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We propose distinct element method modeling of carbon
nanotube systems. The atomic-level description of an indi-
vidual nanotube is coarse-grained into a chain of spherical
elements that interact by parallel bonds located at their con-
tacts. The spherical elements lump multiple translational
unit cells of the CNT, and have both translational and ro-
tational degrees of freedom. The discrete long ranged in-
teraction between nanotubes is included in a van der Waals
contact model of non-mechanical nature that acts simulta-
neously with the parallel bonds. The utility of the model is
demonstrated by simulating carbon nanotube rings.

Nomenclature
r The nanotube radius.
Y , G Young and shear moduli of a carbon nanotube.
m, R Mass and radius of a distinct spherical element.
T , r The length and radius of the parallel bond.
kn, ks Normal and shear stiffness of a parallel bond.
ε′, A, and B Parameters for the van der Waals contact

model.
L Intertube center-to-center distance.
D Normalized intertube center-to-center distance D =

(L/r)−2.

∗Address all correspondence to this author.

1 Introduction

Carbon nanotubes (CNTs) exhibit remarkable mechani-
cal characteristics, such as high mechanical strength [1] and
resilience [2]. For this reason, they are highly researched for
applications. Valuable insights into individual CNT response
have been obtained theoretically from atomic-level simu-
lations [1–5]. Unfortunately, performing exhaustive simu-
lations at atomistic scale for CNT systems of engineering
significance is computationally prohibitive. Coarse-graining
approaches, that reduce [6,7] or even eliminate [8,9] the large
number of atomistic degrees of freedom, are used in order
to make simulations manageable. However, in spite of such
developments, simulations on collective behavior have not
kept pace with the demand from many areas, ranging from
nanoelectromechanical systems [10], nanocomposite materi-
als [11], nanotoxicology [12] and rock mechanics [13].

To model large scale motions of polymers, colloids, sur-
factants, nanotubes, and bio-molecular assemblies, meso-
scopic simulation methods have been developed, such as dis-
sipative particle dynamics [14] and Langevin dynamics [15].
Interestingly, the method invoked here, the distinct element
method (DEM) [16], is currently used for larger scale simu-
lations in granular and discontinuous materials, such as gran-
ular flows, powder mechanics, and rock mechanics. In this
work we show that DEM can be easily adapted for CNT sim-
ulations. We first formulate a basic DEM mesoscopic model
of CNT systems in terms of the contact interactions between



the discrete elements. Using parameters derived previously
from the atomic-level description, we illustrate the utility
of this model in a complex situation involving large elas-
tic deformation and van der Waals (vdW) adhesion. DEM
emerges as an attractive methodology not only because of
its simplicity, but also because of its availability in several
commercially available distinct-element programs, such as
PFC3D [17] (which was used to perform the work described
here). It may also be possible to perform similar model-
ing with traditional molecular dynamics programs, such as
LAMMPS [18].

2 Distinct element method for CNTs
Unlike other particle-based method, the DEM particles

are no longer being treated as point masses. Instead, each
individual element is a rigid body characterized by a mass m
uniformly distributed in the spherical element of radius R and
moment of inertia I = (2/5)mR2. These parameters are time-
independent and, for simplicity, here all spheres are taken to
be identical. Thus, the system composed of a collection of
N discrete element contains not only translational but also
rotational degrees of freedom. Specifically, the generalized
coordinates (also called state variables) are the positions ri
and velocities vi for the center of mass of each sphere, as
well as their angular rotations ΘΘΘi and angular velocities ΩΩΩi
vectors, where i = 1, ...,N.

One counterintuitive aspect is that although the spheri-
cal particles are rigid, they can interpenetrate, Fig. 1. The
intersection of the two proximate spherical surfaces define a
plane, the contact plane, perpendicular to the axis connect-
ing the two centers located at ri and ri+1. In the DEM logic,
interpenetration signifies that the two elements interact. Var-
ious constitutive contact models of pure mechanical nature
are available [17] to describe the interaction of elements. The
mechanical behavior of this system is described by evolving
in time each rigid sphere according to the laws of classical
mechanics, Fi = mr̈i and Mi = IΘ̈ΘΘi. Fi and Mi are the to-
tal force and moment, respectively, acting on element i, that
arise due to the interactions with the elements in contact as
well as artificially introduced dissipative forces. With the
PFC3D method at hand [17], the system is evolved in time
with a non-symplectic leapfrog second-order in time-step
scheme. The goal is to drive the system towards a low en-
ergy metastable state rather than performing thermodynamic
integration like in molecular dynamics.

2.1 Contact model to represent the covalent binding
The individual CNT quasi-one dimensional structure

extending over microns of length originates in the strong
covalent carbon-carbon bonding. This bonding is formed
by sharing of the valence electrons, according to the laws
of quantum mechanics. Paramount to our coarse-grained
DEM model is describing the larger scale mechanics. Thus,
we aim to retain from the fundamental atomic scale both
the quasi-one dimensional stable structure and the low-
frequency acoustic vibrations.

Fig. 1. (color online) (a) CNT representation as a chain of overlap-
ping spherical elements, shown here in 2D. (b) Parallel bond contact
model for the interaction of two spherical elements with radius R.

As reviewed on a number of occasions [19], the nanome-
chanics of deformed CNTs can be interpreted with the
heuristics of the continuum. For example, a quadratic vari-
ation of strain energy with the applied strain computed mi-
croscopically is usually interpreted as linear elastic behavior.
Recent microscopic data indicated that single-walled CNTs
of moderate diameters can be well represented as isotropic
elastic continuum shells, as earlier proposed [2]. Under large
tensile stress, CNTs fail irreversibly through plasticity or
brittle fracture [1]. However, microscopic calculations in-
dicated that CNT also exhibit a rich nonlinearly elastic be-
havior over wide ranges of mechanical stress [2, 4, 5]. With
the DEM approximation, the continuum behavior can be well
reproduced. Thus, the known atomic-scale nanomechanical
behavior suggests that the existing DEM clumping structure
valid for the macro-scale can be used and there is no need to
invent a new contact model for this purpose.

The high degree of crystalline uniformity of CNTs natu-
rally associates one spherical element with one translational
cell or supercell repeating unit with length T and containing
Na atoms. Thus, in the stress-free representation of a CNT,
the distance between contact planes is T , Fig. 1(a). It is
important to recognize that to comply with the underlying
atomic-scale description, the translational fragments lumped
into the discrete elements cannot be kept frozen during the
relative motion of proximate elements with respect to each
other. From the existing contact models we found adequate
the standard parallel-bond contact because it establishes an
elastic interaction between particles in terms of both forces
and moments. (The nomenclature used highlights that this
contact can work in parallel with other contact models.)

A parallel bond can be envisioned as a finite-sized disk
of elastic massless material with radius r bound around the
contact and centered on the axis connecting the centers of
two proximate elements, Fig. 1(b). To this disk we associate
a set of ideal elastic springs with normal kn and shear ks stiff-
nesses uniformly distributed over its circular cross-section.
When the contact is formed in DEM, the total contact force
and moment are initialized to zero. A mechanical deforma-



tion will reflect in displacements of the generalized coordi-
nates with respect with their initial position, and contact elas-
tic forces and moments acting to restore the needlelike shape.
The restoring force and a moment develop within the bond
material according to its constitutive law. For example, a
δx axial relative displacement between i and i + 1 elements
causes a contact restoring force Fx

i =−Fx
i+1 =−knSδx, while

a δΘz relative angular displacement causes a contact restor-
ing moment Mx

i = −Mx
i+1 = −ksIxδΘz. Here S = πr2 and

Ix = (π/2)r4 are the area and the polar moment of inertia of
the disk cross-section. The full description of the parallel-
bond implementation in PFC3D can be found in Potyondy
and Cundall [13].

The two spring constants can be obtained by considering
elastic elongation and torsion deformations and equating the
strain energy of the DEM model with the one obtained mi-
croscopically. It follows that the length of the parallel bond
disk is T and, kn = Y/T and ks = G/T . Here Y and G are
atomistically-computed Young’s and shear moduli, respec-
tively.

2.2 Contact model to represent the vdW interactions
To be able to simulate CNT systems, the parallel bonds

representing the covalent binding must be supplemented
with a new contact force representing the vdW interac-
tion between the two underlying parallel nanotube seg-
ments of length T . Fortunately this interaction can be
captured in a simple analytical form. As usually, the
vdW interaction between two atoms located at distance
d is represented by a Lennard-Jones (LJ) 6-12 potential,
v(d) = 4ε

[
(σ/d)12− (σ/d)6

]
, where ε and σ are standard

parameters 1. We treat the discrete interaction between car-
bon atoms located on the two parallel tube segments of
length T in continuum way, in terms of area density of atoms
ρc = 4/(3

√
3a2

C-C) [20]. Here aC-C = 1.42Å is the equilib-
rium carbon-carbon bond length in graphene. Integrating the
LJ interaction over the surfaces of the two tube segments lo-
cated at a center to center distance L, we arrived at (see Ap-
pendix)

V (D)≈ 4ε
′
[

A
D9.5 −

B
D3.5

]
. (1)

Here D = (L/r)−2 is the normalized intertube center-to-

center distance and ε′ = (
3πσ6

8r3 ρ2
cT )ε. A =

21σ6

32r6 a, and val-
ues of dimensionless constants a and B are given in the Ap-
pendix. This simple form for the vdW interaction energy
V makes it easy to derive the vdW force component acting
on the spherical elements. While this model assumes that
each DEM ball only interacts with its nearest neighbor in
the adjacent nanotube segment, it may be easily adapted to
the case of multiple-neighbor interactions, such as when the
DEM balls are finely spaced.

1Here we used σ = 3.851 Å and ε = 4.0 meV

Fig. 2. (color online) Result of (5,5)@(10,10)@(15,15) MWCNT ring
simulation, showing initial and final configuration of relaxation. Yellow
(light gray) represents the size of the CNT, while blue (gray) repre-
sents the vdW cutoff radii of each ball.

3 Model parameterization and Simulations
We now show an example of how the DEM framework

may be applied to CNTs. The DEM parametrization of a
(5,5)@...@(15,15) multi-walled (MW) CNT is given in Ta-
bles 1, 2, and 3. This MWCNT was parametrized as an elas-
tic cylinder for use in the PFC3D simulations. This is a nat-
ural choice given the fact that the parallel bonds represent
elastic cylinders. The approximation does not introduce sig-
nificant inaccuracies, especially when the primary mode of
deformation is bending, as the space inside the (5,5) that is
empty in the real CNT contributes less than 2% to its moment
of inertia. The empty space contributes less than 12% to the
cross-sectional area of the cylinder. Parallel bond radius r
is set to the radius of the outer (15,15) wall, 10.17 Å. Each



DEM sphere lumps two translational unit cells of the arm-
chair MWCNT, so the element spacing T is 5.06 Å. Each
sphere then lumps 240 carbon atoms, giving each sphere a
mass m = 2,880 amu, important if the dynamics are to be
studied. The bending stiffness EIx of this MWCNT, 12.0 eV-
µm, taken from a previous atomistic study [5] was used to
calculate the Young’s modulus of the elastic cylinder repre-
senting the MWCNT, E = 2.29 TPa. The elastic modulus
in shear was taken as the surface shear modulus of graphene
multiplied by the inter-wall spacing of the MWCNT, 3.4 Å.
The result is G = 459 GPa. It was shown that only the in-
nermost tubes’ moduli are likely to slightly deviate from this
value [3]. The error caused is further reduced by the fact that
the ficticious area occupied by the inner walls contributes a
comparatively small portion to the area and polar moment
of the cylinder. Appropriately scaling by T , the discrete
normal and shear stiffnesses for each parallel bond are then
kn = 2.81 eV/Å4 and ks = 0.57 eV/Å4. Because the discrete
elements must interpenetrate to interact, the radius of the dis-
crete elements, R = 25.4, is one-half the cutoff radius for the
vdW interaction.

Table 1. DEM parameterization for a (5,5)@...@(15,15) MWCNT.

m (amu) R (Å)

2,880 25.4

Table 2. Parallel bond parameterization for a
(5,5)@...@(15,15) MWCNT.

T (Å) r (Å) kn (eV/Å) ks (eV/Å)

5.06 10.17 2.81 0.57

Table 3. Van der Waals bond parameterization for the interaction of
(5,5)@...@(15,15) MWCNTs.

ε′ (meV) A B

10.77 9.15·10−4 1.31

Having the model parameterized, we now demonstrate
its utility in describing the MWCNT rings often encoun-
tered in experiment [21]. This represents an ideal test for

the model since the ring structure arises from the energy bal-
ance stored in the parallel and vdW bonds. Simulations con-
sidered a (5,5)@(10,10)@(15,15) MWCNT of 500nm length
contains 240,000 atoms, a system well beyond the comfort-
able computational level of atomistic or FEM simulations.
This MWCNT is represented by 1,000 DEM balls.

Starting from a strait configuration, the tube was grad-
ually bended accumulating strain in the parallel bonds. The
remarkable part of the simulations starts form the moment
when the two ends were brought into the range of the vdW
interaction. Fig. 2 shows the result of this last part, which
lasted about two hours on a common laptop computer. The
configuration evolved from the initial state shown on the top
obtained by direct bending to the final stable state on the
bottom resulted by sliding in the overlap region, as well as
elastic relaxation. The final ring configuration represents a
minimum-energy state in the balance between vdW and elas-
tic energy. The curvature of the ring is less than 0.2 nm−1,
placing it well within the linear elastic regime of bending [5].

4 Conclusion
On the surface, it could be difficult to see what a method-

ology designed for large-scale engineering problems has to
do with CNT systems. In this paper we indicated the suitabil-
ity of this methodology on a much smaller time- and size-
scale. We represented each CNT with a chain of parallel-
bonded spherical elements to capture the intra-wall interac-
tions along with a vdW model to capture inter-wall interac-
tions. The resulting mesoscale model is adequate for im-
plementation in existing DEM software packages. With the
PFC3D code, we demonstrates its ability to describe CNT
rings. Of course, the basic CNT mesoscopic model intro-
duced here can be further optimized and enhanced. For ex-
ample, the parallel bonds can be adjusted to accommodate
nonlinear rippling by introducing a reduction in the rele-
vant elastic constants beyond certain strain levels [5]. To
describe CNT fracture, one can introduced bond strengths
beyond which the parallel bonds break [1]. There is an inter-
esting prospect for more complex engineering investigations
since the foundations are already in place. For example, this
method can be used to describe CNT agglomerates, of high
importance to nanotoxicology.
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Appendix
Equation (1) is an approximate evaluation of the vdW

interaction energy given by the integral:

V (D) = ρ
2
cr2T

Z
π

−π

Z
π

−π

Z T/2

−T/2
v(d)dxdθ2 dθ1. (2)



Fig. 3. (color online) (a) Schematics for the cross sectional view of
two parallel tubes. (b) The vdW energy vs. a normalized intertube
center-to-center distance D. Results are shown for three different
tube radii. Both the exact Eqn. (2) (numerical integration) and the
approximate Eqn. (1) evaluations are presented for a comparison.

In cylindrical coordinates (r, θ, x), the distance between
two atoms located on two different tube segments aligned
along the x axis is d =

√
r2 + l2−2rl cosθ2 + x2, where

l =
√

r2 +L2−2rLcosθ1, Fig. 3(a). We are focusing on the
case in which the distance between tubes is small, which
means D� 1. Then, the major contribution to Eqn. (2)
comes from small angles θ1 and θ2. It is convenient to intro-
duce the notation t =

√
r2 + l2−2rl cosθ2. Then, t/r� 1.

If T ∼ r, also t/T � 1. Using these approximations in the
attraction and repulsive tems of Eqn. (2), it follows

Z T/2

−T/2

dx
d6 =

Z T/2

−T/2

dx
(t2+x2)3 =

3π

8
1
t5

[
1+O(

t
T

)
]
,Z T/2

−T/2

dx
d12 =

Z T/2

−T/2

dx
(t2+x2)6 =

63π

256
1

t11

[
1+O(

t
T

)
]
.

Neglecting the higher order terms, Eqn. (2) writes

V (D)≈ερ
2
cT

3πσ6

2r3

Z
π

−π

Z
π

−π

[
21σ6

32r6

( r
t

)11
−
( r

t

)5
]

dθ2 dθ1.

(3)
Further, using a Taylor series expansion

t2

r2 = θ
2
2 +(D+θ

2
1)

2 +o(max{θ2
2,θ

4
1,Dθ

2
1,D

2}), (4)

and substituting Eqn. (4) into Eqn. (3), one recovers Eqn. (1).
The constants a and B are given by

a =
Z

∞

−∞

Z
∞

−∞

dt1 dt2(
t2
2 +(1+ t2

1 )2
)11/2 ≈ 0.47,

B =
Z

∞

−∞

Z
∞

−∞

dt1 dt2(
t2
2 +(1+ t2

1 )2
)5/2 ≈ 1.31.

The comparison for the vdW energy Eqn. (2) obtained
by numerical integration against the approximate form given
by Eqn. (1) is presented in Fig. 3(b) for three values of r. The
small-intertube approximation behind Eqn. (1) works very
well, even for large D values. This is because the exact inter-
action energy at large distances is negligibly small.
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