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Abstract: Reported evidence suggests that failure of gusset plates initiated the collapse of the I-

35W Bridge in Minneapolis, Minnesota. The particular gusset plates were at a panel point 

designated as U10. Therefore, an analytical investigation was conducted on the condition of the 

U10 gusset plates at the time of bridge collapse. The forces delivered to panel point U10 were 

reproduced using available information of the bridge. These forces were introduced to detailed 

nonlinear, three-dimensional finite element models to calculate stress and strain states of the 

gusset plates. The results indicate that substantial portions of the U10 gusset plates were yielded 

at the time of collapse, confirming earlier findings from federal and state investigations. Weight 

increase due to past deck reconstruction and construction material and equipment staged on the 

day of collapse, along with insufficient thickness of the gusset plate, were identified as the main 

contributing factors to the substantial yielding. The results also suggest that the interaction of 

compression and shear played an important role in the gusset plate failure. 
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Introduction 

On Wednesday, August 1, 2007, the bridge carrying Interstate Highway 35W (I-35W) over the 

Mississippi river in Minneapolis, Minnesota, collapsed within a matter of seconds. The collapse 

of a highway bridge in a major U.S. downtown area was unprecedented. What makes the event 

peculiar is that the bridge was a very typical structure and that the collapse occurred under what 

was thought to be normal operating conditions except for minor deck, joint, lighting, and 

guardrail repairs. The longer spans of the bridge were constructed as a deck-truss bridge. Steel 

truss bridges such as the I-35W Bridge are a very common form for long-span bridges in the U.S. 

and worldwide. Until the event occurred, steel truss bridges had earned the reputation of being 

economical and reliable. While the small redundancy of the trusses may be of concern, it is 

believed that mandated maintenance procedures assure that this structural system is as safe and 

reliable as any other. Forensic evidence from the I-35W Bridge after collapse (Hill et al. 2008; 

NTSB 2009a; 2008e) suggests that the bridge failure initiated at gusset plates that connected the 

top chord members to a compression diagonal and tension diagonal. Holt and Hartmann (2008) 

suggest that the strength of the gusset plates was insufficient to develop the shear forces expected 

at this panel point.  

Gusset plates are designed for the stresses at the Whitmore section (Whitmore 1952), 

block shear in tension, buckling in compression, and stresses calculated based on simple beam 

equations, in addition to constructability considerations (Gross 1990; Kulicki et al. 2006). The 

design rules are supported, in part, by laboratory tests by Bjorhovde and Chakrabarti (1985), 

Hardash and Bjorhovde (1985), Yam and Cheng (1993). In addition, analytical studies by 

Thornton (1984) and Gross (1990) address design approaches for gusset plate connections in 

building frames. However, these earlier studies have focused mainly on gusset plate connections 
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designed for tension and/or compression behavior, as seen in braced frames for building systems. 

Recently, Chambers and Ernst (2005) published a literature review on the design of gusset plate 

connections in braced  building frames.  However, little research data is available on gusset 

plates in truss bridge systems, where the gusset plates may connect multiple diagonal members 

and chord members.  

The stress distribution in gusset plates for bridge trusses differs substantially from that in 

simple tension or compression connections, and varies with member arrangement. To the 

knowledge of the authors, the only tests of realistic gusset plate connections in truss bridge 

systems, conducted to date, are those sponsored by the Honshu-Shikoku Bridge Authority in 

preparation of major bridge construction in Japan. Yamamoto et al. (1985) examined the elastic 

stress distribution in gusset plates for a range of member arrangements, and used experimental 

data to develop refined, allowable stress design criteria for the thickness of gusset plates. 

Subsequently, Yamamoto et al. (1988) subjected gusset plate connection specimens to failure to 

determine their inelastic buckling strength. In a separate study, also sponsored by the Authority, 

Tajima et al. (1982) tested a number of large-scale specimens to improve gusset plate designs for 

fatigue performance. Although these studies provide valuable data on gusset plate connection 

behavior, they do not address fracture of gusset plates such as that observed in the I-35W Bridge. 

In view of the above, an analytical study was conducted on the critical gusset plates in the 

collapsed I-35W Bridge (Liao 2009). Based on available information, the loading condition of 

the bridge at the time of collapse was estimated. A bridge model was used to evaluate truss 

forces, which were in turn, used in a detailed, finite element model of the critical gusset plate 

connection. The finite element modeling procedure was validated using available experimental 

data on tension and compression gusset plate connections. Results from the finite element 
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analyses were used to gain insight into possible causes of the gusset plate failure and possible 

collapse mechanisms. 

Reported Facts 

According to the Minnesota Department of Transportation (Mn/DOT 2008) and the 

NTSB (2008b; 2008e), construction of the I-35W Bridge began in 1964, and the bridge opened 

to traffic in 1967. The bridge had 14 spans and 13 piers including the south approach spans, 

north approach spans, and central deck-truss spans. Total length from abutment to abutment was 

581 m. Fig. 1 shows a plan and elevation of the entire bridge, drawn based on original 

construction drawings released by the Mn/DOT (2008). The south and north approach spans 

rested at the ends of the two (west and east) main trusses, at panel points U0 and U0', 

respectively. The main truss rested on roller supports at piers 5, 6, and 8, and a hinge support at 

pier 7. The main truss consisted of 28 panels, each of which was 11.6 m long. The two main 

trusses were connected by floor trusses that spanned transversely between panel points. The floor 

trusses supported longitudinal stringers, which in turn supported the reinforced concrete deck 

and traffic, and a special detail was used at the connection between the stringer and main truss to 

transfer only gravity effects. Underneath the floor trusses, sway frames in a chevron 

configuration connected the two main trusses. The main trusses were also connected by lateral 

bracing spanning between the upper chords and lower chords. The deck was separated for the 

southbound and northbound traffic. Each deck accommodated four 3.7-m traffic lanes and two 

0.6-m shoulders. The original concrete deck was designed as 165-mm thick, but the thickness 

was increased by 50 mm by concrete overlay added in later years. Outside barriers and median 

railings were also added to address maintenance and operational issues. At the time of collapse, a 

bridge patching and overlay project had been underway since June of 2007. Two southbound 
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inside lanes and two northbound outside lanes were closed for traffic. Construction material and 

equipment were staged on the closed southbound traffic lanes near the suspected location of 

failure initiation. 

After the bridge collapsed, field investigations were conducted by the Mn/DOT and the 

NTSB. Reported observations (Hill et al. 2008; NTSB 2008c; NTSB 2008e) indicate that the 

failure initiated at panel point U10. Fig. 2(a) is a photograph taken prior to the collapse (NTSB 

2008c), showing a pair of gusset plates connecting five truss members at panel point U10 of the 

west main truss (U10W). Fig. 2(b) identifies the five truss members: upper chords U9/U10 and 

U10/U11, diagonals L9/U10 and U10/L11, and a vertical U10/L10. The five truss members were 

connected through a pair of 13-mm thick gusset plates of ASTM A441 grade 50 steel (Beshah et 

al. 2008) and using 25-mm diameter rivets. The upper chords U9/U10 and U10/U11 and 

compression diagonal L9/U10 were box sections, while the tension diagonal U10/L11 and 

vertical U10/L10 were W-sections. All members were welded built-up sections. Because U10 

was located near an inflection point of the continuous truss, the force in the upper chord switched 

from tension on one side of the panel point to compression on the other side, as indicated in Fig. 

2(b), while the diagonal members delivered substantial compression and tension to the 

connection. As a result, a large net shear force was produced along the horizontal critical section 

indicated in the figure. Based on commonly used, simplified design checks, Holt and Hartmann 

(2008) suggested that the gusset plates at panel points U10 needed to be twice as thick to safely 

transfer the shear force produced by design loads. 

Fig. 3(a) shows a photograph of panel point U10W taken after the collapse (NTSB 

2008c), while Fig. 3(b) illustrates the three primary fractures seen in Fig. 3(a) and that were 

commonly observed in all four U10W and U10E gusset plates: 
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(A) Diagonal fracture along rivet holes connecting the gusset plate to the compression 

diagonal L9/U10. The fracture occurred along the perimeter holes of the rivet group 

adjacent to U10/L10.  

(B) Horizontal fracture below the lower edge of upper chord U9/U10. 

(C) Vertical fracture near the separation between the upper chords U9/U10 and U10/U11. 

Fracture of gusset plates was uniquely observed in the U10 panel points. This observation 

combined with the fact that the design strength of the U10 gusset plates was insufficient to carry 

the design forces (Holt and Hartmann 2008) strongly suggest that failure of the I-35W Bridge 

initiated in the U10 gusset plates. 

Load Estimation 

Based on construction and reconstruction plans (Mn/DOT 2008), and vehicle, construction 

material, equipment loads, and weather report data (NTSB 2007), the loading condition of the 

bridge at the time of collapse was estimated as having the following five components: 

 DL1: Dead loads at the time of original construction including the weight of all concrete and 

steel components. The original thickness of the concrete deck was 165 mm. 

 DL2: Net increase in dead loads due to repair and reconstruction in 1977 and 1998 (Mn/DOT 

2008). Added components included a 50-mm overlay on the concrete deck and new concrete 

parapets. 

 LL: Live loads including vehicle loads and impact effects. The vehicle loads were evaluated 

by uniformly distributing the total vehicle weight present at the time of collapse, as reported 

by the NTSB (2007). Per specifications (AASHTO 1973), impact effects were accounted for 

by adding 30% of the vehicle loads to the live loads. 
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 CL: Construction loads. At the time of collapse, four piles of coarse aggregate (gravel), four 

piles of fine aggregate (sand), one water truck, one cement tanker, and one concrete mixer 

were placed near panel point U10 in preparation of deck paving operation (NTSB 2007). The 

total weight of the material and equipment was estimated as 262 tons.  

 TH: Thermal effects, which were examined as two separate components: a uniform change in 

temperature due to daily change in ambient temperature and a temperature gradient expected 

in the immediate vicinity of the U10 panel point due to solar radiation. The former was 

modeled based on the peak-to-peak difference in ambient temperature on the day of collapse, 

which was reported to be 11 °C (NTSB 2007). The latter was estimated as 17 °C based on 

temperature monitored from a similar truss bridge in Cleveland, Ohio on October 11th, 1998 

(Huckelbridge 2008). Unlike the other effects, temperature gradient was studied only in the 

local model analysis. 

Table 1 lists the estimated loads on each of the main trusses at each panel point. Panel 

point designations are indicated in Fig. 1. The load values were obtained based on a tributary 

area calculation and assuming that the loads were shared evenly between the two main trusses. 

Loads on the south and north-end panel points (U0 and U0') include the loads transferred from 

the approach spans. The table shows that the dead loads added during deck reconstruction (DL2) 

were on the order of 30% of the original dead loads (DL1). This increment is quite significant. 

The vehicle load and impact effects combined (LL) was less than 6% of DL1 (of which 

approximately 1% was due to impact loading). The LL may have doubled if one-half of the 

traffic lanes had not been closed for traffic. Therefore, the live loads may have been a minor 

factor to the bridge collapse, and impact loading was of little consequence. Construction loads 
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(CL) were applied only on panel points U9 through U14. The CL added on U10 was greater than 

20% of DL1. 

Bridge Model Analysis 

In order to study the overall response of the bridge, a 2D bridge model was constructed and 

analyzed using SAP 2000 version 11.0.8 (CSI 2007). The model geometry was based on the 

original construction drawings (Mn/DOT 2008). All member ends were assumed to be pinned. 

The support conditions were the same as designed, unless noted otherwise. Generic elastic 

properties of steel were assigned to the members.  The deck was assumed not to act in a 

composite manner with the trussed for several reasons.  The decks for the northbound and 

southbound lanes were separate, the deck was designed and built as a non-composite element 

(i.e., few shear connectors between deck and the stringers), and the patching operation 

introduced cutbacks and numerous perforations in the deck. 

Fig. 4 shows the plot of influence lines for the truss forces (positive in tension) in the 

compression diagonal L9/U10 and tension diagonal U10/L11. The influence lines indicate that 

loads applied on the center span produces compression in L9/U10 and tension in U10/L11, and 

that loads placed near U10 produce a very large response. Therefore, the temporary construction 

loads (CL), which were placed in the shaded region of Fig. 4, may have significantly affected the 

forces imposed on the U10 gusset plate. 

The loads listed in Table 1 were applied on the upper chord panel points of the model 

according to the following four combinations: 

 Case 1: DL1 

 Case 2: DL1 + DL2 

 Case 3: DL1 + DL2 + LL 
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 Case 4: DL1 + DL2 + LL + CL 

In addition, the following two cases were considered for the effect of uniform change in 

temperature. 

 Case T1: Ambient temperature increase of 11 °C with as-designed support conditions 

 Case T2: Ambient temperature increase of 11 °C with hinge supports used at all four piers. 

This case addressed the extreme effects of frozen roller supports reported by URS (2006). 

Table 2 lists the axial forces (positive in tension) in the truss members framing into U10. 

The dead load effects (corresponds to Case 1) and strength demand used in the original design 

are also listed for comparison. The forces computed for Case 4 are indicated in Fig. 2(b). The 

dead load effects agree well between the original design and estimation in this study, which 

suggests that the estimated dead loads (DL1) listed in Table 1 are reliable. The forces in Case 3 

are smaller than the design strength demand, primarily because the design live loads prescribed 

by AASHTO (1973) is roughly 10 times greater than the live loads present at the time of bridge 

collapse. While analysis predicts minimal forces (62 kN for Case 4) in member U10/L10, this 

member was designed for a much larger force of 2,400 kN, perhaps in order to account for forces 

during construction of the bridge and accidental loading cases.  

The deck repair in later years (DL2) increased the truss forces by 30%. Live loads (LL) 

and construction loads (CL) increased the truss forces by another 10 to 15%. The forces 

produced in the diagonals L9/U10 and U10/L11 by Case 4, which represent the total estimated 

load on the bridge at the time of collapse, exceed the design total effects by 5%. Forces 

computed for Case T1 are negligible compared to the forces for Case 4. Case T2 produces 

tension in member L9/U10 and compression in U10/L11. Therefore, if the roller supports were 

frozen, it is likely that increase in ambient temperature relaxed the compression in member 
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L9/U10, tension in member U10/L11, and shear force along the critical section shown in Fig. 

2(b). 

Validation of Finite Element Models 

The finite element modeling procedure for the U10 gusset plate connection was established by 

simulating the laboratory test behavior of two, gusset plate connections. ABAQUS 6.8-1 

(Simulia 2008) was used for all finite element analyses presented in this paper. Nonlinear 

material behavior was modeled using the von Mises yield criterion and the isotropic hardening 

rule. A large strain-large displacement formulation, which is the default option for ABAQUS, 

was used to carry out the nonlinear analysis. For the validation studies discussed in the following, 

the steel was modeled using the respective reported yield strength and a post-yield stiffness of 

approximately 0.01 times the Young’s modulus. 

The first validation used a bolted tension connection reported by and designated as 

Specimen 28 by Hardash and Bjorhovde (1985). This connection exhibited a long yield plateau 

leading to a tensile strength of 560 kN, and ultimately failed by block shear failure of the gusset 

plate. Fig. 5(a) shows the gusset plate after testing, where tensile fracture across the last row of 

bolts and elongation of bolt holes is visible. The finite element model of the gusset plate is 

shown in Fig. 5(b) as the global model. Considering symmetry, only one half of the gusset plate 

was modeled. All nodes along the left edge of the model were restrained against translation in 

two transverse (X and Z) directions. All nodes at the bottom edge of the plate were restrained 

against translation in all three (X, Y, and Z) directions. The bolts were modeled as rigid 

cylindrical shells. The rigid shells were displaced equally in the upward (positive Y) direction to 

deliver load to the gusset plate. The remaining five degrees-of-freedom of the rigid shells were 

restrained.  
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A comparison study of element types and mesh refinement led to the conclusion that the 

overall behavior of this connections may be modeled appropriately by using C3D8 elements and 

16 elements surrounding the bolt holes. For example, Fig. 6(a) compares the loading curve 

obtained from using different solid elements, designated as C3D8 (linear isoparametric brick 

element), C3D8R (linear brick element with reduced integration), and C3D4 (linear 

isoparametric tetrahedral element) in the ABAQUS element library. All analyses used a similar 

meshing strategy with 16 nodes surrounding each bolt hole. The models using C3D8 or C3D8R 

achieved the measured strength of 560 kN at 10 mm displacement (after the bolts contacted the 

hole perimeter), and continued to develop larger strength. The strength degradation observed in 

the experiment was influenced by fracture propagation between the last row of bolts. Therefore, 

the discrepancy between the experiment and analysis may be attributed to absence of a fracture 

model in the analysis. The model using C3D4 exceeded the measured strength at a much smaller 

deformation of 4 mm, and was therefore judged as less appropriate than the other two models. 

Fig. 5(c) shows the deformation of the gusset plate and the Mises stress distribution when the 

bolts were displaced by 10 mm. Overall, the computed deformation and stress distributions and 

the photograph of the test specimen in Fig. 5(a) share several important similarities: Very high 

stresses were computed near the bearing side of the bolt holes, and also across the last row of 

bolt holes where fracture was observed in the test. In addition, deformation of the plate was 

supplied by bolt hole elongation, most notably at the last bolt hole.  

In order to examine the critical stress and strain condition that led to fracture of the gusset 

plate, a densely meshed model representing the region surrounding the last row of bolt hole, 

shown in Fig. 5(b) as the submodel, was analyzed using the submodeling technique (Simulia 

2008). The displacement field obtained from the global model was used as boundary conditions 
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for the submodel analysis. Fig. 6(b) and (c) plot the distribution of normal stress, YY, and 

equivalent plastic strain, PEEQ, respectively, along the sampling line connecting the two bolt 

holes. The abscissa indicates the distance measured from the middle of the plate. The figure 

compares the results from the global model and submodel when the bolts were displaced by 10 

mm (the loading stage when the measured strength was reached). The figures indicate that the 

yield strength (229 MPa) was exceeded along the entire length between the last row of bolts. 

Both YY and PEEQ were largest at the edge of the bolt hole. The major difference between the 

global model and submodel occurs only near the edge of the bolt holes, where the global model 

does not capture the severe stress and strain concentration. The very large stress concentration 

obtained from the submodel indicates that fracture may initiate at the edge of the bolt hole at a 

load much lower than the tensile capacity of the gusset plate connection. 

The second validation study used a bolted compression connection reported by Yam and 

Cheng (1993) and designates as specimen SP1. The gusset plate had a slender, 725-mm long and 

13.3-mm thick, unbraced edge. The brace member delivering compression was restrained from 

torsion and rotation in the plane perpendicular to the gusset plate. The bottom edges of the gusset 

plate were fixed, while the base support was permitted to translate only in the out-of-plane 

direction. In order to trigger buckling, out-of-plane imperfections were introduced that were 

equal to 0.001 times the first-mode buckling displacements. The gusset plate sustained a 

maximum load of 1,606 kN. Strength degradation was measured as the gusset plate buckled and 

deformed out of plane. Fig. 7(a) shows the finite element model before and at the end of the 

analysis. The model was supplied with boundary conditions reflecting the test setup, as rigid 

cylindrical shells (representing the bolts) were displaced in the direction towards the gusset plate. 

Fig. 7(b) plots the compressive load versus out-of-plane displacement relationship obtained from 
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three models. The meshing scheme validated from the first study was used, while the number of 

elements across the thickness of the gusset plate was varied between one and three. The out-of-

plane displacement d indicated in Fig. 7(a) is plotted in the abscissa, and the total compressive 

force applied to the brace member is plotted in the ordinate. Fig. 7(b) indicates that the maximum 

strength and failure due to instability is represented well by using either two or three elements 

across the thickness of the gusset plate. Using either model, the measured strength of 1,606 kN 

was predicted within 10%, while the computed out-of-plane displacement was on the same order 

as that measured during the test (reported as 25 mm). 

Based on the two validation studies, the U10 connection of the I-35W bridge was 

modeled using C3D8 elements throughout, 16 elements surrounding the bolt holes, and two 

elements across the thickness of the gusset plates.  

Gusset Plate Connection Analysis 

The truss forces obtained from the bridge analysis supplied the loading conditions for the 

detailed, 3D finite element model shown in Fig. 8(a). The concept of the loading condition is 

shown in Fig. 2(b). The model consisted of five short, stub segments connected through a pair of 

gusset plates. The dimensions of each component were taken from the original construction 

drawings (Mn/DOT 2008). A rigid shell plate was attached to the far end of each stub segment 

and to the top of the upper chords, at the location where the floor truss seated. The vertical load 

and truss forces were applied to the center of the shell plate, perpendicular to the plate. The truss 

loading points were allowed to translate only along the original member axis, and the top loading 

point was restrained from motion in the out-of-plane direction. The transverse reactions 

computed at the loading points were minimal.  
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The primary objective of the local model analysis was to examine the stress and strain 

condition that may lead to the failure shown in Fig. 3. Therefore, the rivet connection was 

explicitly modeled only between the compression diagonal L9/U10 and the gusset plates. Unlike 

the other four truss members which were merged to the gusset plate, the diagonal L9/U10 was 

modeled as an independent element. Force transfer by contact of two elements was permitted 

only in the direction normal to the surface (In other words, friction was neglected). Rivets were 

modeled as rigid cylindrical shells interacting with the periphery of the rivet holes. A uniform 

pressure of 56.5 MPa was applied at both sides of the riveted joint within an annular region of 

7.6 mm from the edge of holes to produce a pre-tension of 44.5 kN. This pre-tension is 

equivalent to the minimum bolt-pretension specified by the Research Council on Structural 

Connections (RCSC 2004). The pressure was needed to prevent separation between the diagonal 

and the gusset plates during analysis, and it did not lead to a frictional resistance contribution to 

the connection because friction between the plates was neglected.  

Elasto-plastic steel properties for the gusset plate were based on the tension test data 

provided by Beshah et al. (2008). The relationship between true stress and logarithmic plastic 

strain for the gusset plate was approximated as a piecewise linear line with 355 MPa at 0 plastic 

strain, 517 MPa at 0.04, and 607 MPa at 0.1. The meshing strategy was based on the study 

described in previous section. The model had a total of 119,932 elements and 200,753 nodes. 

Computations were run on an IBM Power4 system at the University of Minnesota 

Supercomputing Institute. 

The analysis was conducted in five successive steps designated below. The truss forces 

were increased in four steps, by first introducing the forces for Case 1 of the bridge analysis 

(Step 1), and increasing the forces, in order, to Case 2 (Step 2),  Case 3 (Step 3), and Case 4 
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(Step 4). Subsequently, a linear thermal gradient of 17 °C was introduced between the surfaces 

of the two gusset plates by either maintaining the same support conditions (Step 5a) or freezing 

translation of the five truss loading points (Step 5b). In truss bridges, the truss members are 

supplied with substantial longitudinal restraint by surrounding members (Huckelbridge 2008). 

The two support conditions should provide reasonable bounds for the expected restraints. 

Analysis Results 

Fig. 9(a) shows a photographic view of the fracture observed along the compression diagonal 

L9/U10 (fracture (A) in Fig. 3(b)). Fig. 9(b) shows the maximum principal stress field in the 

gusset plate, near the same perimeter rivet holes, evaluated at completion of analysis Step 4. On 

the left edge of the perimeter rivet holes, the maximum principal stress acts in the vertical 

direction. The direction agrees well with the fracture seen in Fig. 9(a), and indicated by dotted 

lines in Fig. 9(b). Therefore, it is suspected that fracture initiated on the left edge of the holes (as 

viewed in Fig. 9) due to large normal stresses, and propagated straight until the fracture grew 

large enough to disturb the stress field and change the direction of fracture propagation. The 

comparison in Fig. 9 indicates that the nonlinear analysis procedure and detailed local model 

may provide important insight of the gusset plate failure. In this study, the initiation of fracture is 

not quantified. The critical stress and strain values depend substantially on the meshing scheme, 

as demonstrated in Fig. 6. 

Fig. 10 shows how yielding of the gusset plates spread as the analysis progressed. The 

grey to black color indicates the region where the Mises stress exceeds the specified yield stress 

of 355 MPa. The region in white is elastic. At the end of Step 1, localized plasticity was 

observed adjacent to the upper-left corner of the compression diagonal L9/U10 surrounding rivet 

holes. Additionally, a small region below the upper chords yielded because of the large net shear 
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force along the horizontal section. At the end of Step 2, the yielded region was spread 

extensively. This result suggests that the dead loads added after the original construction stressed 

the gusset plates beyond a generally accepted level. The standard practice (Kulicki et al. 2006) is 

to assure that gusset plates remain elastic under design loads. As the analysis progressed with 

increasing load and truss forces, yielding spread along the perimeter of the compression diagonal 

L9/U10 and the lower edge of the upper chords. While the difference between Steps 4 and 5a are 

barely noticeable, Step 5b clearly produced an increased area of yielding beyond Step 4. The 

regions of high stresses coincide with the reported locations of fracture, (A) and (B) in Fig. 3(b). 

The substantial yielding shown in Fig. 10 may have led to failure of the gusset plate. 

Fig. 11 plots the Mises stress versus equivalent plastic strain (PEEQ) measured at a 

sampling point (dashed line). As indicated in Fig. 10, the sampling point is adjacent to an upper-

left rivet hole, and was identified as a critical point where large compressive stresses develop. 

For uniaxial loading cases, the relationship between Mises stress and PEEQ coincides with the 

true stress versus logarithmic plastic strain material model (solid line). Therefore, Fig. 11 is also 

a confirmation that the computed stress and strain field agrees with the assumed material 

plasticity model (piecewise-linear line in the figure). At the end of Step 1, the sample point is 

already yielded. At the end of Step 4, the Mises stress was as high as 552 MPa and the PEEQ 

was 0.07. The PEEQ was increased by 0.02 between Steps 1 and 2, and between Steps 3 and 4. 

In other words, loads DL2 and CL produced substantial plastic strains in the gusset plate. The 

increase in stress and PEEQ caused by temperature gradient was greater than the increase from 

live loads (LL) but less substantial than that due to the construction loads (CL). The PEEQ 

produced by the sum of all loading effects was roughly 0.08. 

Journal of Structural Engineering. Submitted January 13, 2010; accepted July 13, 2010; 
     posted ahead of print July 15, 2010. doi:10.1061/(ASCE)ST.1943-541X.0000269

Copyright 2010 by the American Society of Civil Engineers



Acc
ep

ted
 M

an
us

cri
pt 

Not 
Cop

ye
dit

ed

 16 

 

Fig. 11 also shows data (triangles) obtained from analysis with ABAQUS after increasing 

the gusset plate thickness from 13 mm to 25 mm, the latter which would satisfy current design 

requirements. Although the thicker gusset plate also yielded at the end of Step 1, the PEEQ at the 

sampling point at the end of Step 4 was smaller than 0.01. Very limited yielding was observed in 

the thicker gusset plates, except in a very limited region including the sampling point. Such 

limited yielding is accepted in steel connection design. Therefore, the thicker gusset plates would 

have sustained the same load conditions without discernable yielding. 

The above analysis results, combined with the fracture study by the NTSB (2008a), 

suggest that failure of gusset plate U10 initiated either along the perimeter of the compression 

diagonal (fracture (A) in Fig. 3(b)) or along the critical shear plane below the upper chords 

(fracture (B)). The location of yielding suggests that interaction of shear force and compression 

may have influenced the failure. The interaction is not expected to lead to potentially dangerous 

conditions of properly sized gusset plates. However, it is worthwhile to consider the 

compression-shear interaction for the undersized U10 gusset plates. To this end the local model 

analysis was repeated for a modified gusset plate connection shown in Fig. 8(b) that replaces the 

top chord U9/U10 and vertical U10/L10 by fixed edge supports. This connection is a 

compression connection, unlike the U10 connection which is subjected to combined shear and 

compression, but resembling the specimens studied by Yam and Cheng (1993). However, due to 

the short unsupported edges of the gusset plate, buckling should not be a concern for this 

compression connection. 

Fig. 12 compares the response obtained from the two connection models, the U10 

connection shown in Fig. 8(a) and the compression connection shown in Fig. 8(b). The response 

is represented by the compression in L9/U10, incremented according to Steps 1 to 4, against the 
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averaged strain of gauge length L indicated in the figure. The elastic stiffness was 40% smaller 

for the U10 connection compared to the compression connection. Although the U10 connection 

softened progressively as the compression exceeded 7,500 kN, the compression connection 

remained largely elastic when the analysis was terminated at a compression of 11,120 kN. The 

U10 connection was affected substantially by yielding in the region in front of the connection. 

Figures 10 and 12 suggest that, beyond Step 1, the stress was redistributed from the front of the 

connection to the shear lines along the perimeter rivet holes, resulting in the wide yielded region 

surrounding member L9/U10. Discernable yielding did not occur in the compression connection 

at the end of Step 4. 

Standard design procedures (Holt and Hartmann 2008; Kulicki et al. 2006) check the 

compressive strength and shear strength independently, but do not check the interaction between 

the forces. On the other hand, results from this study suggest that shear-compression interaction 

contributed to the substantial yielding of the gusset plates, and therefore, may have played a key 

role in the I-35W Bridge collapse.  

Buckling sensitivity studies were conducted to address the pre-collapse deformed 

configuration of the gusset plates, but are not shown here for brevity. These studies included the 

use of imperfections to define the initial configuration of the U10 gusset plates (using the first 

buckling mode shape with various amplitudes), as well as analyses in which the gusset plates 

were initially deformed (in a pattern simulating the first buckling mode and with a peak 

amplitude of 12.7 mm). The former case is stress/strain free prior to load application, whereas 

the latter introduces stress and strain fields in response to the deformed shape. These studies 

indicated only minor sensitivity to the initial imperfections/deformed shapes, with the relation 
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between Mises stress and PEEQ being nearly identical. These results agree, in part, with the 

NTSB study (2008d) which suggested a greater influence of buckling on the gusset plate failures. 

Conclusions 

Reported evidence suggests that the collapse of the I-35W Bridge initiated at the U10 gusset 

plate connections. These connections were analyzed using detailed finite element models. The 

forces applied on the gusset plate connections were estimated carefully based on construction 

drawings and other available information. The computed stress and strain fields were compared 

against the patters of fracture observed after the bridge collapse. Key findings are summarized as 

follows: 

 The concrete deck overlay and new parapets added in later years after original construction 

increased the dead loads by 30%. 

 The live loads were rather small at the time of collapse because of the traffic lane closures. 

 The construction material and equipment placed on the day of collapse caused substantial 

increase in the forces applied on the U10 gusset plates. 

 Temperature gradient between the two sides of the connection may have produced additional 

stress and strain in the gusset plates. However, the effect of temperature gradient is difficult 

to quantify because the computed results are highly dependent on the assumed boundary 

conditions for the analysis model. 

 A substantial portion of the U10 gusset plates may have been yielded at the time of collapse. 

Weight increase due to past deck reconstruction and construction material and equipment 

staged on the day of collapse, along with insufficient strength of the gusset plate, were 
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identified as the main contributing factors to the substantial yielding. These results 

corroborate the findings by the NTSB (2008d) and Hill et al. (2008). 

 Interaction between compression and shear may have played an important role in the gusset 

plate failure and further study of this phenomenon is needed.  
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Table 1. Loads applied on panel points. (Unit in kN). 

 

Panel point DL1 DL2 LL CL 
U0 1,868 449 66 0 
U1 1,178 389 68 0 
U2 1,193 389 68 0 
U3 1,188 389 68 0 
U4 1,441 389 68 0 
U5 1,190 389 68 0 
U6 1,219 389 68 0 
U7 1,212 389 68 0 
U8 1,468 389 48 0 
U9 1,206 389 28 260 
U10 1,210 389 28 290 
U11 1,196 389 28 334 
U12 1,189 389 28 180 
U13 1,182 389 28 143 
U14 1,433 389 28 16 

U13'-U9' Symmetric Symmetric Symmetric 0 
U8' 1,468 389 28 0 

U7'-U1' Symmetric Symmetric 26 0 
U0' 2,769 733 82 0 
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Table 2. Truss forces at U10. (Unit in kN). 

 

Original design  Bridge model analysis Member 
Case 1 Demand  Case 1 Case 2 Case 3 Case 4 Case T1 Case T2

U9/U10 6,899 9,550  7,060 8,960 9,210 9,440 10 -1,500 
U10/U11 -2,162 -4,110  -2,020 -2,540 -2,490 -3,320 12 -1,170 
L9/U10 -7,473 -10,177  -7,620 -9,670 -9,830 -10,800 2 246 
U10/L11 6,370 8,785  6,560 8,310 8,440 9,140 -2 -273 
U10/L10 1,205 2,402  62 62 62 62 0 0 
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