



Structural Testing at the Micro and Nano Scales: Breaking Invisible Specimens With Zero Force

> **Roberto Ballarini University of Minnesota**

> > **Collaborators:**

Hal Kahn, Arthur Heuer, Steve Eppell

**Sponsors:** 

NSF, NIH, DARPA, ARO, NASA

CCNY 3/19/09

#### REFERENCES

**Experimental work:** 

"Fatigue failure in polysilicon: it's not due to simple stress corrosion cracking," *Science* (2002).

"Electrostatically actuated failure of microfabricated polysilicon fracture mechanics specimens," *Proc. R. Soc. Lond.* (1999).

"Mechanical Fatigue of Polysilicon: Effects of Mean Stress and Stress Amplitude," *Acta Materialia* (2006).

"Nano measurements with micro devices: mechanical properties of hydrated collagen fibrils," *J. of the R. Soc. Interface* (2006).

# **Surface Micromachining**





#### **Analog Devices Gyroscope**

**IMEMS** Gyro Die Showing the Rate Sensor and Integrated Electronics http://www.analog.com/technology/mems/gyroscopes/index.html

# MEMS Device-Fuel Atomizer Motivation

- Reduce cost through batch fabrication
- Achieve desired tolerances using a precise silicon micromachining technology



#### **Operatio**n

• Fuel enters the spin chamber through tangential slots

ANNULUS

SPIN CHAMBER

ORIFICE

- Fuel swirls in the spin chamber and exits through the orifice in a hollow conical spray
- Swirling produces sprays with wider spray angles as compared to plain orifice atomizers

#### Ant Carrying a (1000 µm)<sup>2</sup> Microchip



#### **Or is it a Palm Pilot?**

#### **ORIGINAL OBJECTIVES**

Characterize strength, fracture toughness, high cycle fatigue and environmentally assisted crack growth in poly-Si, poly-SiC, and SiC at scales relevant to MEMS devices.

Develop (micron size) on-chip specimens.
Generate data.
Study mechanisms.
Formulate predictive models.

#### **CHALLENGES**

•Experiments are difficult to design, execute and interpret.

#### **NEW OBJECTIVES**

# Use MEMS devices to test nanoscale structures

#### **CRACK TIP PARAMETERS**



**K<sub>I</sub>** is the stress intensity factor

#### **CRACK GROWTH MECHANISMS**

#### **Fast fracture**

 $K_I = F(a/b)\sigma\sqrt{\pi a} = K_I^{cr}$ 

#### **High cycle fatigue**

$$\frac{da}{dN} = C \left( \Delta K_I \right)^m \qquad ???$$

#### **Stress corrosion**

$$\frac{da}{dt} = DK_I^n \qquad ???$$
**is known to obey this law**

If applicable, how sensitive are the parameters to processing procedures?

# **FOCUS OF THIS TALK**

•Demonstrate that polycrystalline silicon is not susceptible to static fatigue.

•Demonstrate that polycrystalline silicon is associated with mechanical fatigue and *strenghtening* mechanisms.

•Describe development of nanoscale testing of biological structures.

Two types of on-chip specimens have been developed:

Loading through electrostatic actuation
Loading through fabrication-induced residual stress

Why subcritical crack initiation and growth should be studied in MEMS



Say  $a_{cr}=1\mu m$ 

Say t<sub>life</sub>=10yrs

Then v<sub>cr</sub><10<sup>-15</sup> m/s !!!

# CVD Polysilicon - Effects of Deposition Temperature550°C580°C615°C





1100°C

570/615°C

all films are ~2-6 µm thick, and deposited on SiO2





### MEMS Fracture Mechanics Specimen integrated with MEMS Loading Device Actuator

(Proc. Royal Soc. A, 455, 3807-3823, 1999)



#### **Electrostatic Actuation**



# **Fatigue Testing**



5 µm



#### **ADVANTAGES OF THIS "ON-CHIP" SPECIMEN**

No need for external loading device.
Resonance loading can be used to study very high cycle fatigue.
Uncracked ligament size of the same order as dimensions of typical MEMS components.
Can adjust mean stress and alternating stress.



# **Dynamic Fatigue of Polysilicon**



No frequency dependence of fatigue life, only on total number of cycles

#### DIFFICULTIES IN DETERMINING ENVIRONMENTAL EFFECTS USING THESE TESTS

•Tests involve cyclic loading, not constant load.

•Tests involve tension and compression.

![](_page_20_Picture_3.jpeg)

### **Biased Fatigue Experiment**

![](_page_21_Figure_1.jpeg)

The specimens are given a tensile or compressive bias stress,  $\sigma_0$ , using a DC offset.

#### **Dynamic Fatigue Results** low-cycle fatigue Low-Cycle Fatigue Strength, م<sub>max</sub> (GPa) 6 PolySi thickness Test Ambient air (10<sup>5</sup> Pa) **3.5** μm air (10<sup>5</sup> Pa) 5 **5.7** μm **5.7** μm vacuum (10 Pa) 4 3 2 -3 -2 -1 0 1 -4 Load Ratio, R

### Fractography of Biased Fatigue Specimens Specimen T Specimen C

![](_page_23_Figure_1.jpeg)

Specimen T was subjected to a high tensile bias stress during resonance and fractured at a  $\sigma_{max}$  of 3.4 GPa.

![](_page_23_Picture_3.jpeg)

Specimen C was subjected to a high compressive bias stress during resonance and fractured at a  $\sigma_{max}$  of 1.7 GPa.

The larger mirror on the fracture surface of Specimen C indicates a larger flaw size at fracture, consistent with the lower  $\sigma_{max}$  and also consistent with  $K_{crit} = 1.0 \pm 0.1$  Mpa-m<sup>1/2</sup>.

Since the specimens were fabricated from the same polysilicon film, on the same wafer, this is clear evidence of fatigue-induced sub-critical crack growth.

#### PASSIVE DEVICE ASSOCIATED WITH CONSTANT TENSION

(Science 298, 1215-1218, 2002)

![](_page_24_Figure_2.jpeg)

![](_page_24_Figure_3.jpeg)

$$K = \sigma * \sqrt{\pi a} F(\alpha)$$

$$\sigma^* = \sigma_{residual} / (1 + 4aV(\alpha)/2h)$$

# **INDENTATION CRACK**

![](_page_25_Figure_1.jpeg)

![](_page_25_Picture_2.jpeg)

#### FINE-GRAINED POLYSILICON FRACTURE TOUGHNESS

![](_page_26_Figure_1.jpeg)

#### POLYCRYSTALLINE SILICON CARBIDE FRACTURE TOUGHNESS

![](_page_27_Figure_1.jpeg)

#### FINE-GRAINED SILICON STATIC FATIGUE STUDY 90% RH

![](_page_28_Figure_1.jpeg)

K between 0.62- 0.86 MPa-m<sup>1/2</sup> No growth in 30 days V< 3.9 x10<sup>-14</sup> m/s Same results for eight multipoly specimens

# Static Fatigue Experiment Notched Tensile Beams

Undoped LPCVD Polysilicon

deposited at 570°C, annealed at  $615^{\circ}C \rightarrow 318$  MPa (Tensile)

![](_page_29_Figure_3.jpeg)

After 200 hrs in 90% humidity  $\rightarrow$  no additional beams broke

![](_page_30_Picture_0.jpeg)

![](_page_30_Picture_1.jpeg)

![](_page_30_Picture_2.jpeg)

#### **Sputtered Aluminum**

![](_page_30_Picture_4.jpeg)

![](_page_30_Figure_5.jpeg)

#### **Small Residual Tension**

![](_page_31_Picture_0.jpeg)

![](_page_31_Picture_1.jpeg)

#### Large Residual Tension Silicon Nitride

![](_page_31_Picture_3.jpeg)

Residual Compression Columnar Polysilicon

#### **VARIATIONS ON A THEME**

![](_page_32_Picture_1.jpeg)

![](_page_32_Picture_2.jpeg)

# **Schematic Bend Strength Tests**

![](_page_33_Figure_1.jpeg)

Time

Stress

Time

Time

# **Low-Cycle Fatigue**

![](_page_34_Figure_1.jpeg)

# Monotonic Bend Strength after cycling with a fixed mean stress

![](_page_35_Figure_1.jpeg)

# Monotonic Bend Strength after cycling with a fixed (low) amplitude

![](_page_36_Figure_1.jpeg)

## Monotonic Bend Strength with/without initial compression

![](_page_37_Figure_1.jpeg)

## Monotonic Bend Strength with/without tensile hold

![](_page_38_Figure_1.jpeg)

# Effects on Monotonic Bend Strength of mean stress $\sigma_m$ , and fatigue amplitude $\sigma_a$

![](_page_39_Figure_1.jpeg)

![](_page_39_Figure_2.jpeg)

# Mechanisms?

Phase transformation?
Microcracking?
Dislocations?
Plasticity at grain boundaries?

#### Plastic flow in amorphous silicon (M. J. Demkowicz and A. S. Argon)

![](_page_41_Figure_1.jpeg)

$$p = -\frac{1}{3}tr(\sigma), \quad \sigma_{dev} = \left|\sigma - \frac{1}{3}tr(\sigma)I\right|$$

#### **Drucker Prager Model**

![](_page_42_Figure_1.jpeg)

$$F = t - q \tan \beta - d = 0 \qquad G = t - q \tan \psi$$

$$q = \sqrt{\frac{3}{2}(S:S)}, \quad S = \sigma + pI \qquad d\varepsilon_{i}^{v} = d\lambda \frac{\partial G}{\partial \sigma_{i}}$$

$$d = \sqrt{3\tau}$$

#### **Poisson-Voronoi Local/Global Modeling**

![](_page_43_Figure_1.jpeg)

![](_page_44_Figure_0.jpeg)

Low  $\Delta \sigma$  and high  $\sigma_m$  ( $\sigma_m = 2.0$ GPa,  $\Delta \sigma = 2.0$ GPa)

**Residual compressive stress ~1.4 GPa after 1000 cycles** 

![](_page_45_Figure_0.jpeg)

Low  $\Delta \sigma$  and high  $\sigma_m$  ( $\sigma_m = -3.5$  GPa,  $\Delta \sigma = 2.0$ GPa)

**Residual compressive stress ~0.9 GPa after 1000 cycles** 

![](_page_46_Figure_0.jpeg)

#### Mechanical Testing of Collagen Fibers (Nanotechnology)

- Most abundant protein in the human body.
- One of the basic components of bone, ligaments, tendons, teeth, skin.
- Collagen monomer:
  - Triple helical structure made of three chains of amino acids.
  - The monomers assemble into fibrils.

#### Hierarchical Structure of Bone

![](_page_48_Figure_1.jpeg)

# Collagen Fibrils

![](_page_49_Figure_1.jpeg)

Rho et al., 1998

![](_page_50_Picture_0.jpeg)

Crack Bridging Mechanisms (Nalla *et al.* 2005)

![](_page_51_Figure_0.jpeg)

# Labeling fibrils using fluorescent antibodies

- 1. Imaging using SEM
- 2. Labeling

![](_page_52_Figure_3.jpeg)

![](_page_53_Picture_0.jpeg)

**Fluorescently Labeled Collagen Fibers (Negative Image)** 

Different dilutions of the fibrils were imaged using SEM to determine the appropriate dilution at which individual fibrils were distinguishable. The fibrils were labeled with fluorescent antibodies to achieve contrast and brightness under optical microscope for 5 minutes. Anti-fading agents being tried to allow 30 minutes of manipulation time.

![](_page_54_Picture_0.jpeg)

![](_page_54_Picture_1.jpeg)

![](_page_54_Picture_2.jpeg)

# Manipulation using micropipette

![](_page_54_Picture_4.jpeg)

![](_page_55_Picture_0.jpeg)

![](_page_56_Figure_0.jpeg)

**Fig. 2.** True stress-Eulerian strain curves showing the data and fits for the first loads (solid squares and thin solid line), first-fourth unloads (stars and thick solid line), and second-fourth loads (open circles and dashed line) for (a) 950 nm diameter, (b) 340 nm diameter, and (c) 240 nm diameter, and (c) 120 nm diameter fibrils. For clarity, the error bars in strain are not included, but would equal about  $\pm 0.005$  in (a),  $\pm 0.006$  in (b),  $\pm 0.008$  in (c), and  $\pm 0.008$  in (d).

![](_page_57_Figure_0.jpeg)