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while those resulting from the distribution of dislocations are rep-
resented as
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This note presents the stress intensity factors of a long crack pen- + f KX, t)by(t)dt x=<a (2a)
w

etrating a circular transforming inhomogeneity. Using the Greens
functions of dislocations interacting with a circular inhomogene-
ity experiencing an isotropic (free expansion) eigenstrain, the a 2b,(1) a
elasticity solution is reduced to a system of singular integral UZd:f 2 dt+f Ky(x,1)b,(t)dt

. . . e yy _ AL 2
equations representing the traction boundary condition along the w =X
crack surfaces. The normalized stress intensity factor, obtained .
through a numerical solution of the integral equations, has a
strong dependence on the elastic mismatch, and can be either *Ll Kaax,D)by()dt  ws<x=a. (20)
negative or positive depending on the crack-tip location. The for- ) ] )
mulation and results generalize a previously publishet EQ.(2), bi(t)= wi/m(x;+1)d[ vy]/dt is defined as the disloca-
transformation-toughening model that assigns equal elastion density in regiori, [v,] is the crack-opening displacement,

moduli to the inhomogeneity and the surrounding medium. ~ «=3—4v and »=v for plane strainx=(3—»)/(1+v) and 5
[DOI: 10.1115/1.1767166 =0 for plane stress, and th&; are combinations of regular and

generalized Cauchy kernels that can be recovered from[REf.

The zero-traction condition along the crack line is enforced by

summing to zero the stress contributions from Eg.and (2).
Analysis The asymptotic behavior df;(t) was studied in detail in Ref.

] ) o [1], where the loading was associated with a far-field stress con-
_Consider the plane elastostatics problem shown in Fi@. A  sistent with a nominal stress intensity factor, rather than with an
circular inhomogeneity with radiusPoisson’s ratio, , and sr,]ear _expanding inhomogeneity. Note that if one is interested in calcu-
modulusu,, is embedded in an infinite plate with Poisson’s ratigating the stress intensity factor produced by a far-field loading
v, and shear modulug, . A semi-infinite crack penetrates thejnteracting with the eigenstrain within the inhomogeneity, then an
inhomogeneity, which is experiencing an isotrogitee expan- anpropriate superposition procedure must be performed. The dis-
sion) eigenstraing{; = §;€*, where thes;; are the components of |ocation densitied;(t) can be expressed as follows:

the strain tensor and; is the Kronecker delta. The bonding be-
tween the inhomogeneity and the surrounding matrix is perfect.

w

As shown in Fig. 1a), the origin of the coordinate system is g1(t)
located at the center of the inhomogeneity, and the crack tip is by(t)= (t—w)05 ~(t—a)~ (32)
located at point\{,0). The stress intensity factor produced by the
eigenstrain within the inhomogeneity is definedKai%“.
The solution is formulated as the superposition of two prob- ga(t)
lems, as shown schematically in Figgbland Xc). The first b(t) = (t—w)%a—t)“ (30)

involves the stresses produced along the crack line in an un- . . . .

cracked plate containing the expanding inhomoger(&ity. 1(b)), where the domlnant smgularlty_ at the interfage, and the un-
and the second the stresses produced along the crack line H§PgWn regular functions;(t) satisfy

continuous distribution of dislocationg=ig. 1(c)). The stresses

produced by the eigenstrain are (1-B?)(1+co@ um) +2[2aB—1— (2aB— B?)cosu]
+ap(2—pw(a—B)A(1—u)’—aB+ Bla—pB)cosu]
=0 (4a)

41+ e* (a?
e AL+ pap, (_] c=a (1a)

I (k= 1)+ 25 | X 01()=0 at t=o0 (4b)

o) (OB (= BB L+ 4 2u®) (1= )cosum) il
Gel@)fgu(2)= (T+a)(—1+25-2Bp) PP

X(a—w)k. (40)
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Fig. 1 (a) A semi-infinite crack penetrating a circular inhomo-
geneity which is experiencing an isotropic eigenstrain; (b) an
uncracked infinite plane containing a transforming circular in-
homogeneity; (c) an infinite plane containing a continuous dis-
tribution of edge dislocations
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Fig. 2 Plane strain nondimensional stress intensity factor as
functions of shear modulus ratio,  u,/pu,, for several combina-
tions of Poisson’s ratios vy ,v,

Using the numerical approach developed by Erdogan €0l
which relies on the properties of Jocobi polynomials, the values of
gi(t) are calculated at discrete points and the stress intensity fac-
tor is recovered aK|°°=2mZ7/(a—w)*g,(w). It should be
noted that because the integral equations are not homogeneous, no
stabilization procedure is required to calculate a unique solution.
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Fig. 4 Variation of the plane strain nondimensional stress in-
tensity factor with crack-tip position, for several combinations
of elastic mismatch
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Fig. 3 Plane stress nondimensional stress intensity factor as
functions of shear modulus ratio,  u,/pu,, for several combina-
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Results
The nondimensional stress intensity factor is defined as

tions of Poisson’s ratios  vq,v, K:OC o /27ng(w) wo a—w
= :h — V1, Vo, /|- (5)
pi€*Va  (a—w)tuetVa M1 a

However, if the loading is associated with a far-field stress intefror the crack tip at the center of the inhomogeneity=0),
sity factor rather than an eigenstrain within the inhomogeneiti( w, /1) for various Poisson’s ratios is presented in Figa-—2)

[1], then the integral equations become homogeneous, and a &a-plane strain and Figs.(&c) for plane stress. For relatively
bilization procedure is required for a unique solutif3, small levels of material mismatch, the number of integration
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points required to achieve converged stress intensity factors is K loc 16 [1+v
approximately 20. However, large levels require a significantly ! =— . (6)
higher number of integration points; the converged results pre- ,ule*\/a 387 \1-v

antid in this _note \{verfe obta_uneld using 300. pm_ntj_. F(_)r POSItNRe results presented in Fig. 2 corresponding to uniform elastic
€, the stress intensity factor is always negative, indicating Craciioqyji match Eq(6) to within three significant figures.

tip shielding, and shows a very strong dependence on elastic mis-

match, the dependence being greater for plane strain than for

plane stress. As expecteld',OC approaches zero as the inhomoge-

neity becomes much more compliant than the matrix, and ap-

proaches a constant value indicated by dashed lines as the i erences

mogeneity becomes rigid. [1] Wang, Y., and Ballarini, R., 2003, “A Long Crack Penetrating a Circular

An interesting result of this analysis is that the crack tip is not Inhomogeneity,” Meccanicéspecial issue in honor of Professor Piero Villag-
always shielded. As shown in Fig(a-c), a positive stress inten- gio), Meccanica3§, pp. 579-593.

. S e . ! . [2] Erdogan, F., Gupta, G. D., and Cook, T. S., 1973, “Numerical Solution of
sity factor, indicating amplification, results for Cra_Ck tips that h'ave Singular Integral EquationsMechanics of FractureG. C. Sih, ed., Noord-
entered but have not reached the center of the inhomogeneity. hoff, Dordrecht, The Netherland$, Chap. 7, pp. 368—425.

The results presented above generalize those calculated in RdB] Rubinstein, A. A., 1992, “Stability of the Numerical Procedure for Solution of
[4], where a transformation toughening model is developed for an fﬂ'gg#ﬁiC'gt?%':r'nigfaé'ﬁﬂgzz(Sg)m;:)”f';‘f;zterva" Application to Fracture
elastically homogeneous plate. For this case, the plane-strain Nofaj | ambropoulos, J. C., 1986, “Effect of Nucleation on Transformation Tough-
malized stress intensity factor reduces to ening,” J. Am. Ceram. Soc69(3), pp. 218—222.
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