Tensile Testing of Collagen Fibrils Using a MEMS Platform

Roberto Ballarini University of Minnesota

Collaborators:

Steve Eppell, Hal Kahn, Zhilei Liu Case Western Reserve University

Hierarchical Structure of Bone What are the origins of its toughness?

J.Y. Rho, et al., Medical Engineering & Physics, 1998

Crack Bridging Mechanisms (Nalla *et al.* 2005)

Bone:

Survival via continuous healing cycles

 $K_c \sim 3 \text{ MPa-m}^{1/2}$

Operating stress, σ =200 MPa Strength, σ_u =300 MPa

$$2a_{cr} = (K_c / \sigma)^2 / \pi \approx 140 \,\mu m$$
$$l_p = 0.1(K_c / \sigma_u)^2 \approx 10 \,\mu m \qquad \sim 100 \text{ fibrils}$$

How are such cracks mitigated?

2nd Generation MEMS Device For In Fluid Experiments

(1x Phosphate Buffered Saline)

Preliminary Results

Preliminary Results

Preliminary Results

Micromechanisms

Micromechanisms

Fig. 2

(C)

(B)

х³

⁸Х

8x

Fig. 4

(A)

m

