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Abstract. This paper presents the effects of elastic mismatch and crack-tip position on the stress intensity factors
of a long crack penetrating a circular inhomogeneity. The analysis relies on closed-form solutions, derived using
complex variable techniques, for the stresses and displacements produced by dislocations positioned inside and
outside the inhomogeneity. Dislocation distributions are introduced to express the traction boundary condition
along the crack surfaces as a system of singular integral equations, whose solution is obtained through a numerical
procedure. It is shown that if the elastic mismatch is interpreted correctly, then the stress intensity factors of this
micromechanical model are very good approximations to those computed using a Monte Carlo finite element
model of a long crack in a polycrystalline plate with compliant grain boundaries.

Key words: Crack, Transformation, Inhomogeneity, Stress intensity factor.

1. Introduction

To better understand the fracture behavior of polycrystalline plates, Abdel-Tawab and Rodin
(1993), Ballarini et al. (1999) and Wang and Ballarini (2002) have developed finite element
based micromechanical models for predicting the statistics of the microscopic (local) stress
intensity factors and the energy release rate of a crack in a columnar aggregate of randomly
orientated, perfectly bonded, orthotropic crystals (grains) under plane deformation. Figure 1
shows a typical model of a cracked crystalline plate analyzed by Wang and Ballarini (2002).
An aggregate of isotropic grains with shear modulus µg, Poisson ratio νg, and average linear
dimension d, perfectly bonded to each other through grain boundaries with shear modulus µgb,
Poisson ratio νgb, and thickness t , is constructed m times using a Poisson–Voronoi tessellation
procedure. In this stochastic model the expected number of grains within a unit area for each
realization is defined by n, and the crack length is of constant length a. The loading consists
of a prescribed displacement � along one edge of the plate.

Figure 2 shows the statistics of the local mode-I stress intensity factor, K loc
1 , calculated

using the finite element method, for three values of n and for m = 500 Monte Carlo simula-
tions. The microscopic stress intensity factor is normalized with respect to a reference value,
K ref

1 , associated with a homogeneous cracked plate whose elastic moduli µ̄ and ν̄ correspond
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Figure 1. Micromechanical model of a cracked polycrystalline plate with compliant grain boundaries.

Figure 2. Histograms of normalized microscopic stress intensity factors of the cracked polycrystalline plate.

to the average moduli of the uncracked polycrystalline plate, as calculated using the same
Monte Carlo procedure. The effective moduli are strong functions of the elastic constants of
the grain and grain boundary. The results presented in Figure 2 correspond to µ̄/µg = 0.14
and ν̄ = 0.4 (calculated for µgb/µg = 0.004, νg = 0.2, νgb = 0.49 and t/d = 0.082) and are
representative of those calculated for a wide range of mismatch between the elastic moduli of
the grains and the grain boundaries. They show that the statistics of the local stress intensity
factors are not sensitive to the number of grains surrounding the crack tip; they depend only
on the mismatch between the elastic moduli of the grain containing the crack tip and those of
the surrounding effective medium.
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Figure 3. A semi-infinite crack penetrating a circular inhomogeneity in an infinite plane.

These results suggest that the stress intensity factors of a crack in a polycrystalline plate
can be approximated by that of a long crack penetrating a circular inhomogeneity (Figure 3),
as long as the elastic moduli of the inhomogeneity, µ2, ν2, are set equal to those of the grains
(µg, νg) and the moduli of the surrounding material, µ1, ν1, are set equal to the effective
moduli of the polycrystalline plate containing no crack (µ̄ and ν̄). This paper presents an
analytic solution to the simplified micromechanical model, and confirms the validity of the
approximation.

The discussion is organized as follows. Section 2 presents the stresses and displacements
produced by the interaction between an inhomogeneity and edge dislocations. These Greens
functions are used in Section 3 to formulate the micromechanical model as a system of sin-
gular integral equations whose solution is calculated using a numerical procedure. The results
are presented and discussed in Section 4.

2. Greens Functions for Edge Dislocations Interacting
with a Circular Inhomogeneity

This section presents the solutions to the plane elastostatics problems shown in Figure 4,
where an infinitely extended plate contains a perfectly bonded circular inhomogeneity inter-
acting with edge dislocations positioned inside (Figure 4(a)) and outside (Figure 4(b)) the

 

 

Figure 4. (a) Edge dislocation inside a circular inhomogeneity; (b) edge dislocation outside a circular inhomo-
geneity.
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region defined by the inhomogeneity. The Airy stress functions for both cases are well known
(Dundurs, 1969). For the case where the dislocation is outside the inhomogeneity, Miller and
Young (1987) derived the solution in terms of complex potentials. Their procedure is used in
this paper to derive the complex potentials for the case where the dislocation is inside the in-
homogeneity. The reason for repeating Miller and Young’s exercise is to provide the complex
potentials for both cases, because the complex variable representation is more convenient for
use in mixed-mode crack problems that require numerical solution of the integral equations.

These solutions are the Green’s functions for the micromechanical model shown in Figure
3; they provide the displacement discontinuity across the line that defines the crack. The
stresses and displacements can be conveniently represented as (Muskhelishvili, 1953)

σrr + iτrθ = �i(z)+�i(z)− z̄

z
[z�′

i(z)+�i(z)] (1)

σθθ + iτrθ = �i(z)+�i(z)+ z

z̄
[z̄�′

i(z)+�i(z)] (2)

∂

∂θ
(ux + iuy) = iz

2µi

{
κi�i(z)−�i(z)+ z̄

z
[z�′

i(z)+�i(z)]
}

(3)

where the potentials �i,�i are analytic functions of z = x + iy, subscript i = 1, 2 denotes
the regions |z| > a and |z| < a, κi = (3 − 4νi) for plane strain, and κi = (3 − νi)/(1 + νi)

for plane stress.
The elastic mismatch is quantified through the constants (Dundurs, 1969)

α = µ2(κ1 + 1)− µ1(κ2 + 1)

µ2(κ1 + 1)+ µ1(κ2 + 1)
(4)

β = µ2(κ1 − 1)− µ1(κ2 − 1)

µ2(κ1 + 1)+ µ1(κ2 + 1)
(5)

The continuity of stresses and displacements along the circular interface are written as

[σrr + iτrθ ]
+ − [σrr + iτrθ ]

− = 0 (6)

∂

∂θ
{[ux + iuy ]+ − [ux + iuy]−} = 0 (7)

where superscript ‘+’ (‘−’) indicates the limiting value as z approaches the interface from
outside (inside) the inhomogeneity.

As shown in the Appendix, for the dislocation positioned at point z0 inside the inhomogene-
ity, the complex potentials are

�1(z) = A

z− z0

(
1 − α

1 + β

)
+ β − α

1 + α

B̄

z
+ α2 − β2

(1 + α)(1 + β)

A

z
(8)

�1(z) =
(

1 − α

1 − β

)[
B

z − z0
+ Az̄0

(z − z0)2

]
+

+ a2

z2

{
�1(z)− z�′

1(z)−
(1 − α)

(1 − β)

[
A

z − z0
+ zA

(z− z0)2

]
−

−
[
(β − α)(α + β)

(1 + α)(1 − β)
B + α + β

1 + α
Ā

]
z

a2
+ 1 − α

1 − β
H̄

}
(9)
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�2(z) = A

z − z0
−

(
α − β

1 − β

){
Ā

a2/z− z̄0
+ a2

z

[
Ā

(a2/z− z̄0)2

]
−

− a2

z2

[
B̄

a2/z− z̄0
+ z0Ā

(a2/z− z̄0)2

]
+ B̄

z

}
+ (α − β)

(1 − β)
H (10)

�2(z) = B

z− z0
+ Az̄0

(z− z0)2
+ a2

z2

{
�2(z)− z�′

2(z)+
α + β

1 + β
×

×
(

Ā

a2/z− z̄0
− Ā

a2
z

)
− A

z − z0
− zA

(z− z0)2
+ H̄

}
(11)

where constants A and B are proportional to the Cartesian components, [ux] and [uy], of the
displacement discontinuity

A = B̄ = µ2{[ux] + i[uy ]}
πi(κ2 + 1)

(12)

and

H = 1

(α − 1)(1 + α − 2β)

[−(α − β)2(B̄z̄0 + Āz0)+ (α − β)(1 − β)(Bz0 + Az̄0)]
a2

(13)

If the dislocation is outside the inhomogeneity, the potentials are

�1(z) = A

z − z0
− β − α

1 + β

{
Ā

a2/z− z̄0
+ a2

z

[
Ā

(a2/z− z̄0)
2

]
−

− a2

z2

[
B̄

a2/z− z̄0
+ z0Ā

(a2/z− z̄0)
2

]
+ Ā

z̄0

}
(14)

�1(z) = B

z− z0
+ Az̄0

(z− z0)
2

+ a2

z2

{
�1(z)− z�′

1(z)+
(
α + β

β − 1

)
Ā

a2/z − z̄0
−

− A

z − z0
− zA

(z − z0)2
− A

z0
+

(
1 − α

1 − β

)
C̄

}
(15)

�2(z) =
(

1 + α

1 − β

)
A

z − z0
+

(
α − β

1 − β

)
C (16)

�2(z) =
(

1 + α

1 + β

)[
B

z − z0
+ Az̄0

(z − z0)2

]
+

+ a2

z2

{
�2(z)− z�′

2(z)−
(

1 + α

1 + β

)[
A

z − z0
+ zA

(z− z0)2
+ A

z0

]
+ C̄

}
(17)

where

C = (1 + α)

(α − 1)(1 + α − 2β)

[
(α − β)

A

z0
− (1 − β)

Ā

z̄0

]
, A = B̄ = µ1{[ux] + i[uy]}

πi(κ1 + 1)
(18)
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3. Singular Integral Equations

The zero traction boundary condition along the crack surfaces shown in Figure 3 is written as

σθθ + iτrθ = 0 w < x < ∞ (19)

The stress combination in equation (19) produced at any point z by discrete dislocations inside
and outside the circular inhomogeneity is readily evaluated through equations (2), (8)–(11)
and (14)–(17). For the mode-I case considered here, [ux] = 0, and the stresses can be written
symbolically as

σθθ + iτrθ = 2B1

x − t
+ B1K11(x, t)+ B2K12(x, t) a < x < ∞ (20)

σθθ + iτrθ = 2B2

x − t
+ B2K21(x, t)+ B1K22(x, t) w < x < a (21)

where B1 and B2 are proportional to the magnitude of the displacement discontinuity asso-
ciated with the dislocations outside and inside the inhomogeneity, respectively. Obviously
they do not satisfy the traction boundary condition. However, by introducing the dislocation
densities bi(t) = (µi/πi(κi + 1))(∂{[ux] + i[uy ]}/∂t), the traction boundary condition along
the crack surfaces can be written in the form of the coupled singular integral equations∫ ∞

a

2b1(t)

x − t
dt +

∫ ∞

a

K11(x, t)b1(t)dt +
∫ a

w

K12(x, t)b2(t)dt = 0 x > a∫ a

w

2b2(t)

x − t
dt +

∫ a

w

K21(x, t)b2(t)dt +
∫ ∞

a

K22(x, t)b1(t)dt = 0 w < x < a (22)

The first integral in each of equations (22) contains a Cauchy kernel. TheKij are combinations
of regular and generalized kernels, the latter being unbounded when x = a and t = a. The
asymptotic form of the dislocation densities at the endpoints of the integration intervals, and
the relationships between them at the interface, can be derived using the function theoretic
method (Muskhelishvili, 1953) or the Williams technique (1957). The following results are
obtained: (i) b2 (or alternatively the stress) at a distance r from the origin has the well known
asymptotic form K loc

I (r −w)−1/2, where K loc
I is the microscopic stress intensity factor; (ii) b1

and b2 are of the form r−µ at the interface between the inhomogeneity and the surrounding
material, where (Erdogan and Gupta, 1975) µ is the root of

(1 − β2)(1 + cos2 µπ)+ 2[2αβ − 1 − (2αβ − β2)cosµπ ] + 4µ(2 − µ)

[(α − β)2(1 − µ)2 − αβ + β(α − β)cosµπ ] = 0 (23)

(iii) the dislocation densities satisfy the following condition at the interface (Erdogan and
Gupta, 1975; Erdogan et al., 1973)

lim
t→a+

b2(−t)
b1(t)

= F(α, β,µ)

(
µ2(κ1 + 1)

µ1(κ2 + 1)

)
(24)

where

F(α, β,µ) = (1 + α)β + (α − β)(1 − β)(−1 + 4µ− 2µ2)− (1 − β2)cos(µπ)

(1 + α)(−1 + 2β − 2βµ)
(25)

The loci of µ in the α − β are shown in Figure 5(a).
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Figure 5. (a) The loci of parameter µ in the α–β plane; (b) the loci of parameter λ in the α–β plane.

Equations (22) are homogeneous; they do not have a unique solution because the loading
is not yet prescribed. A unique solution can be obtained by introducing a far-field loading that
corresponds to a nominal stress intensity factor K∞

I , which is equivalent to the condition that

b1(t) → K∞
I

2π
√

2π
√
t

as t → ∞. To this end, the dislocation density functions are expressed in
terms of the regular functions g1(t), g2(t) and g∞(t) as

b1(t) = K∞
I

(t − w)0.5−µ(t − a)µ
[g1(t)+ g∞(t)] (26)

b2(t) = K∞
I

(t − w)0.5(a − t)µ
g2(t) (27)
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These representations, together with the condition g1(t) → 0, as t → ∞, provide the correct
asymptotic behavior and prescribed loading. Different functions of g∞(t) can be adopted,
which may affect the convergence rate of the numerical solution described below. The form
taken in this study is

g∞(t) = (1 − e−(t−a)2)
2π

√
2π

(28)

Substitution of equations (26)–(28) into (22) results in a nonhomogeneous system of in-
tegral equations. Nondimensional forms of the dislocation densities, b̄i , regular functions,
ḡi , and length parameters, η and ξ , are introduced to convert the integration intervals to
interval [−1,1]. The resulting equations are solved numerically using the approach developed
by Erdogan et al. (1973), which relies on the properties of Gauss–Jacobi polynomials to
approximate the nondimensional dislocation densities (which are of the form b̄i (η) = (1−η)s1
(1 + η)s2 ḡi (η), −1 < Re[si] < 0) and in turn the nondimensionalized forms of the integrals
that appear in equation (22) as

∫ 1

−1

b̄i (η)

ξ − η
dη ≈

N∑
k=1

Wk

ḡi(ηk)

ξj − ηk
(29)

∫ 1

−1
Kmn(η, ξ)b̄i(η)dη ≈

N∑
k=1

WkKmn(ξj , ηk)ḡi(ηk) i,m, n = 1, 2 (30)

The N integration points ηk are the roots of Jocobi polynomial P (s1,s2)N (ηk) = 0, k = 1, . . . N ,
the collocation points ξj are the roots of Jocobi polynomi P (s1+1,s2+1)

N−1 (ξj ) = 0, j =
1, . . . N − 1, and the weights are given by

Wk = − 2N + s1 + s2 + 2

(N + 1)!(N + s1 + s2 + 1)
×

× 3(N + s1 + 1)3(N + s2 + 1)

3(N + s1 + s2 + 1)

2s1+s2

P
′(s1,s2)
N (ηk)P

(s1,s2)

N+1 (ηk)
(31)

Thus the integral equations are reduced to a system of 2(N−1) linear algebraic equations with
2N unknowns. The additional two equations required for solution are the previously stated far
field condition g1(t) → 0, as t → ∞ and the interface compatibility condition given by
equation (24).

The normalized microscopic stress intensity factor is related to the regular part of the
dislocation density at the crack-tip, through the formula

K loc
I

K∞
I

= 2π
√

2π

(a − w)µ
g2(w) (32)

4. Results and Discussion

The variation with elastic mismatch of the normalized microscopic stress intensity factor
corresponding to the crack-tip at the center of the inhomogeneity is shown in Figure 6. The
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Figure 6. Normalized microscopic stress intensity factor as functions of ratio of shear moduli for (a) plane strain,
and (b) plane stress.

plane strain results agree to within 2% with those obtained by Steif (1987) using a conformal
mapping technique (Steif noted that his procedure is slowly converging in regions of the
parameter space).

The stress intensity factor variation as the crack traverses the inhomogeneity from right
to left is shown in Figure 7 for selected values of elastic mismatch. Figure 7(a) shows that
if the inhomogeneity is stiffer than the surrounding material, then the stress intensity factor
starts out as zero, and as it approaches the other side it increases without bound. Figure 7(b)
shows the opposite trend when the inhomogeneity is more compliant than the surrounding
material.

Figure 8 illustrates that when the crack-tip is at distances from the interface ε that are
much smaller than the radius of the inhomogeneity, the numerical procedure breaks down.
To calculate the stress intensity factors associated with this small parameter, the formulation
introduced by Romeo and Ballarini (1995) is used. They showed that the microscopic stress
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Figure 7. Variation of normalized microscopic stress intensity factor as the crack traverses the inhomogeneity
for the parameters (a) µ1/µ2 = 0.14, κ1 = 1.40, κ2 = 2.2 (α = 0.6812, β = 0.0735) and (b) µ1/µ2 = 10,
κ1 = κ2 = 2.6 (α = −0.8182, β = −0.3636).

intensity factor can be written in the form

K loc
I

K∞
I

= Cε(0.5−λ) (33)

where C is a type of stress intensity factor that depends on the elastic mismatch, the type of
loading, and the geometry of the cracked plate, and λ is the root of

cos(λπ) = 3(β ′ − α′)
2(1 + β ′)

(1 − λ)2 + α′ + β ′2

1 − β ′2 (34)

In equation (34) α′ = α and β ′ = β for the case where the crack has just penetrated the
inhomogeneity, and α′ = −α and β ′ = −β for the case where the crack is approaching the
opposite interface. The loci of constant λ in the α − β plane are shown in Figure 5(b).
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Figure 8. Variation of normalized microscopic stress intensity factor associated with µ1/µ2 = 0.14, κ1 = 1.40,
κ2 = 2.2 (α = 0.6812, β = 0.0735) and the crack tip being very close to (a) the left interface and (b) the right
interface. Note that if the crack tip is close to the left interface, ε/a = (w + a)/a, while if it is close to the right
interface, ε/a = (a − w)/a.

In principle the constant C could be calculated by solving an auxiliary boundary value
problem, as described by Romeo and Ballarini. Here we cheat by matching equation (33)
with the stress intensity factor evaluated at the smallest distance d for which the numerical
procedure produces a convergent result. The resulting asymptotic solution given by equation
(33) is shown as dashed lines in Figure 8.

Next we assess how well the micromechanical model predicts the stress intensity factors of
the previously discussed cracked polycrystalline plate with compliant grain boundaries. For a
given level of elastic mismatch, the expected value of the microscopic stress intensity factor is

K loc
I = d1(1.5 − λ1)K

loc
I (d1)+ [2a − (d1 + d2)](K loc

I )mid + d2(1.5 − λ2)K
loc
I (d2)

2a
(35)
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where the first and third terms in the numerator represent the contributions to the average
value of the stress intensity factor within the matching distances d1 and d2 (the right-most and
left-most points, respectively) calculated as

1

di

∫ di

0
Cδ0.5−λdδ = (1.5 − λ)Cd0.5−λ

i = (1.5 − λ)K loc
I (di) (36)

The average value of the normalized stress intensity factor associated with the Monte
Carlo results presented in Figure 2 is equal to 2.0. The micromechanical model predicts 2.2.
Moreover, it is noted that the value predicted by the micromechanical model for a crack-tip
at the center of the inhomogeneity is 2.2. These results for a relatively large elastic mismatch
demonstrate that the micromechanical model is a very good approximation to the cracked
polycrystalline plate problem.

Appendix

Adopting the notation f̄ (z) = f (z), the terms in equations (3) and (4) can be written as

[σrr + iτrθ ]+ = [�1(z)]+ +
[
�̄1

(
a2

z

)
− a2

z
�̄′

1

(
a2

z

)
− a2

z2
�̄1

(
a2

z

)]−

[σrr + iτrθ ]− = [�2(z)]− +
[
�̄2

(
a2

z

)
− a2

z
�̄′

2

(
a2

z

)
− a2

z2
�̄2

(
a2

z

)]+
(A.1)

and

∂

∂θ
[ux + iuy]+ = aieiθ

{
κ1

2µ1
[�1(z)]+ +

+ 1

2µ1

[
− �̄1

(
a2

z

)
+ a2

z
�̄′

1

(
a2

z

)
+ a2

z2
�̄1

(
a2

z

)]−}
∂

∂θ
[ux + iuy]− = aieiθ

{
κ2

2µ2
[�2(z)]− +

+ 1

2µ2

[
− �̄2

(
a2

z

)
+ a2

z
�̄′

2

(
a2

z

)
+ a2

z2
�̄2

(
a2

z

)]+}
(A.2)

The jump conditions across the interface can be written in compact form through the intro-
duction of jump potentials 7σ and 7u, defined as (Miller and Young, 1987)

7σ(z) =



�1(z)− �̄2

(
a2

z

)
+ a2

z
�̄′

2

(
a2

z

)
+ a2

z2
�̄2

(
a2

z

)
, |z| > a

�2(z)− �̄1

(
a2

z

)
+ a2

z
�̄′

1

(
a2

z

)
+ a2

z2
�̄1

(
a2

z

)
, |z| < a

(A.3)
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7u(z) =




κ1

2µ1
�1(z)+ 1

2µ2

[
�̄2

(
a2

z

)
− a2

z
�̄′

2

(
a2

z

)
− a2

z2
�̄2

(
a2

z

)]
, |z| > a

κ2

2µ2
�2(z)+ 1

2µ1

[
�̄1

(
a2

z

)
− a2

z
�̄′

1

(
a2

z

)
− a2

z2
�̄1

(
a2

z

)]
, |z| < a

(A.4)

These allow the continuity conditions to be expressed as Hilbert problems

[σrr + iτrθ ]+ − [σrr + iτrθ ]− = 7+
σ −7−

σ = 0 (A.5)

∂

∂θ
{[ux + iuy ]+ − [ux + iuy]−} = aieiθ {7+

u −7−
u } = 0 (A.6)

First consider a dislocation at point z0 inside the inhomogeneity. The potentials for the
regions inside and outside the inhomogeneity are written as

7σ = 70
σ +7cσ + Pmσ (z)+ Rmσ (z)

7u = 70
u +7cu + Pmu (z)+ Rmu (z) (A.7)

where 70
σ and 70

u represent the free space potentials (Greens functions) for a dislocation at
z0, ‘correction terms’ 7cσ and 7cu are required to satisfy equations (A.5) and (A.6), and the

Rmσ (z) = cσ1

(z− zk)
+ cσ2

(z− zk)2
+ · · · + cσm

(z − zk)m
,

Rmu (z) = cu1

(z− zk)
+ cu2

(z− zk)2
+ · · · + cum

(z − zk)m
,

Pmσ (z) = Pσ0 + Pσ1z+ Pσ2z
2 + · · · + Pσmz

m,

Pmu (z) = Pu0 + Pu1z+ Pu2z
2 + · · · + Pumz

m

are available to eliminate unwanted singularities introduced by the correction terms.
The free space Green’s functions are given by

�0
1(z) = �0

1 (z) = 0, �0
2(z) = A

z − z0
, �0

2 (z) = B

z− z0
+ Az̄0

(z− z0)
2

(A.8)

where the constants A and B are related to the Burgers vector, written in terms of the com-
ponents of displacement discontinuities [ux] and [uy]

A = B̄ = µ2{[ux] + i[uy ]}
πi(κ2 + 1)

(A.9)

Conversion of these potentials through into the associated jump potential leads to.

70
σ (z) =




− Ā

a2/z−z̄0
− a2

z

[
Ā

(a2/z−z̄0)
2

]
+ a2

z2

[
B̄

a2/z−z̄0
+ z0Ā

(a2/z−z̄0)
2

]
, |z| > a

A

z− z0
, |z| < a (A.10)

70
u(z) =

{
1

2µ2

{
Ā

a2/z−z̄0
+ a2

z

[
Ā

(a2/z−z̄0)
2

]
− a2

z2

[
B̄

a2/z−z̄0
+ z0Ā

(a2/z−z̄0)
2

]}
, |z| > a

κ2
2µ2

A
z−z0

, |z| < a (A.11)
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These obviously do not satisfy the continuity conditions across the interface. The correction
terms are readily identified by Equations (A.12) and (A.13) as

7cσ (z) =



A
z−z0

, |z| > a
− Ā

a2/z−z̄0
− a2

z

[
Ā

(a2/z−z̄0)
2

]
+ a2

z2

[
B̄

a2/z−z̄0
+ z0Ā

(a2/z−z̄0)
2

]
, |z| < a (A.12)

7cu(z) =



κ2
2µ2

A
z−z0

, |z| > a
1

2µ2

{
Ā

a2/z−z̄0
+ a2

z

[
Ā

(a2/z−z̄0)
2

]
− a2

z2

[
B̄

a2/z−z̄0
+ z0Ā

(a2/z−z̄0)
2

]}
, |z| < a (A.13)

The combinations 70
σ + 7cσ and 70

u + 7cu introduce unwanted singularities at the origin,
which are eliminated by taking

Rσ + Pσ = H + M

z
(A.14)

and

Ru + Pu = P + N

z
(A.15)

After some algebra that involves the Taylor expansion

Ā

a2/z− z0
= Āz

a2

[
1 + zz0

a2
+ 1

2

(zz0)
2

a4
+O(z3)

]
, as z → 0 (A.15a)

the constants are obtained as

M = β − α

1 + α
B̄ − α + β

1 + α
A (A.16)

N = κ1

2µ1

β − α

1 + α
B̄ + 1

2µ1

α + β

1 + α
A (A.17)

P = − 1

2µ2
H (A.18)

H = 1

(α − 1)(1 + α − 2β)
[−(α − β)2(B̄z̄0 + Āz0)+

+ (α − β)(1 − β)(Bz0 + Az̄0)]/a2 (A.19)

For the dislocation outside the inhomogeneity, the procedure is repeated by starting with
�0

2(z) = �0
2 (z) = 0, �0

1(z) = A/(z− z0) and �0
1 (z) = B/(z− z0)+Az̄0/(z− z0)

2. For this
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case it suffices to introduce Rσ + Pσ = L and, Ru + Pu = K, where

L = − Ā
z̄0

+ C (A.20)

K = 1

2µ1

Ā

z̄0
− C

2µ2
(A.21)

C = (1 + α)

(α − 1)(1 + α − 2β)

[
(α − β)

A

z0
− (1 − β)

Ā

z̄0

]
(A.22)
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