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ABSTRACT: A constitutive law for dilatant frictional behavior is reviewed. It is 
developed by distinguishing between the macrostructural and raicrostructural fea
tures of a material discontinuity. Macrostructural considerations provide the gen
eral form of the constitutive equations, while microstructural considerations allow 
the inclusion of an appropriate surface idealization. The result is an incremental 
relation between contact stresses (traction) and relative surface deformation that 
accounts for phenomena such as surface damage due to wear and arbitrary cyclic 
sliding. A quadratic-displacement-isoparametric finite element is derived that per
mits modeling of curved-contact surfaces and crack surfaces terminating at a tip 
with a surrounding medium that is modeled with quarter-point quadratic elements. 
Emphasis is on the use of established finite-element-solution methodologies and 
program architecture for material-nonlinear problems. Several examples are con
sidered. The resulting methodology is useful for modeling geologic discontinuities, 
crack-shear transfer in concrete, and dilatancy-induced mixed-mode fracture me
chanics. 

INTRODUCTION 

Material interfaces are common in mechanical systems and media and often 
have a substantial influence on response. The behavior of a material dis
continuity is complex and involves frictional sliding, possible contact-surface 
separation, sometimes dilatancy, and usually various types of surface dam
age that affect subsequent behavior of the discontinuity. Because quantitative 
expressions for such behavior have been lacking, some of these phenomena 
have gone unaccounted for in analyses, and most often, a discontinuity has 
been idealized as being smooth with simple Coulomb friction. Even with 
simple Coulomb friction, because of nonlinearity, finite-element-solution 
methodologies are still not advanced to the point where contact-friction ca
pabilities are included in general-purpose programs, and in most cases, spe
cial-purpose programs are used. 

The contact problems considered in this paper have surface roughness that 
is small compared with the macroscopic contact area and have well-defined 
normal and tangent directions to the macroscopic contact surface. In addi
tion, we restrict attention to problems where the initial mating, or correla
tion, between the contact surfaces is close. Such a situation is shown in Fig. 
1(a), which is characteristic of naturally generated material discontinuities, 
such as crack surfaces, which propagate through an initially continuous me
dium. Examples include cracks in polycrystalline and aggregate materials, 

'Assoc. Prof., Dept. of Engrg. Mech., Univ. of Wisconsin, Madison, WI 53706. 
2Asst. Prof., Dept. of Civ. Engrg., Case Western Reserve Univ., Cleveland, OH 

44106. 
3Res. Asst., Dept. of Civ. Engrg., Case Western Reserve Univ., Cleveland, OH. 
Note. Discussion open until May 1, 1990. To extend the closing date one month, 

a written request must be filed with the ASCE Manager of Journals. The manuscript 
for this paper was submitted for review and possible publication on September 12, 
1988. This paper is part of the Journal of Engineering Mechanics, Vol. 115, No. 
12, December, 1989. ©ASCE, ISSN 0733-9399/89/0012-2649/S1.00 + $.15 per 
page. Paper No. 24117. 

2649 
Downloaded 16 Oct 2009 to 128.101.119.5. Redistribution subject to ASCE license or copyright; see http://pubs.asce.org/copyright



B 

(b) 

A 

a, an 

(d) (e) 
FIG. 1. (a) Contact Surface Profile with Very Close Initial Mating of Asperities; 
(b) Two-Body Contact in Two Dimensions along Macroscopically Smooth Surface; 
(c) Definition of Coordinate System at Point p (Surfaces are Shown Separated for 
Clarity and Surface Roughness Is Not Shown); (d) Possible Microstructural Ideal
ization of Surface Profile Shown in Fig. 1(a); and (e) Geometry of Surfaces after 
Deformation when There is No Asperity Damage 

such as ceramics and concrete, and geologic discontinuities, such as rock 
joints and faults. The most important behavioral feature that these contact 
problems display is dilatancy—the coupling between normal and tangential 
relative displacements due to asperities of one surface riding up on those of 
the other surface. 

In this paper, a modern two-dimensional incremental constitutive law for 
contact-friction, analogous to the incremental theory of plasticity, is re
viewed, and a finite element spatial-discretization procedure is developed; 
extension to three-dimensions is straightforward. The constitutive theory was 
fully developed in Plesha (1987) in the spirit of the original work of Seguchi 
et al. (1974), Fredriksson (1976), Michalowski and Mroz (1978), Curnier 
(1984), and Cheng and Kikuchi (1985). A finite element spatial discreti
zation for a two-dimensional contact region is presented with emphasis on 
straightforward numerical implementation, using standard finite-element-so
lution procedures and program architecture. The element derived is partic
ularly useful for modeling curved-contact surfaces and for mixed-mode frac
ture mechanics problems. Several examples showing the performance of this 
modeling approach are also presented. 

CONTACT-FRICTION CONSTITUTIVE LAW 

A number of constitutive laws for dilatant contact problems have been 
proposed for geologic discontinuities (Plesha 1987) and crack surfaces in 
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concrete (Bazant et al. 1980, 1984; Riggs and Powell 1986; Divakar et al. 
1987). Most of these models are deformation-theory models that are valid 
for unidirectional sliding and have stiffness coefficients (i.e., the W coef
ficients of Eq. 7) that are determined empirically or by curve-fitting ex
perimental data. The constitutive law adopted in this paper is valid for ar
bitrary sliding histories and has material parameters that can be determined 
from conventional direct-shear tests. This constitutive model is analogous to 
the theory of continuum elastoplasticity and can be termed a continuum the
ory of friction in the sense that contact area is continuous; hence, the traction 
components that the theory predicts are also continuous. A detailed descrip
tion of the theory is given in Plesha (1987), however, a brief description of 
the model is appropriate. The theory is formulated by distinguishing between 
macrostructural and microstructural features of an interface as follows. 

Macrostructural Considerations 
Fig. 1(b) shows a macroscopically smooth contact surface in two dimen

sions with local tangential and normal coordinate directions t and n, re
spectively, with origin at point p~ which is affixed to body A [Fig. 1(c)]. 
Roughness on the contact surface is not shown in Fig. 1(c) and will be 
discussed subsequently as a microstructural feature. The only requirement 
of the macroscopic contact surface is sufficient smoothness so that the sur
face tangent and normal are not ill-defined. 

The kinematic variables used in the constitutive law are the relative surface 
displacements in the tangential and normal directions that are defined as 

8, = (As - «tt) • t (1) 

8n = (As - uA) • n (2) 

where uA and uB = the displacement vectors of the points p~ and p+ asso
ciated with bodies A and B, respectively; and t and n = unit vectors in the 
tangent and normal directions of the interface at point p. The tangent and 
normal stresses the interface supports at point p are denoted by a, and a„ 
with the convention that compressive stresses are negative (in proper ter
minology, these are traction components u„, and cr„„, respectively, but we 
adopt the more conventional nomenclature of tangent and normal stresses). 

A basic assumption in the theory is that the deformation can be additively 
decomposed into 

g< = g' + 8Pi i = t,n (3) 

where superscripts e and p = the elastic (recoverable) and plastic (irrecov
erable) parts of the deformation; and i = a vector component in the tangent 
or normal direction. There exists experimental evidence supporting this de
composition for almost every class of friction problem that has been carefully 
studied. Furthermore, it leads to a more convenient numerical implemen
tation compared to frictional idealizations in which a stick condition precedes 
frictional sliding. 

Assumably, the stress supported by an interface relates to the elastic part 
of Eq. 3 by 

*/ = £«&' (4) 

where the £,-,- = interface stiffnesses; superposed dots = time differentiation; 
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and the summation convention is applied to repeated indices. The stiffnesses 
appearing in Eq. 4 can be interpreted from two points of view. In the first, 
as discussed by Oden and Campos (1981), Cheng and Kikuchi (1985), and 
others, the stiffnesses are penalty numbers that approximately enforce con
tact-surface compatibility consisting of impenetrability and presliding stick 
constraints. Using this point of view, E,„ = Ent = 0 and E„ and E„„ are taken 
to be much larger than the stiffness of the contacting materials. For example, 
impenetrability at point p in Fig. 1(c) requires g„ = (Tn/E„„ & 0. With the 
convention that a compressive stress is negative, impenetrability is only sat
isfied in the limit of infinite Em. For finite values of E„„, compatibility is 
violated; by making E„„ large in relation to other stiffnesses in the model, 
the incompatibility is typically insignificant. Kikuchi and Song (1981) have 
established that solutions exist for finite penalty numbers and convergence, 
when the penalty numbers become infinite. In the second point of view, 
these stiffnesses are interpreted as physically significant properties of a ma
terial discontinuity. Inspection of a contact indicates that while the contact 
zone is usually very thin, it does have finite thickness. Results obtained from 
carefully conducted experiments on a variety of contact problems indicate 
that reversible deformability of the contact zone occurs at all load levels, 
including presliding load levels (Goodman 1980). Based on physical con
siderations, it is appropriate to take E,„ = E,„ = 0 so that changes of stress 
in the tangential and normal directions are unrelated to changes of elastic 
deformation in the normal and tangential directions, respectively. Data ex
tracted from tests for E„ and Em typically provide relatively large stiffnesses; 
hence, small negative values of g„, are possible and are considered to be 
physically realizable deformations. Based on experiment, stiffnesses are stress-
dependent, although for practical applications it is not known if or when 
such detail is warranted. In the following, we assume uniform stiffnesses. 

The plastic deformations arise from sliding and sliding-associated damage, 
and are assumed to be given by the sliding rule 

g"i = 0 if F < 0 or F < 0 (5a) 

. dG 
gl = A. — ifF = F = 0 (5b) 

dcr,-
where F = a scalar-valued slip function with a negative value for nonsliding 
states of stress and zero for states of stress producing slip (positive values 
of F are undefined); G - a slip potential, with a gradient that gives the 
direction of slip; and \ = a non-negative slip multiplier that gives the mag
nitude of the slip. When F = G, the sliding rule is associated, and when F 
¥=• G, the sliding rule is nonassociated. Eq. 5 is analogous to the flow rule 
used in the incremental theory of plasticity. Although plasticity and friction 
share many features, it has long been recognized that friction is strongly 
nonassociated (Drucker 1954) because the direction of sliding is pressure-
independent. 

The following assumes that hardening or softening behavior due to sliding-
induced damage is strictly a function of the sliding work, W, where the rate 
of this quantity is Wp = agp. Under this assumption, damage accumulates 
more rapidly for severe states of stress than for mild states, which is con
sistent with physical notions of wear. Some writers consider the effective 
slip, gp; gp = Vglgl, as a measure of wear, but this may not be appropriate, 
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because it does not incorporate the effects of the severity of stress on wear. 
For example, consider two contact situations that are identical except that 
one has low-compressive stress while the other has high-compressive stress. 
Both situations undergo the same tangential-displacement history, and hence 
have almost identical effective slip. Clearly, it would be unreasonable to 
expect both situations to have the same damage due to wear. 

The consistency equation is obtained by noting that if at a given instant 
in time, slip is imminent, F = 0, and, if at the next instant in time, the 
interface remains critical, then F = 0, which can be written as 

dF dF . 
— a, + W = 0 (6) 
do-,- dW 

Combining Eqs. 3-6 and eliminating the slip multiplier leads to the consti
tutive law 

<r = Wj> (7) 

where 

Eep = E if F < 0 or F < 0 (8a) 

dG dFT 

— E 

E" = El I - J" *» | if F = F = 0 (8fc) 
E H , 

da d(T 

and the hardening or softening parameter is 

dF TdG 
H = aT — (8c) 

dW dcr 
and T denotes transposition. Forms for F and G are problem-dependent but 
are generally derivable from, or related to, Coulomb's friction law in con
junction with an idealization for the contact-surface microstructure. 

Eq. 7 is easy to evaluate and provides a clear relation between stresses 
and deformation that is valid for arbitrary sliding histories. For this reason, 
the constitutive model is ideal for implementation in analysis software. Un
fortunately, during sliding the material matrix W is asymmetric if F # G, 
which is usually the case. 
Microstructural Considerations 

Expressions for F and G can be obtained by considering the idealized 
contact-surface profile shown in Fig. 1(d). This model consists of sawtooth-
asperity surfaces that degrade. If the friction on the active asperity surface 
is governed by Coulomb's law, then |cri| £ — u.o-2> where u. is the coefficient 
of friction, and o^ and o-2 are the tangential and normal stresses on the as
perity surface. By transformation, this equation can be expressed in terms 
of the macroscopic stresses a, and CT„. This leads to (Plesha 1987): 

F = |o-„ sin a*. + a, cos a.k\ + |x(cr„ cos ak — a, sin ak) (9a) 

G = |<r„ sin ak + cr, cos ak\ (9b) 
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where k = L ovR, depending on which asperity surface is active (i.e., whether 
g, z 0 or g, < 0, respectively). 

For discontinuities, such as joints in rock and crack surfaces in concrete, 
there is extensive experimental data showing that asperity surfaces degrade. 
The asperity behavior in this model is characterized as follows: Under high-
compressive stresses, high-tangential stresses are required to produce slip, 
and rapid asperity degradation can occur for small tangential displacements. 
Under low-compressive stresses, low-tangential stresses will produce slip; 
yet if the amount of slip is large, then asperity degradation can arise from 
wear. A simple tribological relation that replicates these characteristics is 
obtained by assuming that degradation is a function of sliding work 

ak = (at.)0 exp (~cW) : (10) 

where (ak)0 = the initial asperity angle; and c = an experimentally deter
mined positive constant that reflects how rapidly the surfaces degrade. Thus, 
if a particular degree of degradation is obtained by a state of high stress and 
low displacement, the same degree can be obtained at a lower stress level 
provided the displacement is large enough. 

As discussed in Plesha (1987) and Zubelewicz et al. (1987), under con
ditions of cyclic shearing, this constitutive law may overpredict bulking (i.e., 
thickening of an interface due to the larger volume of space occupied by the 
rabbled asperity material relative to its initial, intact volume). A modifica
tion to the constitutive law reported herein, which removes this deficiency, 
is developed in Zubelewicz et al. (1987). 

Corroboration of this constitutive law with rock-joint behavior, using Eqs. 
7-10, has been carried out in Plesha (1987), Zubelewicz, et al. (1987), and 
Plesha and Haimson (1988) with extremely good agreement. 

FINITE ELEMENT IMPLEMENTATION 

An extensive review of the published writing on interface finite elements, 
with particular reference to rock-mechanics problems, is reported in Heuze 
and Barbour (1981). We present the development of a two-dimensional, iso
parametric, quadratic displacement-interface finite element for contact-fric
tion problems. Goodman et al. (1968) reported a similar element. In this 
paper, however, we emphasize a consistent isoparametric formulation that 
permits modeling of curved-contact surfaces and provides an element that is 
compatible with the quadratic-displacement-plane finite elements that are often 
used to model crack-tip stress singularities. Significantly, this finite element, 
in conjunction with the constitutive law, permits the treatment of contact-
friction problems with the same methodologies and program architecture as 
those currently used for small-displacement material nonlinear problems. 

The macroscopic contact surface shown in Fig. 1(b) is discretized into 
interface finite elements. One such element is shown in Fig. 2(a). The ele
ment can be curved and is assumed to have zero thickness in the undeformed 
state, but is shown separated in Fig. 2(a) for clarity. The element has six 
nodes, and each node has two degrees of freedom corresponding to hori
zontal and vertical displacements. Node pairs 1 and 6, 2 and 5, and 3 and 
4 are assumed to be spatially coincident prior to deformation; nodes 2 and 
5 need not be at the midpoint of the element's arc length, although accuracy 
is probably best when this is the case. Compatibility of displacements is 
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FIG. 2. (a) Geometry of Six-Node, Quadratic-Displacement-Isoparametric-Inter
face Finite Element in Global, or Physical, Coordinate System; and (b) Geometry 
of Reference Element 

assured (excepting negative values of g„ as discussed earlier) when the in
terface element adjoins quadratic-edge-displacement continuum elements (e.g., 
the quadratic-displacement eight-node serendipity quadrilateral, nine-node 
Lagrange quadrilateral, and six-node triangle) such that end nodes of the 
interface element correspond to corner nodes of the continuum elements, and 
midpoint nodes of the interface element correspond to midpoint nodes of the 
continuum elements. 

Geometric Mapping 
The global, or physical, coordinates of the element are given parametri-

cally in terms of the reference geometry shown in Fig. 2(b) and the reference 
coordinate ij by the mapping 

x = Qtl,N2,N3)\ x2 = NX (Ha) 

y = (NUN2,N3)ly2\ = NY 

where the shape functions N are given by 

N = 
«6 - 1) 

-(4 + 1)(£ - 1): 
«e +1) 

(nb) 

(12) 

Since the two contact surfaces are assumed to be initially coincident, the 
spatial coordinates of only points one through three are necessary to define 
the shape of the element. The slope of the element, s, at any point is given 
by 
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dy 
dy di N,fY 

s = JL = ^ i = _ l l _ (13) 
ax ax N,4X 

where N,5 = d/d^N. The tangent and normal unit vectors along the contact 
surface shown in Fig. 2(a) are given in terms of the slope by 

1 = 4 ^ = * = (~A + h (14) 
Vi+72 vT+7 

where i and j = unit vectors in the global x and y directions, respectively. 
For future use, vector scalar products between t, n, and global vectors i, 
j are 

1 
l • t = cos 6 = —, i • n = -sin 0 (15a) 

VTT7 

j • t = sin 6 = — j • n = cos 9 (15b) 
Vl + s2 

The increment of arc length dt is related to the increment of reference 
length dt, by 

dt = Jdi (16) 

where the Jacobian is given by 

7 = * \ \ ( » \ ^ (17) 
yd& \dU J 

Combining Eqs. 11a, lib, and 17 yields 

/ = (XX«N,6X + YrN^N,6Y)1/2 (18) 

which is easy to evaluate for specified £ given X and Y. 

Kinematics 

Eqs. 1 and 2 can be rewritten as 

gt = (uS- «£)M + («£ - <) j - t (19a) 

8n = («? - 4)1 • n + (i4 - i4)} • n (19b) 

Combining Eqs. 15a, 15b, 19a, and 19b provides 

8t) = T(«J,«?,itf,«Jf " (20) 
W \ 

where 

T _ j-cos 8 cos 6 -sin 8 sin e\ 
\ sin 8 -sin 8 -cos 8 cos 8/ 

The finite-element-displacement interpolation is 
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i4 = (N^Ni.N^l dx2 

\dX3/ 

<dx6 , 
«? = (Ni,N2,N3)\ dx5 

\dxt,i 

(22) 

where the shape functions are the same as those used for the geometric map
ping and are given by Eq. 12. Expressions for u^, and «f are identical to Eq, 
22 except that x is replaced by y. Collectively, the displacement interpolation 
is written as 

{i4,i4,i4yyf = M D . 

where 

M = 

D = (dxUdyUdx2,dy2,...,dx6,dy6)
T . . 

Combining Eqs. 20 and 23 gives 

iVi 
0 
0 
0 

0 
0 

JVi 
0 

N2 

0 
0 
0 

0 
0 

N2 

0 

N3 

0 
0 
0 

0 
0 

^ 3 

0 

0 

N3 

0 
0 

0 
0 
0 

N3 

0 

N2 

0 
0 

0 
0 
0 

N2 

0 

Ni 
0 
0 

o" 
0 
0 

yvj 

ft = g = BD 

(23) 

(24) 

(25) 

(26) 

where B = T M is analogous to the strain-displacement matrix used in the 
formulation of continuum finite elements except that it does not involve dif
ferential operators applied to shape functions. 

Energy Balance 
The work of the equivalent nodal forces must be equal to the work of the 

surface-stress distribution for an arbitrary displacement increment 

dDTFJ = dgTajdt (27) 

where d = an increment; / = the element's arc length; j = pseudotime; and 
the nodal forces are 

F = (fxl>fyltfx2tfy2> • • • ifxijyb) (28) 

Combining Eqs, 26 and 27, using o J = a'~l + da, and noting the arbi
trariness of df) yields 

•j = Rr<W-» B'(<r; + da)dt (29) 

Noting that FJ ' = j ' 0 B r a ; xdt and combining with Eq. 16, the above equa
tion becomes 

(30) F = F J- ' + WdaJdt, 
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which is an expression commonly derived and conveniently used in transient 
finite element analysis of material-nonlinear problems with explicit time in
tegration (Belytschko et al. 1976; Belytschko and Hughes 1983). With da 
= E^Bt/D where E'p is given by Eqs. 8a-c, Eq. 30 becomes 

FJ = F^ 1 + KepdB (31) 

where the tangent stiffness matrix is 

Kep = BTWpBJd£ (32) 

Eq. 32 is convenient for use in quasi-static finite element programs and in 
transient finite element programs that use implicit integration. 

As discussed earlier, the physics of frictional phenomena dictate that Eep, 
and hence Kep, usually are asymmetric. For explicit transient analysis, Eq. 
30 is usually used with element-by-element computations in which a global-
stiffness matrix is never formed or stored; hence, the lack of symmetry is 
of little consequence. The implications for quasi-static and implicit transient 
finite element analysis are more serious, although they are usually tolerable. 
Generally speaking, twice the amount of storage and about twice the amount 
of time for factorization are required for the tangent-stiffness matrix. To 
avoid the increased storage penalty, a symmetric equation-solution method 
for nonassociated plasticity such as proposed by Pande and Pietruszczak (1986) 
may be effective. 

As with most isoparametric elements, Eqs. 30 and 32 must be evaluated 
using numerical integration. For an undistorted element (i.e., a straight ele
ment with midside nodes equidistant between ends) and uniform material 
matrix, the integrand of Eqs. 30 and 32 is a quartic polynomial that is exactly 
integrated using a three-point Gauss quadrature formula. Arguments can be 
made for using a rule with more integration points (but not necessarily a 
higher degree of precision) so that the material matrix W can be sampled 
at more locations (Bathe 1982). However, using a similar finite element 
formulation, Kikuchi (1982) and Oden and Kikuchi (1982) advocate the use 
of reduced integration to avoid oscillating normal-stress distributions that 
result from full integration. A limited number of contact problems with the 
element reported herein have been solved by using two-, three-, and four-
point Gauss rules, and Simpson's rule; in all cases except the first, smooth 
and accurate stress distributions were obtained. However, the question of 
what integration scheme gives the best results and optimal rate of conver
gence is still an open question. 

The significant feature of this development is that small-displacement con
tact-friction problems, with their associated nonlinearities, can be treated as 
a material-nonlinear problem using existing finite-element-solution meth
odologies. In the examples that follow, standard techniques were used. 

NUMERICAL RESULTS 

Three examples illustrating the performance of the constitutive law and 
finite element for dilatant contact problems are considered. The first two 
examples are numerical simulations of laboratory direct-shear tests on ini
tially fully mated rock joints. The third example considers the problem of 
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FIG. 3. Model and Mesh for the First Example: (a) Geometry of Rock Joint in 
Laboratory Direct-Shear Test with Constrained Dilation; and (b) Finite Element 
Model 

determining the mixed-mode stress-intensity factors for a rough and tortuous 
crack subjected to a far-field shear stress. In all of the examples, standard 
incremental-solution procedures were used. In the first and second examples, 
incremental displacements were prescribed, and in the third example, incre
mental tractions were prescribed. A Gauss elimination equation solver for 
asymmetric matrices was used. For determination of the interface-element-
stiffness matrices, W was computed using the state of stress from the pre
vious increment, and no iterations were performed within an increment to 
update the state of stress. Although this method for integration of the con
stitutive law is primitive, it was nevertheless satisfactory for the examples 
considered here. For general applications, more accurate and robust inte
gration methods such as those reported in Ortiz and Popov (1985) are rec
ommended. Interface elements were integrated using a three-point Gauss rule, 
and at integration points in which tension was detected (o-„ > 0), Eep was 
taken as null. The solutions were relatively insensitive to the number of 
increments (except for the second example, where the onset of softening 
behavior was sensitive to the number of steps). The first two examples were 
repeated with 25, 50, and 100 incremental steps; results shown are for 100 
steps. The third example used 45 incremental steps. 

Example 1: Constrained Dilation Direct-Shear Test 
Fig. 3(a) shows a model of a direct-shear test for an initially fully mated 

rock joint with asperity surfaces oriented at 10° with respect to the horizon
tal. The finite element discretization is shown in Fig. 3(b). The upper and 
lower plates, which are modeled using 10 eight-node quadrilateral (quadratic 
displacement) isoparametric elements, are separated by five interface ele-
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ments. The bottom plate of rock is fixed, and the upper plate, after being 
compressed by an amount A sufficient to produce an initial compressive stress 
CT„ = - 5 MPa, is permitted horizontal motion only. The physical parameters 
employed in the simulation are realistic for hard rock and are as follows: 
For the interface E„ = 5 GN/m3; Em = 10 GN/m3; a = 10°; (JL = 0.5; and 
c = 0.1 cm2/joule. For the upper and lower plates of rock, Young's modulus 
E = 10 GPa; and Poisson's ratio v = 0.3. Since the intact rock material is 
much stiffer than the deformable joint, dilatancy during tangential sliding is 
almost completely constrained, i.e., dg„ = 0, and the phenomenon of di
latancy manifests itself through increasing compressive stresses in the pres
ence of asperity degradation according to Eq. 10. 

The loading consists of a prescribed displacement history of the top sur
face of the upper plate of rock. The average tangential stress and average 
normal stress at the interface resulting from this motion is shown in Fig. 
4(a) and the average degradation of the asperity-surface angle is shown in 
Fig. 4(b). Although they are not presented here, the numerical results ob
tained in this simulation indicate that except near the ends of the interface, 
the average values of the stresses and displacements differ only slightly from 
the local values. Also shown in Figs. 4(a) and 4(b) are the results obtained 
by directly evaluating Eq. 7 with the constraint g„ - -A. While corrobor
ating quantitative experimental data are not available for this simulation, the 
results show good qualitative agreement with real joint behavior (Goodman 
1976) where the normal and tangential stresses increase with increasing tan
gential displacement as a result of the boundary-condition restraining dila
tion. Furthermore, the rates of increase become smaller at large displace
ments because of the asperity degradation. 

Example 2: Unconstrained Dilation Direct-Shear Test 
In this example a simulation is performed of a laboratory direct-shear test 

at constant compressive stress reported by Bandis et al. (1981). The ge
ometry of the specimen and model is the same as that in the first example, 
Figs. 3(a) and 3(b), except that the boundary condition along the top surface 
of the upper plate of rock consists of a uniform compressive load of (o-„)0 
= — 90 kPa. The bottom plate of rock is fixed and the shear-displacement 
history of the upper plate is prescribed. The physical parameters used sim
ulate the soft model material reported in Bandis et al. (1981) and are as 
follows: E„ = 0.08 GN/m3; E„„ = 1.0 GN/m3; a = 16°; |x = 0.625; and 
c = 10 cm2/joule. For the interface, and for the intact rock, E = 1 GPa; 
and v = 0.3. 

The average stresses as functions of tangential displacement are shown in 
Fig. 5(a), and the degradation of the asperities at various locations along the 
interface is shown in Fig. 5(b). Because the upper plate is not restrained in 
the vertical direction, a pronounced bending effect exists which leads to a 
nonuniform distribution of stresses where the left side of the interface ex
periences less compression than the right side, and hence less deterioration 
of the asperities. Moreover, at large tangential displacements, the numerical 
results indicate that separation at the left side of the interface occurred. Also 
shown in these figures are the results obtained by directly using Eq. 7. Dis
crepancies arise because the finite element results are for a finite-size spec
imen and include variations of stress and damage along the interface due to 
bending, while the direct use of Eq. 7 assumes a uniform state of stress 
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(i.e., no rotation of the upper plate of material) over the contact length. 
The results of this simulation are in good quantitative agreement with those 

obtained from the experiments conducted by Bandis et al. (1981) and many 
others. Plesha (1987) provides a detailed comparison of the model and the 
experiment. 

Example 3: Rough and Tortuous Crack in a Shear Field 
This last example considers the plane-strain problem of the rough and 

tortuous crack shown in Fig. 6 subjected to far-field shear stresses. The finite 
element model of the elastic medium consists of six-node triangular (qua
dratic displacements) isoparametric elements surrounding the crack tip, and 
quadrilateral elements away from the crack tip. In this simulation the midside 
nodes of the triangular elements at the crack tip were moved to the quarter 
point to simulate the square root singularity in stresses at the crack tip. For 
the interface finite element closest to each crack tip, the midpoint nodes 
[i.e., generic nodes 2 and 5 in Fig. 2(a)] were also moved to the quarter 
point. This causes the Jacobian, Eq. 18, to vanish at the crack tip. However, 
this is of little consequence since the relative surface deformations, and hence 
the contact stresses, also vanish at the crack tip independently of the Jaco-
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FIG. 7. Geometry of Displacements near Crack Tip for Computing Stress Inten
sity Factors (Shih et al. 1976) 

bian. In fact, regardless of the criteria that determine the onset of sliding, 
which tends to ameliorate high-contact stresses, the interface element does 
not possess any traction singularities, regardless of the location of the mid
point nodes. Thus, the stress singularity at the crack tip is modeled exclu
sively by the quarter-point continuum elements. The stress-intensity factors 
Ki and Kn that characterize the stress and displacement fields in the vicinity 
of the crack tip are related to the displacements of element nodes for plane 
strain by 

* i = 

KB = 

2<7T 

L 8(1 - v2) 
[4(l>s - V'D) + V'E - V'c] 

2TT 

L 8(1 - v2) 
[4(UB - u'D) + u'E - u'd 

(33a) 

(336) 

where L = the length of the singularity element along the direction of the 
crack surface; and the primes indicate that the global-coordinate nodal dis
placements have been transformed to the crack-tip coordinate system shown 
in Fig. 7 (Shih et al. 1976). 

In the numerical calculations the physical parameters used for the intact 
material were E = 30 x 106 psi; v =• 0.3; and for the crack surfaces, E„ = 
E„„ = 1 X 10' psi/in.; |x = 0.2; and c = 0. Fig. 8 shows the stress-intensity 
factors as functions of far-field shear stress for several values of asperity 

2664 
Downloaded 16 Oct 2009 to 128.101.119.5. Redistribution subject to ASCE license or copyright; see http://pubs.asce.org/copyright



4.0 

-—v. 

1 -
•o 2-5 

. * , 2.0 

kf 1'5 

* - 1 - 0 

0.5 

- _ 

-
-

j , 

/ i 

• finite element 

. . ., . 

J' a = 0° 

1 1 

yK% 

/ " 

£ 

%„{x 10 ksi) 

_ 

-

-

a =25° 

" i 

- finite element 

i i 

x^K n 

^ 

i 

toofr 10 ksi) 

4.0 

3 5 

3.0 

2.5 

2.0 

1.5 

1.0 

0 5 

C 

4.0 

ft 5 

3.0 

2.5 

2.0 

1.5 

1.0 

0.5 

0 

-

-

-
-
-

-
-

0 

0.5 

a = 

l 
0.5 

* a =10° 

l i 

1.0 1.5 

xM(x 10 ksi) 

= 40° ^ 

^ s ^ ^ ^ ' ' 

i i 
1.0 1.5 

-^ (x 10 ksi) 

AH 

i 
2.0 

^ • K I 

<^-H 

1 
2.0 

FIG. 8. Finite Element Results for Third Example; Stress Intensities versus Far-
Field Shear Stress for Various Values of Asperity Orientation, a; Also Shown Are 
Results Obtained Semianalytically in Ballarini and Plesha (1987) 

angle. For a = 0, dilation is not present and hence the loading is strictly 
mode II (Kt = 0). As a increases, the resistance to tangential sliding in
creases thus reducing A^, and because of dilatancy, Kt becomes nonzero. 

Also shown in these figures are the results for the same problem but solved 
by a semianalytical method in Ballarini and Plesha (1987) using the consti
tutive law reported here in conjunction with nonlinear singular integral equa
tions. The agreement is quite good. 

CONCLUSIONS 

Presentation of a comprehensive constitutive law and a suitable finite ele
ment implementation for dilatant contact-friction problems has been pre
sented. Surface deformation in the normal and tangential directions are de
composed into elastic and plastic components. The resultant normal and 
tangential stresses are determined from the deformations through a general 
elastoplastic-type material matrix that accounts for several important physical 
features of the contact problem, namely surface roughness, relative mating 
of the contact surfaces, and an appropriate surface-friction law. Implemen-
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tation in finite-element-analysis software conforms with the numerical pro
cedures and program architecture that is commonly used for general mate
rial-nonlinear problems. 
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APPENDIX II. NOTATION 

The following symbols are used in this paper: 

B 

c 
D 
E 

E0,E 
Ee,f,Eep 

F 
F 
G 

at»<*>n* & 

H 
I 
J 

w Ki>Ku 

I 
M,N 

s 
T 

t,ii 

— 

= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 

matrix relating interface displacements to nodal displace
ments; 
surface degradation parameter; 
vector of nodal displacements; 
Young's modulus; 
interface elastic stiffnesses; 
elastic-plastic interface stiffnesses; 
slip function; 
vector of nodal forces; 
slip potential; 
relative displacements; 
hardening/softening parameter; 
identity matrix; 
Jacobian; 
elastic-plastic tangent stiffness matrix; 
mode I and mode II stress intensity factors; 
physical length of interface finite element; 
matrices of shape functions; 
slope of finite element; 
transformation matrix; 
vectors in tangent and normal directions of finite element; 
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ux,uy,u = displacements; 
Wp = sliding work; 

X,Y = vectors containing finite element nodal coordinates; 
ak = orientations of asperity surfaces; 
0 = orientation of finite element; 
A. = slip multiplier; 
|x = friction coefficient; 
v = Poisson's ratio; 
£ = reference coordinate for finite element; and 

a•„cr,!,o• = surface stresses. 
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