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Surface Micromachining

Si wafersacrificial SiO2 (4 μm)

undoped polysilicon (5.7 μm)masking SiO2 (1 μm)

Plasma etch

Pd sputter (17 nm)

B diffusion dopeHF release

HF release



Analog Devices Gyroscope
iMEMS Gyro Die Showing the Rate Sensor and Integrated Electronics

http://www.analog.com/technology/mems/gyroscopes/index.html



MEMS Device-Fuel Atomizer
Motivation
• Reduce cost through batch fabrication
• Achieve desired tolerances using a 

precise silicon micromachining 
technology

Operation
• Fuel enters the spin chamber 

through tangential slots
• Fuel swirls in the spin chamber 

and exits through the orifice in 
a hollow conical spray

• Swirling produces sprays with 
wider spray angles as compared 
to plain orifice atomizers



Ant Carrying a (1000 µm)2 Microchip

Or is it a Palm Pilot?



ORIGINAL OBJECTIVES

Characterize strength, fracture toughness, high 
cycle fatigue and environmentally assisted 

crack growth in poly-Si, poly-SiC,
and SiC at scales relevant to MEMS devices.

•Develop (micron size) on-chip specimens.
•Generate data.

•Study mechanisms.
•Formulate predictive models.

CHALLENGES

•Experiments are difficult to design, execute and 
interpret.



NEW OBJECTIVES

Use MEMS devices to test nanoscale
structures
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CRACK TIP PARAMETERS

KI is the stress intensity factor
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CRACK GROWTH MECHANISMS

Fast fracture

High cycle fatigue

Stress corrosion

If applicable, how sensitive are the parameters
to processing procedures?

Native Oxide
is known to obey this law



FOCUS OF THIS TALK

•Demonstrate that polycrystalline silicon
is associated with mechanical  fatigue and

strenghtening mechanisms.

•Demonstrate that polycrystalline silicon is not
susceptible to static fatigue.

•Describe development of nanoscale testing
of biological structures.



Two types of on-chip specimens
have been developed:

•Loading through electrostatic actuation
•Loading through fabrication-induced residual stress



acr
2μm

Say acr =1μm

Say tlife =10yrs

Then vcr <10-15 m/s !!!

Why subcritical crack initiation and
growth should be studied in MEMS



CVD Polysilicon - Effects of Deposition Temperature
550°C 580°C 615°C

1100°C 570/615°C

all films
are ~2-6 µm
thick, and
deposited
on SiO2



Fracture Mechanics 
Specimen

Actuator

anchor pads

movable 
comb drive

fixed
comb drive

MEMS Fracture Mechanics Specimen
integrated with

MEMS Loading Device Actuator

(Proc. Royal Soc. A, 455, 3807-3823, 1999)

produces ~0.7 mN
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100 μm

100 μm

specimen

electrostatic actuator notch

notch

500 μm

Fatigue Testing

1438 pairs of comb 
fingers; 0.8 mN at 
150 V



ADVANTAGES OF THIS “ON-CHIP” SPECIMEN

•No need for external loading device.
•Resonance loading can be used to study very high cycle fatigue.

•Uncracked ligament size of the same order as dimensions of 
typical MEMS components.

•Can adjust mean stress and alternating stress.





Dynamic Fatigue of Polysilicon

Bagdahn and Sharpe, Sensors and Actuators A, 2003
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DIFFICULTIES IN DETERMINING ENVIRONMENTAL EFFECTS
USING THESE TESTS

•Tests involve cyclic loading, not constant load.

•Tests involve tension and compression.



Biased Fatigue Experiment

100 μmSpecimen T 100 μmSpecimen C

-70
0 AC Voltage
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ss
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Δσσ0

σmin

The specimens are given a tensile or compressive bias stress, σ0 , using a DC offset.

R =
σmin
σmax

Load Ratio
R =

σmin
σmax

Load Ratio



Dynamic Fatigue Results
low-cycle fatigue
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Fractography of Biased Fatigue Specimens

The larger mirror on the fracture surface of Specimen C indicates a 
larger flaw size at fracture, consistent with the lower σmax and also 
consistent with Kcrit = 1.0±0.1 Mpa-m1/2 .

Specimen T

2 μm

notch 
inner 
surface

(
mirror

σmax = 3.4 GPa

Specimen C

2 μm

notch 
inner 
surface

) mirror

σmax =1.7 GPa

Specimen T was subjected to a high 
tensile bias stress during resonance 
and fractured at a σmax of 3.4 GPa.

Specimen C was subjected to a high 
compressive bias stress during resonance 
and fractured at a σmax of 1.7 GPa.

Since the specimens were fabricated from the same 
polysilicon film, on the same wafer, this is clear 
evidence of fatigue-induced sub-critical crack growth.



polysilicon

indent

2h = 500 μm

w=60 μma
A

silicon substrate

polysilicon

SiO2 anchors

B pre-crack

Stress Intensity and Stress vs. Crack Length
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PASSIVE DEVICE ASSOCIATED
WITH CONSTANT TENSION

(Science 298, 1215-1218, 2002)



5 um

indent

substrate

pre-crack

beam

residual tensile stress
beam anchor (to substrate)

crack tip

1 um

INDENTATION CRACK

CWRU
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FINE-GRAINED SILICON
STATIC FATIGUE STUDY

90% RH

K between 0.62- 0.86 MPa-m1/2

No growth in 30 days
V< 3.9 x10-14 m/s

Same results for eight multipoly specimens



Static Fatigue Experiment
Notched Tensile Beams
Undoped LPCVD Polysilicon 

deposited at 570°C, annealed at 615°C → 318 MPa (Tensile)
500 μm

20 μm

a

20 μm

a

a(μm) σmax (GPa) broken
5.2 2.3 0/14
6.2 2.8 0/14
7.2 3.4 0/14
8.2 3.9 11/14
9.2 4.5 14/14
10.2 5.0 14/14

After 200 hrs in 90% humidity → no additional beams broke 



20 μm

Small Residual TensionSputtered Aluminum



Anchor

Anchor Anchor

Anchor

Anchor Anchor

200 μm

20 μm 20 μm

10 μm

Large Residual Tension
Silicon Nitride

Residual Compression
Columnar Polysilicon



100 μmSpecimen T 100 μm100 μmSpecimen T 100 μmSpecimen C100 μm100 μmSpecimen C

VARIATIONS ON A THEME

R-ratio
and mean

stress
effects



St
re

ss

Schematic Bend Strength Tests

Monotonic Increasing Amplitude Fatigue
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Monotonic Bend Strength 
after cycling with a fixed mean stress
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Monotonic Bend Strength 
after cycling with a fixed (low) amplitude
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Monotonic Bend Strength
with/without initial compression
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Monotonic Bend Strength
with/without tensile hold

Time
St

re
ss

0

σcσhold

10 min.

σhold = 2.7 GPa

Time

St
re

ss

0

σc

Bend Strength, σcr (GPa)

C
um

ul
at

iv
e 

Pr
ob

ab
ili

ty 0.9

0.7

0.5

0.3

0.1

2 3 4

avg. σcr = 3.1 GPa
m = 14

with tension
without tension



1.0     
  0     

- 1.0

Mean Stress, σ m
(GPa)

1.6

1.4

1.2

1.0

0.8

0.6
N

or
m

al
iz

ed
 S

tr
en

gt
h,

 σ
cr

it
(G

Pa
)

0    0.2     0.4    0.6    0.8     

Fatigue Amplitude, σ
a (GPa)

Effects on Monotonic Bend Strength 
of mean stress σm , and fatigue amplitude σa

Fatigue Amplitude, σa (GPa)

M
ea

n 
St

re
ss

, σ
m

(G
Pa

)

low high

hi
gh

   
  l

ow
   

   
   

lo
w

   
   

hi
gh

te
ns

ile
   

   
   

  c
om

pr
es

si
ve

weakening

weakening

strengthening

strengthening

no effect

no effect

(not measured)

undoped 
polysilicon

B-doped 
polysilicon



Mechanisms?

Phase transformation?
Microcracking?
Dislocations?
Plasticity at grain boundaries?
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Plastic flow in amorphous silicon
(M. J. Demkowicz and A. S. Argon)
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Poisson-Voronoi Local/Global Modeling
Model for Large Number

of Cycles



Low Δσ

 

and high σm (σm = 2.0GPa, Δσ

 

=2.0GPa)

Residual compressive stress ~1.4 GPa after 1000 cycles



Low Δσ

 

and high σm (σm = -3.5 GPa, Δσ

 

=2.0GPa)

Residual compressive stress ~0.9 GPa after 1000 cycles
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Mechanical Testing of Collagen Fibers 
(Nanotechnology)

Most abundant protein in the human body.
One of the basic components of bone, ligaments, 
tendons, teeth, skin.
Collagen monomer:

Triple helical structure made of three chains of 
amino acids.
The monomers assemble into fibrils.



Hierarchical Structure of Bone



Collagen 
Fibrils

Rho et al., 1998



Crack Bridging Mechanisms
(Nalla et al. 2005)





Labeling fibrils using fluorescent 
antibodies

1. Imaging using SEM
2. Labeling

fibril

Primary antibody

Secondary antibody

Alexa Fluor 568

fibril

Primary antibody

Secondary antibody

Alexa Fluor 568



Fluorescently Labeled Collagen Fibers (Negative Image)

Different dilutions of the fibrils were imaged using SEM
to determine the appropriate dilution at which individual

fibrils were distinguishable. The fibrils were labeled with fluorescent
antibodies to achieve contrast and brightness under optical microscope

for 5 minutes. Anti-fading agents being
tried to allow 30 minutes of manipulation time.



Manipulation using
micropipette

2 μm2 μm
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Fig. 2. True stress-Eulerian strain curves showing the data and fits for the first loads (solid 
squares and thin solid line), first-fourth unloads (stars and thick solid line), and second-fourth 
loads (open circles and dashed line) for (a) 950 nm diameter, (b) 340 nm diameter, and (c) 240 
nm diameter, and (c) 120 nm diameter fibrils.  For clarity, the error bars in strain are not 
included, but would equal about ± 0.005 in (a), ± 0.006 in (b), ± 0.008 in (c), and ± 0.008 in (d). 
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