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Abstract. This paper presents the results of an investigation of the effects of elastic mismatch on the size of the 
plastic zone at the tip of cracks terminating at a bimaterial interface. Using the Williams technique, an asymptotic 
solution is obtained for the magnitude of the crack tip stress singularity 2 and for the stress field associated with a 
semi-infinite crack impinging on an interface. This solution, together with the Von Mises yield criterion, is used to 
estimate the location of the plastic zone boundary r0 for various levels of the elastic mismatch, which are expressed in 
terms of the Dundurs constants. Results are expressed in terms of the non-dimensional quantity 

[ 1 k~l -~j~ 
r 0 - - - -  

where k~ is the stress intensity factor and ao is the yield stress. These results, together with an integral equation solution 
for k~, are used to calculate the size of the plastic zone of a crack of length 2a loaded by uniform pressure. It is shown 
that the location of the boundary of the plastic zone depends strongly on the elastic mismatch. 

1. Introduction 

Meta l -ma t r ix  composi tes  reinforced with ceramic part icles  or  fibers and  l amina ted  composi tes  

compr i sed  of a l te rna te  layers of ceramics and metals  are examples  of  systems that  rely on the 

advan tages  ob ta ined  by combin ing  bri t t le  and  ducti le  const i tuents .  The mechanisms  that  

con t r ibu te  to toughening  in such systems include crack t rapping ,  crack bridging,  crack shielding, 

and  crack tip plast ici ty.  In  mos t  cases toughening  results in resis tance-curve (R-curve) charac-  

teristics, wherein  the fracture resistance increases with increasing crack length. The  resistance to 

crack growth  can be s t rongly  influenced by the micros t ruc ture  and  by the proper t ies  of the 

const i tuents .  In  this paper  an a p p r o x i m a t e  mode l  is deve loped  that  provides  qual i ta t ive  

in format ion  abou t  the effects of elastic mismatch  on the size of the plast ic  zone at  the t ip of  a 

f in i te  length crack tha t  meets an interface between two diss imilar  materials .  U n d e r  the 

a s sumpt ion  of small  scale yielding condi t ions ,  an a sympto t i c  elastic analysis  is used to calculate  

the d o m i n a n t  elastic stress field in the vicinity of the crack tip. These stresses are used in 

con junc t ion  with the Von Mises yield cr i ter ion to es t imate  the loca t ion  of the elast ic-plast ic  

b o u n d a r y  in the ducti le  material .  It  is shown that  the results for a generic crack can be presented 

in terms of the p a r a m e t e r  

ro - -  = Ro(O; ~, fl), 
ao3 
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where a and fl are the Dundurs parameters, 0 is the polar angle measured with respect to the 
crack plane, k~ is the stress intensity factor, 2 is the strength of the stress singularity and ao is 
the yield stress. The calculated results indicate that R0 is a strong function of the 
Dundurs parameters, as it has also been shown by He et al. [1] using the finite element 
method. However, to evaluate the size of the plastic zone in the yielding material, the stress 
intensity factor at the interface must be determined for each level of elastic mismatch; in fact, 
for a bimaterial system k~ not only depends on geometry and loading (as in the case of 
homogeneous systems) but it is strongly influenced by the Dundurs parameters. As an 
application, the size of the plastic region induced at the interface by a Griffith crack loaded by 
uniform pressure is evaluated. 

In the next section Zak and Williams' [2] asymptotic analysis of a semi-infinite crack that 
touches a bimaterial interface is rederived, and the results are used to calculate Ro. The third 
section presents a singular integral equation solution for the stress intensity factors of a Griffith 
crack terminating at a bimaterial interface. These are used to study the effects of elastic 
mismatch on the location of the elastic-plastic boundary. 

2. Asymptotic analysis 

The asymptotic problem analyzed is shown in Fig. 1. A mode I semi-infinite crack terminates 
at the interface between two elastic isotropic half-planes with shear moduli #i and Poisson's 
ratios vi (i = 1, 2). Following Zak and Williams [2] the stress state associated with this problem 
is derived from a pair of Airy stress functions Z(°(r, O) whose general form in polar coordinates 
can be written as 

Z(1)(r, 0) = {A] ° cos(2 - 2)0 + A~ ) sin(2 - 2)0 + A~ ) cos 20 + A~ ) sin 20}r2-~; i = 1, 2, (1) 

where superscript (i) denotes 'in material i'. 
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Fig. 1. Semi-infinite crack te rmina t ing  at a bimater ia l  interface. 



I n f l u e n c e  o f  e l a s t i c  m i s m a t c h  185 

The stress field can be obtained by differentiation of the Airy stress functions, and the strain 
and displacement fields can be determined using Hooke's law and integration, respectively [3]. 
The eight constants (four for each half-plane) A~ ~) are determined for the following equilibrium, 
displacement continuity, and crack traction conditions 

( 1 ) / r  E )  ( 1 ) / r  7z Goo~ , = (TrO ~ , ) = 0 ,  

(1),r 1 ~ ) =  _(2)~r ~ ) ,  
(7"00 ~, , o00 ~ , 

. ~  1~) = - {~r .  ½~), ffrO x ~ OrO ~, • 

u~l)(r,  ½n) = u~Z)(r, ½n), 

u~'(~, ½~) = u~(~, ½~), 

u~o2)(r, 0) = 0, 

a~oZ)(r, O) = O. (2) 

The solution of the resulting eigenvalue problem leads to the characteristic equation for the 
stress singularity 

cos(  ) - -- ( 1  - + _ _  

0~ --~ /~ 2 
0 ~< ). < l, (3) 

where ~ and fl are the Dundurs constants [3] 

= /22(/£ 1 -~ l )  - -  # l ( K 2  -~ 1). /L/2(/~ 1 - 1) - #x(tc2 - 1) 

/ . /2(K1 -3 t- l )  --I- # 1 ( / ~ 2  -~ 1) '  ]~ = / / / 2 ( / £ 1  + 1) + #x(~c2  + 1)' (4 )  

x~ = 3 - 4v~ for plane strain, and x~ = (3 - v~)/(1 + v~) for plane stress. 
Equation (3) was first introduced, using a less compact set of elastic constants, by Zak and 

Williams [2]. The loci of constant 2 in the ~, fl-plane are shown in Fig. 2. As pointed out by 
Dundurs [4], this plot shows that for ~ ~ 1 the quantity )~ is more sensitive to the mismatch in 
the Poisson's ratios than to that in the shear moduli; the opposite is true for 7--* - 1. The 
corresponding eigenfunctions, g")(r, 0), are determined to within one multiplicative constant 
which is usually expressed in terms of the stress intensity factor, k ,  so that the dominant part 
of the stress field becomes 

oo - -  ¢ ' ( i ) l o . o ~  0 " .  ° t O  - -  ¢ ( 1 ) t t 2 .  
a o o t  , , v , ,  a ,o t~ ' ,  ~, fl); - -  - f~i~)(O; o~, fl). 

1 kl 1 kl 1 k, 
(5) 
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Selected plots of joo,¢(° Jror(° and f~) (whose expressions are not presented here) for different 
values of ~ and fl = 0.25~ are shown in Figs. 3 5. These particular values of the Dundurs 
constants were chosen based on Suga's observation [5] that for most of the systems of 

practical importance the/~ values range between -0 .05  and 0.24, while the ~ values span the 

whole region in the ~, fl-plane. It is observed that the elastic mismatch has a major influence on 

the radial stress, as evidenced by the increasingly sharper discontinuity of f ~  across the 

0,8 

0.6 

o.4 

0.2 

-0.2 

Hali-plane (2) 

' 

~ . . 0 . 8  / 
\ " - - -2  

J 

a=4[3 

Half-plane (1 } 

o ~ ½ '~ 



Influence of  elastic mismatch 187 

0.8 

0.6 

0.4 

.f,~) 0.2 

0 

-0.2 

-0.4 

1.2 

1.1 

f,o) 0.9 

0.8 

0.7 

0.6 

Half-plane (2} 

Half-plane (1) 

0,=-0.6 / / 
w=--0.8 / 

o ~ ~ '~ 
0 

Fig. 4. Angular variation of f~  for selected material combinations. 

5.67 

- - ~  ~--0.4 
Half-plane (21 ~ ~ ~ x ~ . 6  

o~=413 

/~a .0  

//,x:: 

Half-plane (1) 
...-~- ~-----0.8 

o~=--0.6 

/ Q t - - - 0 . 4  

/ r/,--0,2 

~ ,.a= 0.0 

4 

-1 

-2 
-3.50 

o ~ ~ "/, 

Fig. 5. Angular variation of f~  for selected material combinations. 

interface as Jet I increases. Furthermore, for relatively large negative values of ~, which 
correspond to the crack being in the stiffer material, a compressive radial stress field develops 
along the crack faces. 

The Von Mises yield criterion, J2 = a2/3, is combined with the asymptotic stress field to 
estimate the extent of the elastic-plastic boundary in the ductile material of a brittle-ductile 
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system. In the following, the notation d u c t i l e - b r i t t l e  s y s t e m  refers to the case when material 1 is 
yielding and material 2 is elastic; vice versa for b r i t t l e - d u c t i l e  s y s t e m .  The size of the plastic zone 
in the yielding region, which is a function of the Dundurs constants and the polar angle, is given 
in non-dimensional form by 

r(i) . ( , ) . ( , )  
- - J o o J r ,  + J , r  + JJ~o J (6) 

for plane stress and 

.(i) 
R ( i )  "oe  r F ( i )  2 _ f ( i ) ¢ , ( i )  [,(i) 2 2 ~ c(i)2 r ( i ) ( i , ( i )  _ f ( i ) , t 2 ]  1/2), 

o,~ = 1 kl 1/), = LJO0 JOOJrr + + -'J~O + 1)(f~0~ + (7) 

for plane strain. 
A graphic representation of R~!~ (plane stress) for c~ = 4~ is given in Figs. 6 and 7. Figure 6 

corresponds to b r i t t l e - d u c t i l e  s y s t e m s  and Fig. 7 corresponds to d u c t i l e - b r i t t l e  s y s t e m s .  Analog- 
ously, R~!~ (plane strain) is presented in Figs. 8 and 9 for ~ = 4fl and v<t)= v(2)=½. A 
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comparison of Fig. 6 and Fig. 8 shows that the contours of R~)~ are consistently larger 
than those of R~!,; the difference tends to decrease as e ~ - 1. However, it is important 
to note that these plots are not truly indicative of the effects of elastic mismatch on the 
location of the elastic-plastic boundary, since the stress intensity factor k~ which is strongly 
dependent on the elastic properties of the bimaterial system, is at this point indeterminate. In 
order to use (6) and (7) the stress intensity factor must be calculated for a specific crack 
geometry and applied loading. This is done next for a Griffith crack loaded by uniform 

pressure. 

3. Elastic-plastic boundary for a finite-length crack 

Under the assumption of small-scale yielding, (6) and (7) provide a method of estimating the size 
of the plastic zone induced by finite length cracks, for which a stress intensity factor and a 
characteristic length are specified. 

The problem of a crack of finite length 2a (Fig. 10) impinging perpendicularly on the 
bimaterial interface and loaded by a constant pressure a can be formulated using the Green's 
function for the stress along the crack line produced by an edge dislocation. This approach 
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Fig. I0. Crack of length 2a loaded by a constant pressure and terminating at the interface. 

results in the following system of integral equations [6] 

2#~ f2"b(~) [ 1 ~ + f12 1 2(~ - fl) ¢(y - ~)] 
a u ( x l + l ) J o  ~ + l _ f l ~ y + ~ +  ~ + - ~  ~ + ~ g j d ~ = O ,  O<.y,~<~2a, 

fo 
" (8) 

b(O d{  = O, 

where b(O is the unknown dislocation density, defined in terms of the crack opening 
displacement l-u\] as b(O = -O[ux]/d¢. The first equation (8) is a singular integral equation 
with a generalized Cauchy kernel that expresses the boundary condition along the crack 
surfaces, while the second equation is a crack tip closure condition that guarantees a unique 
solution. 

Once the dislocation density b(O is computed by solving the system of equations (8), the stress 
field ahead of the crack (material 2) is given by 

(z)i", O ) -  2#1 l+~fZ"b[2fl+l 2flX]d{,O<~y,~<<.2a. (9) 
Ox~,.  ,~(< + 1~) 17 2-~-~ o (0  T 7 7  + (~ _ y)~ - 

The analysis of the behavior of the generalized Cauchy kernel in (9) using the Muskhelishvili 
technique [7] yields the expression for the non-dimensional stress intensity factor h(~, fl) 

kl K1 + 1 ,.,^, 

2#~ 1 / 1 + ~ \  1 
~b -= ~cl + ~  s i n ( 2 n ) L ~ )  [ - 2f l (2-  1)], 

(lO) 
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where /~(¢)= a-~l/2+Z)b(¢)~Z(2a- ~)1/2 is the regular part of the dislocation density. Upon 
substitution into (6) and (7), the radius of the plastic zone in the yielding material normalized by 
the characteristic length of the problem, a, becomes 

r'",, Lrh( ' a) ],,4 ~- f(i)l~ plane stress; (11) 

r'i'o.~ _~h(~,fl_)a ¢,i, ]1/4 
a L x ~  ~ J  ~ planestrain; (12) 

The singular integral equation was solved numerically using two techniques: the first 
approximated 6(~) with Jacobi polynomials 1-63, and the second with piecewise quadratic 
polynomials [8]. The results presented subsequently represent an agreement between the two 
methods to three significant figures. 

Equations (11) and (12) show that the stress intensity factor and the strength of the singularity 
play a key role in the location of the elastic-plastic boundary. The loci of equal h in the 
~,//-plane are shown in Fig. 11. A comparison of Fig. 11 and Fig. 2 shows that higher values of 
(or of the ratio ]./2//./1) are  associated with large values of h and smaller values of 2. Therefore, 
within the limits of small scale yielding conditions, two competing mechanisms contribute to the 
size of the plastic zone as the stiffness of material 2 is increased relative to the stiffness of 
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material 1; while the stress intensity factor tends to increase, the strength of the crack tip 
singularity decreases. 

The dependence of r(~!o (plane stress) on the elastic mismatch is shown in Figs. 1E and 13 for 

selected values of ~ = 4fl and a/ao = 0.25. These plots clearly show that the extent of the 
elastic-plastic boundary for a brittle-ductile system (Fig. 12) is a strong monotonically increasing 
function of ~. However, for a ductile-brittle system (Fig. 13) the scenario is complicated as a 
result of the compressive radial stress field. In particular, in the latter case the plastic zone 

expands rapidly as a increases from - 1  to ~ - 0 . 8  and then it tends to decrease. Note that in 
the limit as ct ~ - 1 or #2//~1 ~ 0 (which means that the crack has reached a free surface), the 

stress intensity factor approaches zero as well as the size of the plastic zone. The ratio 
tr/ao = 0.25 was chosen so that small-scale yielding conditions hold for the case of a homogene- 

ous system (a = fl = 0). 
The elastic-plastic bondary for plane strain conditions is plotted in Figs. 14 and 15, where 

again a/tr o = 0.25, a = 4fl and v (1) = v (2) = -~. Considerations similar to the ones made for plane 

stress conditions hold also for this case. As expected, the size of the plastic zone is larger for 
plane stress than for plane strain. 

The maximum size of the plastic zone in the ductile component  as a function of a = 4fl for 
plane stress and plane strain is shown in Fig. 16, in which a = 0.25ao. Note that Fig. 16 presents 

for each value of ~ the corresponding maximum extent of the plastic zone, which may occur at 
different polar angles, depending on the level of elastic mismatch. 

4. Conclusions 

The location of the boundary of the plastic zone induced by a finite length crack perpendicular 
to a bimaterial interface is very sensitive to the elastic properties of the two bonded half-planes. 
The key parameters that control the relative size of the yielded region are the stress intensity 
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factor k~ and the strength of the crack tip singularity 4. Within the limits of small-scale yielding, 
as the relative stiffness of the two bonded materials varies, k~ and 2 have competing effects on the 
size of the plastic zone. The extent of yielding ahead of the crack increases with increasing/~2//~1, 
which corresponds to the material ahead of the crack being stiffer than the one in which the 
crack is. 
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