ideal circular shape of an equilibrium ring configuration. The vdW adhesion energy of a ring with overlap
Dl may be well approximated as �zDl. Assume also that the strain energy of a deformed CNT is the energy of an elastic
beam in pure bending state under the bending moment M

Ustr ¼
M2

2YIc
LCNT ¼

YIc

Rr

� �2 LCNT

2YIc
¼

YIcLCNT

2R2
r

¼
YIcLCNT

2

4p2

ðLCNT�DlÞ2
: ð28Þ

Here Ic is a moment of inertia of a hollow circular cross section. The total potential energy of the ring (Fig. 11(D))

Ur ¼�zDlþ
2p2YIcLCNT

ðLCNT�DlÞ2
ð29Þ

has a minimum for

Dl¼ LCNT�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p2YIcLCNT

z
3

s
: ð30Þ

The equilibrium configuration reached by the DEM simulation in the ‘‘hands off’’ manner is characterized by Dl¼ 51:5 nm,
which is in close agreement with the Dl¼ 49:7 nm value assessed with Eq. (30).

To gain a microscopic perspective, we also investigated how the CNT ring morphology obtained by DEM compares with the
one obtained by direct MD simulations. The same (10,10) CNT ring was simulated using the MD code Trocadero (Rurali and
Hernandez, 2003) using a classical Tersoff (1988) potential to describe the covalent bonding between carbon atoms, and a
microscopic LJ potential with the parameters given in Section 2 to capture the long-ranged bonding. We started the microscopic
simulations from a circular ring state with the equilibrium overlap distance predicted by the mesoscopic model. The system
containing 132,900 atomic degrees of freedom was evolved in time from a ‘‘cold’’ start for 7.4 ps with a velocity Verlet algorithm.
The atomistic simulations demonstrated good agreement in the most important details. During the MD simulation time, the
overlap length and the ring radius did not change significantly (Fig. 12(A)). Due to the increase in stiffness at the overlap, the ring
lost its perfect circular shape, a feature observed also with DEM. There are however certain details, such as the ‘‘buckling’’ of the
CNT surface at the point of contact with the inner CNT end (Fig. 12(B)), and the small separation of the outer end (Fig. 12(C)), that
were not captured by the DEM mesoscopic model. The buckling visible in Fig. 12(B) is the signature of the long range vdW
interaction. It cannot be attributed to the known nonlinear elastic buckling of the CNT in pure bending because the curvature
reached in this simulation is small (Nikiforov et al., 2010.). The equilibrium ring radius in our simulations is 34.9 nm, which is
larger than the critical radius for buckling of 27.5 nm (Volkov and Zhigilei, 2010c).

It is worth to note that the microscopic simulation took 150 h on one core of a computational cluster, which is
approximately 2� 105 times slower than the DEM simulation for the whole ring formation.

4.3. Twisting of a CNT nanorope

This example illustrates the importance of accounting in the mesoscopic model for both moments and forces acting on
the spherical particles. We recall from Section 2 that restoring moments are developed in the parallel bonds in response to
relative angular displacements between spherical particles. Because in the DEM in mesoscopic model the spherical
particles are treated as rigid bodies, torsional deformations can be simulated in individual CNTs. Torsional degrees of
freedom in CNT systems present importance for applications of engineering significance. For example, twisting has been
applied in order to improve mechanical properties of CNT ropes (Zhang et al., 2007).

Consider a nanorope, consisting of 37 (10,10) CNTs, each of length 67.8 nm. Individual CNTs in the nanorope were
placed in a honeycomb arrangement, with distances between CNTs equal to L0. At the initial moment of the simulation all
Fig. 12. Molecular dynamic simulation of a (10,10) CNT ring. (A) Ring shape after 7.4 ps of time evolution. (B) Buckling of a CNT at the point of contact

with its edge. (C) Separation of the free edge of a CNT. Visualization was carried out using VMD (Humphrey et al., 1996).



Fig. 13. (A) DEM simulations of a twisted nanorope (free elements in gray, grip elements in blue) composed of (10,10) CNTs. (B) Evolution of different

elastic energy terms. (C) Total energy, potential energy and vdW energy. (For interpretation of the references to color in this figure caption, the reader is

referred to the web version of this article.)
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CNTs are undeformed. Both translational and rotational degrees of freedom of the edge elements of the nanorope are
rigidly fixed with respect to the grips that are rotating in opposite directions at a prescribed rate of 1.15 deg/ps. Fig. 13(A)
gives the deformed configuration of the nanorope. The strain energy in such a test involves twisting, shearing, tension and
bending mode contributions. However, as can be seen from Fig. 13(B), for relatively large twisting angles the response is
clearly dominated by twisting of individual CNTs. The torsional stiffness of the rope is 1.312 keV, which is approximately
equal to the torsional stiffness of 37 individual tubes. An interesting question arises from the problem of a twisted
nanorope—is there an intrinsic twist at the equilibrium state of free nanorope (Liang and Upmanyu, 2005)? The DEM
simulations obtained that the minimum of potential energy of the nanorope corresponds to undeformed configuration
(Fig. 13(C)), i.e. a stress-free nanorope composed of armchair CNTs does not self-twist.
4.4. Self-assembly of a randomly oriented network of nanotubes

The numerical modeling of the complex self-assembly processes present in CNT papers represent a challenging test for our
model. Predicting the microstructure of the CNT-based material (paper) is a matter of capturing the correct aligning moments
between CNTs, adhesive shear strength, and interaction cutoff radius. Agreement with experiment on important features, like
CNTs mobility leading to bundles formation, Fig. 1, would represent an important validation for our mesoscopic model.

The remarkable qualitative agreement with experiment and microscopic simulations obtained in the examples
considered in the previous subsections, is a credible basis for simulating the more complex self-assembly process of
CNT papers. We considered 150 (10,10) CNTs each of 0:2 mm in length. Initially straight CNTs are located in a box volume,
which can be viewed as a piece of CNT paper. The CNT centers are chosen randomly in 300� 300� 20 nm3 cuboid. CNT
orientations are distributed isotropically in the CNT paper plane, with uniformly distributed random out-of-plane angle
within the borders of 101. In the case of overlap of CNT segments the contact forces (26) are artificially replaced with
constant normal repulsive force of 1 eV/Å. The resulting specimen has the porosity of about 87% (we define zero porosity
as the porosity of closely packed parallel CNTs).

On one hand, simulations carried out with a vdW model based on the pairwise potential (10) obtained that the CNTs do
not tend to form bundles (Fig. 14(A)). Due to high adhesive shear strength CNTs showed low mobility; most of tubes
remained where they were deposited; some neighboring tubes formed bundles of 2–3 CNT. Fig. 14(B) gives the evolution
of the energy terms during this simulation. During the 0.5 ns (22,000 time steps) the kinetic energy of the system dropped
to zero while the variations of other energy terms almost stopped.

On the other hand, the simulation based on our anisotropic vdW contact model indeed has demonstrated qualitatively
different behavior. Fig. 14(D) shows the final configuration for a set of CNTs evolved in time using the potential (20). The
simulation took 2� 105 time steps (4.5 ns) and about 100 hours on a regular desktop machine. The self-assembly process
was characterized by much higher mobility, and CNTs showed the tendency to unite into bigger bundles even after 4 ns.
Almost all CNTs were joined into bundles comprising from 2 to 25 individual CNTs. Nanotubes within each bundle
were untwisted and displayed honeycomb hexagonal alignment (see inset in Fig. 14(D)). These facts are in qualitative
agreement with the structure of CNT paper observed in electron microscopy, as well as the results of MFF simulations
(Volkov et al., 2008; Volkov and Zhigilei, 2010a–c). No CNT rings were formed during the simulation time, indicating that
this self-folding mode might be a feature of isolated CNTs.



Fig. 14. CNT paper structure (A,D), evolution of different energy terms (B,E), evolution of elastic energy terms (C,F) in the simulation based on isotropic

(A–C) and anisotropic (D–F) contact models.
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Fig. 14(E,F) shows an evolution of different terms of potential energy, as well as kinetic and total energy of the system
during the simulation. (The initial part of relaxation, characterized by large changes in energies was excluded from these
plots.) An important feature is the relatively large kinetic energy present during the simulation, indicating a high mobility
of sliding CNTs. It is seen that during the simulation time, the system did not reach an equilibrium state. However, the
strain and vdW energy curves in Fig. 14(E) suggest that eventually there should be an equilibrium state arising from the
balance of elastic energy and vdW energy, just like in the CNT ring example from the previous subsection. Fig. 14(F) shows
the relationship between different terms of elastic energy during the simulation. An interesting feature is the relatively
large elastic energy stored by the parallel bonds in shearing, whereas normal stretching is almost absent. This behavior
contrasts with the one obtained with the isotropic contact model, in which most elastic energy is stored in the bending
deformation (Fig. 15(C)) of individual CNTs.

The above comparison indicates that the two most important parameters that affect the stability of the structure are
the adhesive shear strength between parallel CNTs and the aligning moment between the crossed CNTs. Thus, the effort to
include these two features in our mesoscopic model is fully justified. Clearly, mesoscopic models employing vdW pair
potentials (Anderson et al., 2010; Buehler, 2006) are less suited for such endeavor mainly because of the staggering effect
discussed in Section 3. Recent work indicated that some other factors, such as CNTs nonlinear elastic buckling (not
accounted here) may be of importance (Volkov and Zhigilei, 2010a–c). It is also important to note that the ‘‘hands-off’’
bundling process is influenced by other parameters, such as the initial porosity. In case of a very porous initial state, CNTs
do not form bundles (even with the anisotropic vdW model) because of insufficient number of CNTs forming vdW contacts.
In very dense random specimens the high initial entanglement prevents large CNTs rearrangements at least during the
affordable computational time. Interestingly, our self-assembly simulations suggest that there is an optimal density of a
random carbon nanotube sample that leads to the formation of relatively large CNT bundles.



Fig. 15. Mechanical test on CNT film specimen. (A) Multilayered CNT film. Different colors are used to indicate different layers. Grip elements are in gray.

(B) Four loading–unloading cycles of a constant rate tension-compression test, that show viscoelastic response of the specimen. (C) Three loading–

unloading cycles of a constant rate tension-compression test but different x. (For interpretation of the references to color in this figure caption, the reader

is referred to the web version of this article.)
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4.5. Tensile test on a low porosity CNT paper specimen

A common experimentally relevant mechanical test is the tensile deformation of a CNT paper. The DEM simulation of
this process is discussed next. The method described in previous subsection allows the preparation of a CNT paper
specimen. Unfortunately, that approach is applicable only for porous specimens. The results of mechanical tests on such
specimens are non representative due to high heterogeneity of the paper structure. As already mentioned, attempts to
produce specimens with low porosity proved to be computationally prohibitive. In order to assembly a denser specimen, a
‘‘layer by layer’’ assembly procedure is instead employed. This procedure is as follows: the CNTs of the current layer are
placed into the cuboid volume and relaxed for 0.4 ns. The tubes of each next layer are placed in the neighboring volume,
and allowed to relax and deposit on the previous layer. Such procedure reflects the physics behind the assembly of CNTs
into a paper using the filtration process. The resulting specimen shown in Fig. 15(A) consists of four layers, has the porosity
of about 68% and qualitatively realistic structure. It contains 240 (10,10) CNTs, where the length of each CNT is 95 nm.

Next, the relaxed specimen is subjected to a few loading cycles of a displacement controlled tension-compression test.
The distinct elements of the specimen are separated into three groups: two ‘‘grips’’ and free elements. The elements of
grips are moved with the constant speed of 5 m/s in opposite directions, whereas other degrees of freedom of the grip
elements are free. The test consists of loading and unloading, each take 3000 time steps or 0.04 ns.

Viscoelastic behavior of a CNT films and composites is commonly observed in mechanical experiments (Suhr et al.,
2005). In our simulated test, the specimen demonstrates linear viscoelastic behavior in a narrow range of strains. The
obtained loading–unloading hysteresis loop (Fig. 15(B)) is well described by a simple parallel linear spring–damper
Kelvin–Voigt model (see for example Bulicek et al., 2012) with Young’s modulus and viscosity constants of 1.9 GPa and
0.06 Pa s, respectively. Results on the repeatability of such tensile tests (not shown) indicated that the variation of
mechanical parameters of the specimens are within the reasonable range of 20%.

We also carried out similar simulations of loading–unloading cycles for various x parameters, in order to investigate the
role of local damping. The results displayed in Fig. 15(C) indicate that the slope and the vertical width of the loop (vertical
distance between loading-unloading cycle measuring the viscosity of the material) are not dominated by the numerical
parameter x. This behavior contrasts with the one noted in Section 4.1. Physically, this is because the response obtained
here is mainly due to the covalent forces of individual CNTs, and not by the rate-dependent sliding shear forces. Overall,
this example demonstrates that the existing numerical approach of integrating the equations of motion using the artificial
local damping approach is still useful.
5. Summary

Building on our recent proposal (Anderson et al., 2010), in this paper we demonstrate that DEM, a methodology designed for
large-scale engineering problems, can be successfully adapted at the mesoscale and used to bridge the gap between the large
spatial scales exhibited by the mechanical phenomena that we desire to simulate and the interatomic forces that limit the
current high-resolution microscopic methods. Starting from an atomistic description of CNTs, we grouped atoms into spherical
particles that interact with each other via prescribed contact models encapsulating the vdW and covalent interatomic
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interactions. An important feature is the presented anisotropic vdW contact model that resolves the problems of high adhesive
shear strength and low aligning moments associated with the isotropic LJ treatments of the vdW interaction between coarse
grained elements. The promising potential of the DEM methodology to simulate complicated and demanding phenomena of
CNT self-assembly and mechanical response of CNT papers was illustrated with several examples.

All the presented examples involved a created mesoscopic model for a (10,10) CNTs in which each spherical particle
lumps about 220 carbon atoms. A more significant reduction in atomistic degrees of freedom, achieved for example by the
coupling of the method with continuum-level modeling such as finite element, can make the methodology even more
efficient. Nevertheless, to model other complex phenomena, such as yielding and fracture (Dumitrică et al., 2003, 2006),
the model needs to be also expanded in the microscopic region, by replacing separate coarse-grained beads with full
atomistic models in the highly stressed regions.

The basic DEM model introduced here can be further expanded for atomistically informed hierarchical multiscale modeling
of a variety of processes and applications. For example, in mechanical energy storage applications CNTs are severely deformed.
Recent simulations (Huang et al., 2008; Nikiforov et al., 2010; Zhang et al., 2009) indicated that the onset of the nonlinear
behavior (rippling and buckling) in CNTs under bending and twist deformations leads to a reduction in the elastic constants.
This change in elastic constants can be easily incorporated in the current parallel bond contact model, used here to capture only
the CNT linear elasticity. The fracture process of individual CNTs can be simplistically modeled by limiting the strength of the
parallel bonds. This method development can be particularly useful in approaching the study of the strength of CNT ropes.
More precisely, it could allow understanding the correlation between the well-documented high tensile strength of individual
CNTs (Dumitrică et al., 2003, 2006) with that of the rope made from them, which can be twisted (Zhang et al., 2007). In
nanocomposite material applications, CNTs are functionalized in order to improve the mechanical load transfer. CNT
interactions beyond the vdW interactions, such as CNT linking (functionalization) via covalent bonds. If such bonds do not
introduce significant rotational stiffness, their effects can be readily captured by adding into the current DEM model another
type of standard DEM bonds called contact bonds (Itasca CG Inc., 2008). The contact bond (to be parameterized
microscopically) behaves, essentially, as a parallel bond of radius zero. Thus, a contact bond cannot resist a bending moment
or oppose rolling; rather, it can only resist a force acting at the contact point (Potyondy and Cundall, 2004).

Interesting prospects emerge due to the continuous development of DEM for performing complex engineering
investigations. The DEM code that was used in the presented simulations, PFC3D 4.0, will be soon upgraded by the next
version, PFC3D 5.0. The new code appears to be even better suited to performing mesoscopic simulations of CNTs, because
it will support: (a) direct specification of a non-zero interaction radius for each spherical particle to ensure that a contact
forms when these radii overlap, (b) modeling within a periodic space in which particles and contacts can migrate
seamlessly across the periodic boundaries, and (c) automatic multi-threading to increase execution speed.
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Appendix A. The contact model for vdW interaction of two cylindrical segments

All simulations described in this paper were performed using the PFC3D 4.0 code (Itasca CG Inc., 2008). It was originally
oriented on modeling large assemblies of rigid spherical particles, or rigid clumps of spherical particles. Here we consider
the introduction of an anisotropic contact model of vdW interactions.

The axial direction of the nanotube, that determines anisotropy, is calculated for each ball as a vector, connecting the
centers of its left and right neighbors (for each edge ball—as center-to-center vector between the ball and its only
neighbor), and is stored in extra memory slots at each step of simulation for each ball. These data are used by the user-
defined contact model (Itasca CG Inc., 2008), that is based on the potential (20).

Given normals n
!

b1, n
!

b2, n
!

R and distance R, the unit normal directions of shear force and aligning moment are found as

n
!

y ¼
n
!

R � ½ n
!

R � ð n
!

b1þ n
!

b2Þ�

9 n
!

R � ½ n
!

R � ð n
!

b1þ n
!

b2Þ�9
, ð n
!

R\ n
!

b1þ n
!

b2Þ,

n
!

g ¼
n
!

b1 � n
!

b2

9 n
!

b1 � n
!

b29
, ð n
!

b1\ n
!

b2Þ: ð31Þ

The user-defined PFC3D contact model requires to specify the potential, forces (moments) and stiffnesses. Potential is
used to calculate global potential energy of the system. The expressions for forces and moments determine the dynamics
of the system. The expressions for current stiffnesses are used by PFC3D to calculate the stable timestep (see Itasca CG Inc.,
2008 for details), and viscous damping constants (if used).

Our contact model is given by the potential

UðR,y,gÞ ¼GðR,gÞf cðRÞV
k
ðR,yÞ: ð32Þ
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The normal and shear forces and aligning moment are given by

FR ¼�
@U

@R
¼�

@GðR,gÞ
@R

f cðRÞV
k
ðR,yÞ�GðR,gÞ @f cðRÞ

@R
Vk
ðR,yÞ�GðR,gÞf cðRÞ

@Vk
ðR,yÞ
@R

,

Fy ¼�
1

R
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@y
¼�

1

R
GðR,gÞf cðRÞ

@Vk
ðR,yÞ
@y

,

Mg ¼�
@U

@g ¼�
@GðR,gÞ
@g f cðRÞV

k
ðR,yÞ: ð33Þ

The corresponding stiffnesses are

kR ¼
@2U

@R2

����
����¼ @2GðR,gÞ
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Here
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Yk
ðyÞ ¼ 1þ

Xk

i ¼ 1

Ciðð�1Þi�1
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ðyÞ
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¼�

Xk

i ¼ 1

2iCi sinð2iyÞ,
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ðyÞ
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¼�
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4i2Ci cosð2iyÞ, ð36Þ

GðR,gÞ ¼ 1þWgðRÞð1�cosð2gÞÞ,
@GðR,gÞ
@g ¼ 2WgðRÞ sinð2gÞ,



Fig. 16. Cutoff function fc(R).
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@2GðR,gÞ
@2g

¼ 4WgðRÞ cosð2gÞ,

@GðR,gÞ
@R

¼
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ð1�cosð2gÞÞ,
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WgðRÞ ¼ CgðR=rCNT Þ
d,

dWgðRÞ

dR
¼

dCg

rCNT
ðR=rCNT Þ

d�1,

d2WgðRÞ

d2R
¼

dðd�1ÞCg

r2
CNT

ðR=rCNT Þ
d�2: ð38Þ

The smooth cutoff function fc(R) (Fig. 16) and its derivatives have the following shape:

f cðRÞ ¼ 1,
df cðRÞ

dR
¼ 0,

d2f cðRÞ

d2R
¼ 0, RoRbeg

f cðRÞ ¼Q0þQ1RþQ2R2
þQ3R3,

df cðRÞ

dR
¼Q1þ2Q2Rþ3Q3R2,

d2f cðRÞ

d2R
¼ 2Q2þ6Q3R, Rbeg oRoRend, ð39Þ

where the coefficients Q0,Q1,Q2,Q3 are such that

f cðRbegÞ ¼ 1, f cðRendÞ ¼ 0,
df cðRÞ

dR

����
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¼ 0,
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����
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they are found from
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The values of the Rbeg and Rend are as follows:

Ru
beg ¼ 3rCNT , Ru

end ¼ 4rCNT :

Fast calculation of trigonometric functions in expressions for Yk
ðyÞ and its derivatives utilizes particular case of

recursive Chebyshev formulas (i¼ 1 . . . k�1Þ:

cos 2ðiþ1Þy¼ cos 2iy cos 2y�sin 2iy sin 2y,

sin 2ðiþ1Þy¼ sin 2iy cos 2yþcos 2iy sin 2y: ð42Þ
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