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The characteristics of the stress field near the tips of a rigid line 
inhomogeneity have been reported by Chou [i] and Wang et al. [2]. They 
obtained the solution to the problem of a rigid line inhomogeneity under 
the action of an inclined unidirectional loading by taking the solution of 
an elliptical inhomogeneity and letting the ratio of the minor to major 
semiaxes approach zero° In their investigation the problem was solved using 
two methods: Eshelby's equivalent inclusion method, and conformal mapping of 
Muskhelishvili's complex potentials° The results showed that the stresses 
at the tips of the inhomogeneity are square root singular (as in the case of 
the corresponding crack problem), and that the stress intensity factors de- 
pend on Poisson's ratio° 

In the present paper a more direct method for arriving at the solution 
to the problem of a rigid line inhomogeneity is presented° The problem is 
formulated in terms of singular integral equations, and can therefore be 
extended to cases where the line defining the inhomogeneity is curved. More- 
over, this approach clearly illustrates the similarities between crack prob- 
le~is and rigid line inhomogeneity problems° This method has been applied by 
the author to the study of the failure mechanisms of rigid anchors embedded 
in brittle materials [3,4]. 

The elasticity problem shown in Fig. 1 is formulated in terms of the 
complex potentials of Muskhelishvili [5]. The stresses and displacements 
can be expressed in terms of the analytic functions } and T as 

+ = 4 Rea£ [~(z)] (i) ~xx Oyy 

- i ~ = #(z) + ~ + z~'(z) + ~(z) 
yy xy 

(2) 

2D(3u+i3v) =K ~(z) - %(z) - z}~(z) - T(z) (3) 
3x ~x 

where i=/-l, z=x +iy, D is the shear modulus, <=3-4w for plane strain, and 
~= (3-w)/(l+w) for plane stress, w being Poisson's ratio. Primes denote 
differential with respect to z, and bars imply complex conjugation. The 
boundary conditions along the rigid line inhomogeneity are 

2D(3u + i3_2v) = 0 (4) 
3x Zx 

The solution is sought in the form 
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rt-a 

¢(z) = o /4 +-~a ~z-~ (~) d~ 

+a 

+a f ~(z) = ooo/2 - mFa(~) d E + 
Z -  E - - a  - a  (Z-~) 2 

(5) 

(6) 

where o represents the far field stress and a(~) is a distribution of body 
forces ~efined by 

a(E) = -i ~ (Fx+iFy) (7) 
2z(K+l) ~ 

with F and F representing the x and y components of the force, respectively. 
SubstiTution ~f (5) and (6) into (3), and enforcing (4) leads to 

+a 

2</ a(~) d~ = o (<-3)/4 
-- X 

-a 

-a < x < +a (8) 

To ensure uniqueness of the solution to (8) the following condition (zero 
net force on the inhomogeneity) must be satisfied 

+a 

/~(~) = 0 (9) d~ 

-a 

We note that for a crack (subjected to a uniform far field tensile stress) 
modeled as a continuous distribution of dislocations the governing integral 
equations for the dislocation density are 

+a 

2 /  ~ d~ = 
(~-x) 

-a 

+a 

af B(E) dE = o 

where the dislocation density is defined by 

-a<x< +a (i0) 

(ll) 

~(~) = ~9_ ~e _K { [u r] + ilve] } (12) 
~i(<+l) ~E 

with [u ] and [v ] representing the magnitudes of the displacement jumps. 
The slmllarlty b~tween the inhomogeneity problem and the crack problem can 
be c/early seen by comparing (8) and (I0). The solution of (8) and (9) can 
be obtained in closed form using the techniques in [5]. It is given by 
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ie 
S(~) = u e ~ {[u r] + i[ve]} 

~i(K+l) ~ 
(12) 

with [Ur] and [vs] representing the magnitudes of the displacement jumps. 
The similarity between the inhomogeneity problem and the crack problem can 
be clearly seen by comparing (8) and (i0). The solution of (8) and (9) can 
be obtained in closed form using the techniques in [5]. It is given by 

~(x) : o (K-3) x (13) 
8~ (a 2- x2) ½ 

The complex potentials can be obtained by substituting (13) into (5) and (6), 
and performing the integration. The stresses and displacements can then be 
obtained from the potentials through (1)-(3). In particular, the stress 
intensity factors, defined by 

K I - i KII = x÷alim /2v(x-a) (ayy-iOxy) (14) 

become 

K I = o/(za) (K-l) (3-<) KII = 0 (15) 
8K 

The result agrees with that obtained by Wang and shows that the stress in- 
tensity factor depends on Poisson's ratio. (Note that for v=0 or v=.5 the 
stress intensity factor is zero). 

For the corresponding crack problem K I = a/(~a), therefore the ratio 
of stress intensity factors for the two problems is 

K I (inhomogeneity) = (K-l) (3-<)/8K 

Ki(crack) 

(16) 

We note that this method could be easily extended to the case of curved 
rigid line inhomogeneities and/or finite geometries by modifying (4)-(6) 
using the same techniques that are employed to solve crack problems. 
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Figure i. Rigid line inhomogeneity under tensile loading. 
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