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A Long Crack Penetrating a
Transforming Inhomogeneity

Yuping Wang and Roberto Ballarini
Department of Civil Engineering, Case Western Reserv
University, Cleveland, OH 44106-7201

This note presents the stress intensity factors of a long crack
etrating a circular transforming inhomogeneity. Using the Gree
functions of dislocations interacting with a circular inhomogen
ity experiencing an isotropic (free expansion) eigenstrain,
elasticity solution is reduced to a system of singular integ
equations representing the traction boundary condition along
crack surfaces. The normalized stress intensity factor, obtai
through a numerical solution of the integral equations, has
strong dependence on the elastic mismatch, and can be e
negative or positive depending on the crack-tip location. The
mulation and results generalize a previously publish
transformation-toughening model that assigns equal ela
moduli to the inhomogeneity and the surrounding medium.
@DOI: 10.1115/1.1767166#

Analysis
Consider the plane elastostatics problem shown in Fig. 1~a!. A

circular inhomogeneity with radiusa Poisson’s ration2 , and shear
modulusm2 , is embedded in an infinite plate with Poisson’s ra
n1 and shear modulusm1 . A semi-infinite crack penetrates th
inhomogeneity, which is experiencing an isotropic~free expan-
sion! eigenstrain,« i j* 5d i j e* , where the« i j are the components o
the strain tensor andd i j is the Kronecker delta. The bonding be
tween the inhomogeneity and the surrounding matrix is perf
As shown in Fig. 1~a!, the origin of the coordinate system
located at the center of the inhomogeneity, and the crack ti
located at point (w,0). The stress intensity factor produced by t
eigenstrain within the inhomogeneity is defined asKl

loc .
The solution is formulated as the superposition of two pro

lems, as shown schematically in Figs. 1~b! and 1~c!. The first
involves the stresses produced along the crack line in an
cracked plate containing the expanding inhomogeneity~Fig. 1~b!!,
and the second the stresses produced along the crack line
continuous distribution of dislocations~Fig. 1~c!!. The stresses
produced by the eigenstrain are

syy
1e5

4~11h!m1m2e*

m1~k221!12m2
H a2

x2J x<a (1a)
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syy
2e5

4~11h!m1m2e*

m1~k221!12m2
x>a (1b)

while those resulting from the distribution of dislocations are re
resented as

syy
1d5E

0

` 2b1~ t !

12x
dt1E

a

`

K11~x,t !b1~ t !dt

1E
w

a

K12~x,t !b2~ t !dt x<a (2a)

syy
2d5E

w

a 2b2~ t !

t2x
dt1E

w

a

K21~x,t !b2~ t !dt

1E
a

`

K22~x,t !b1~ t !dt w<x<a. (2b)

In Eq. ~2!, bi(t)5m i /p(k i11)]@ny#/]t is defined as the disloca
tion density in regioni, @ny# is the crack-opening displacemen
k5324n and h5n for plane strain,k5(32n)/(11n) and h
50 for plane stress, and theKi j are combinations of regular an
generalized Cauchy kernels that can be recovered from Ref.@1#.
The zero-traction condition along the crack line is enforced
summing to zero the stress contributions from Eq.~1! and ~2!.

The asymptotic behavior ofbi(t) was studied in detail in Ref.
@1#, where the loading was associated with a far-field stress c
sistent with a nominal stress intensity factor, rather than with
expanding inhomogeneity. Note that if one is interested in cal
lating the stress intensity factor produced by a far-field load
interacting with the eigenstrain within the inhomogeneity, then
appropriate superposition procedure must be performed. The
location densitiesbi(t) can be expressed as follows:

b1~ t !5
g1~ t !

~ t2w!0.52m~ t2a!m (3a)

b2~ t !5
g2~ t !

~ t2w!0.5~a2t !m (3b)

where the dominant singularity at the interface,m, and the un-
known regular functionsgi(t) satisfy

~12b2!~11cos2 mp!12@2ab212~2ab2b2!cosmp#

14m~22m!@~a2b!2~12m!22ab1b~a2b!cosmp#

50 (4a)

g1~ t !50 at t5` (4b)
g2~a!/g1~a!5
~11a!b1~a2b!~12b!~2114m22m2!2~12b2!cos~mp!

~11a!~2112b22bm!
3

m2~k111!

m1~k211!
3~a2w!m. (4c)
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Fig. 1 „a… A semi-infinite crack penetrating a circular inhomo-
geneity which is experiencing an isotropic eigenstrain; „b… an
uncracked infinite plane containing a transforming circular in-
homogeneity; „c… an infinite plane containing a continuous dis-
tribution of edge dislocations
Journal of Applied Mechanics
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Using the numerical approach developed by Erdogan et al.@2#,
which relies on the properties of Jocobi polynomials, the value
gi(t) are calculated at discrete points and the stress intensity
tor is recovered asKl

loc52pA2p/(a2w)mg2(w). It should be
noted that because the integral equations are not homogeneou
stabilization procedure is required to calculate a unique solut

Fig. 2 Plane strain nondimensional stress intensity factor as
functions of shear modulus ratio, m2 Õm1 , for several combina-
tions of Poisson’s ratios n1 ,n2
JULY 2004, Vol. 71 Õ 583
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However, if the loading is associated with a far-field stress int
sity factor rather than an eigenstrain within the inhomogene
@1#, then the integral equations become homogeneous, and a
bilization procedure is required for a unique solution,@3#.

Fig. 3 Plane stress nondimensional stress intensity factor as
functions of shear modulus ratio, m2 Õm1 , for several combina-
tions of Poisson’s ratios n1 ,n2
584 Õ Vol. 71, JULY 2004
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Results
The nondimensional stress intensity factor is defined as

Kl
loc

m1e* Aa
5

2pA2pg2~w!

~a2w!mm1e* Aa
5hS m2

m1
,n1 ,n2 ,

a2w

a D . (5)

For the crack tip at the center of the inhomogeneity (w50),
h(m2 /m1) for various Poisson’s ratios is presented in Figs. 2~a–c!
for plane strain and Figs. 3~a–c! for plane stress. For relatively
small levels of material mismatch, the number of integrati

Fig. 4 Variation of the plane strain nondimensional stress in-
tensity factor with crack-tip position, for several combinations
of elastic mismatch
Transactions of the ASME
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points required to achieve converged stress intensity factor
approximately 20. However, large levels require a significan
higher number of integration points; the converged results p
sented in this note were obtained using 300 points. For pos
e* , the stress intensity factor is always negative, indicating cra
tip shielding, and shows a very strong dependence on elastic
match, the dependence being greater for plane strain than
plane stress. As expected,Kl

loc approaches zero as the inhomog
neity becomes much more compliant than the matrix, and
proaches a constant value indicated by dashed lines as the
mogeneity becomes rigid.

An interesting result of this analysis is that the crack tip is n
always shielded. As shown in Fig. 4~a–c!, a positive stress inten
sity factor, indicating amplification, results for crack tips that ha
entered but have not reached the center of the inhomogeneit

The results presented above generalize those calculated in
@4#, where a transformation toughening model is developed fo
elastically homogeneous plate. For this case, the plane-strain
malized stress intensity factor reduces to
Journal of Applied Mechanics
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m1e* Aa
52

16

3A8p
S 11n

12n D . (6)

The results presented in Fig. 2 corresponding to uniform ela
moduli match Eq.~6! to within three significant figures.
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