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Abstract. A model is presented which can be used to incorporate the effects of friction and tortuosity along crack 
surfaces through a constitutive law applied to the interface between opposing crack surfaces. The problem of a 
crack with a saw-tooth surface in an infinite medium subjected to a far-field shear stress is solved and the ratios 
of mode I stress intensity to mode II stress intensity are calculated fo r various coefficients of friction and material 
properties. The results show that tortuosity and friction lead to an increase in fracture loads and alter the direction 
of crack propagation. 

I. Introduction 

The essential ingredients which enter a Linear Elastic Fracture Mechanics (LEFM) analysis 
are stress intensity factors and fracture toughness. These quantities can be used to predict 
fracture initiation loads as well as the direction of crack propagation. Stress intensity factors 
have been obtained for a large variety of loadings and specimen geometries. In most of  these 
analyses cracks are modeled as discontinuities possessing smooth and frictionless surfaces. 
For mode I type loadings the assumption that the surfaces of a crack are smooth and 
frictionless is quite satisfactory, but for mode II loadings or mixed mode loadings this 
assumption may lead to erroneous results if the crack surfaces are tortuous and/or offer 
frictional resistance to sliding. For such problems the effects of  tortuosity and friction must 
be accounted for in order to capture the physics of the phenomena and to correctly assess 
the stress intensity factors. This can be seen by considering the crack shown in Fig. la. Let 
us assume that this crack was modeled as being smooth and frictionless. If a far-field shear 
stress (an apparent mode II loading) is applied to this crack, the model would predict a zero 
mode I stress intensity factor. In reality, the mode I stress intensity factor is not zero, since 
the displacement of a point along the surface of the crack has both a normal and a tangential 
component. The tangential component will result in a mode II stress intensity, while the 
normal component will result in a mode I stress intensity. 

Cracks of the type shown in Fig. la have been observed in many polycrystalline and 
aggregate materials. Some examples are metal, ceramic, concrete and brittle geo- and 
bio-materials such as rock and bone, respectively. Methods of analysis for mixed mode 
fracture due to tortuosity are not well-developed. Clech et al. [1] have observed and analyzed 
tortuous cracks propagating along the interface between cancellous bone and the cement which 
binds an artificial joint to it. Their analysis considered failure under mode I loading, where 
the tortuosity was modeled as a no-slip interface. The question arises as to what would be 
the most efficient way to model the problem if the structure is subjected to mixed mode loading. 
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Fig. 1. Problem configuration (a) globally smooth, but microscopically rough crack in an infinite medium, (b) 
mathematical idealization. 

One approach would be to model the geometry of the crack surfaces explicitly in a finite 
element (or boundary element) mesh, assign a coefficient of friction to the crack surfaces, and 
to solve the nonlinear stress analysis problem. This technique is obviously cumbersome. 
Concrete is another material for which friction and tortuosity play a significant role during 
crack propagation [2-5]. Recently, Ingraffea et al. [5], using the finite element method, have 
modeled frictional interlock effects in concrete as distributions of normal and shear stresses 
along the interface between opposing crack surfaces. Their model, however, does not 
account for the previously discussed coupling between crack sliding displacements and crack 
opening displacements. Riggs and Powell present a rough crack model for the analysis of 
concrete in [6]. This model possesses many desirable features compared to previous attempts 
at rough crack modeling but is complex and has a number of empirical constants that require 
specification. 

In this paper a model is presented which can be used to characterize the effects of friction 
and tortuosity along crack surfaces in an efficient and realistic manner. In this model the 
crack surfaces are assumed to be globally smooth, and the roughness and friction are 
incorporated through a constitutive law at the interface between opposing crack surfaces. 
This constitutive law contains implicitly the coupling between the tangential and normal 
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components of the displacement of a point on the interface (this phenomenon is referred to 
as dilatancy), and can therefore give rise to mode I stress intensity factors even when the 
applied loading is apparently mode II. 

2. Constitutive law 

In this section we review the development of analytic relations between increments of crack 
surface traction and crack sliding and opening displacements. This theory was fully 
developed in [7] and is analogous to the theory of continuum elasto-plasticity. The surface 
between two bodies coming into contact is assumed to be globally smooth as shown in 
Fig. 2a. Attention is focused on a typical pair of initially adjacent points on the contact 
surface as shown in Fig. 2b; these points are shown separated for clarity and the roughness 
that the surfaces have is not shown and will be considered subsequently. 

The traction that is supported by the crack surface at the contact point in question has 
tangential and normal components which are denoted by a, and a n, respectively. The crack 
sliding and opening displacements at the contact point pair are denoted by gt and gn, 
respectively, where 

g,  - -  u + - u ;  (1)  

g .  = u )  - u>:. (2)  

In (1) and (2), u~ and u> are horizontal and vertical displacements (i.e., displacements 
tangential and normal to the global crack surface), respectively, while superscripts + and 
- denote points on the contact surface associated with the upper and lower bodies of 
material, respectively. 

It is assumed that the relative displacements of the crack surface are additively composed 
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Fig. 2. Two-dimensional contact problem (a) globally smooth contact surface, (b) local tangent-normal coordinate 
system at a contact point pair (surfaces are shown separated for clarity and roughness is not shown), (c) idealization 
of roughness. 
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of reversible (elastic) and irreversible (plastic) parts 

g, = ~ + ~ i = t ,n  (3) 

where superscripts e and p denote the elastic and plastic parts of the deformation. In (3), the 
plastic part represents the permanent deformation due to sliding (and perhaps damage), 
which has components in the normal direction (due to dilatancy) as well as in the tangential 
direction. The elastic part represents deformations that occur independently of sliding such 
as, for example, presliding deformability. Such recoverable deformations have been observed 
in a large variety of experiments between materials such as metals, ceramics and rocks [8-10]. 
The stress that the interface supports is assumed to be related to the elastic part of  (3) by 

where the summation convention is applied to repeated indices and E,j are the interface 
stiffnesses, the determination of which will be addressed shortly. 

To prescribe a method for determining the plastic displacements, it is necessary to assume 
that 

(i) a scalar valued slip function F = F ( G ,  an, • • .) can be defined such that F < 0 corres- 
ponds to presliding conditions, F = 0 corresponds to sliding and F > 0 is not possible, 
and 

(ii) there exists a linear relationship between increments of traction and plastic deformation. 

Under these assumptions, it can be shown [11] that 

0 if F <  0 o r d F <  0 

~G (5) 
d~  = 2 _ - - - i f F = d F = 0  

where G is the slip potential whose gradient gives the direction of the plastic deformation and 
2 is a non-negative scalar that gives its magnitude. Expressions for F and G can be obtained 
by considering the idealized roughness shown in Fig. 2c. If the friction on the active asperity 
surface is governed by Coulomb's law, then lal[ ~ -#a2  where # is the coefficient of 
friction, rr 1 and a 2 are the tangential and normal stresses on the asperity surface and the 
convention that compressive stresses are negative is employed. By stress transformation, this 
equation can be expressed in terms of the global stresses a, and G [7]. This procedure leads 
to the following forms for the slip function and slip potential 

F = IG sin ~k + a, cos ~kl + /~(G cos ~k -- G sin ~k) (6) 

G = IG sin ~k + t7, COS ~k[ (7) 

where k = R or L depending upon which asperity surface is active (see Fig. 2c). 
Combining (3)-(5) leads to the constitutive relation [7] 

-- dgj (8) 
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where 

Ef p = E i j  if F <  0 o r d F <  0 

o r  

(9) 

0F 0G 

OffpEiqEpjo(Tq-- i f F  = dF = 0 (10) 
EfP = E i i -  ~F OG 

O% 

and H is a hardening or softening parameter that can account for the damage of crack 
surface roughness. In this paper we take H equal to zero. 

The following remarks about the constitutive law should be noted: 

1. Equation (8) is an explicit relation between increments of crack surface tractions and the 
resulting crack sliding and opening displacements. Unlike some other theories for dilatant 
crack surface problems [12] in which (8) is postulated at the outset and the Ef p (particularly 
the E,e, p and E~, p) are determined either experimentally or according to some ad hoc rule, this 
theory provides an explicit and unambiguous method for determining Ef p . 

2. The theory presented in this section is essentially a "continuum" theory of friction except 
that we refer to continuum in the sense of continuous area rather than continuous volume. 
The traction components o, and % entering into the theory are the average or macroscopic 
stresses that the crack surface supports rather than the exact stresses. Furthermore, the 
global crack surface is smooth and the effects of  roughness (e.g., dilatancy) are built into the 
slip rule and slip potential. 

3. The use of the decomposition in (3) in conjunction with (4) can be considered a relaxation 
of compatibility of crack surface displacements consisting of impenetrability and presliding 
stick. In order to render the violation of  compatibility insignificant, it is necessary to make 
the interface stiffnesses E o. relatively large compared to the stiffness of the adjacent medium. 
In this investigation, we take E,j = P6u, where 6ij is the Kronecker delta and P is a penalty 
number. The penalty number has no physical significance and is chosen based on com- 
putational convenience. Values of P that are two to four orders of magnitude greater 
than the shear modulus of the adjacent medium were used and provided solutions in which 
incompatibilities were extremely small. Larger values of P sometimes gave numerical 
difficulties due to ill-conditioning while smaller values of P gave slightly excessive incom- 
patibility. 

4. It is assumed in this research that the amount of tangential sliding is small enough so that 
the asperity peak of one surface does not o.verride that of  the other surface. For situations 
in which this is not the case, the theory can be supplemented with an additional set of 
conditions as discussed in [7]. 
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3. C o m p l i a n e e  m a t r i x  

The problem which will be solved to demonstrate the significance of friction and tortu- 
osity is shown in Fig. 1. The singular integral equations that govern this problem 
are 

2G f, f ( t )  dt 
n(K + 1)~-~ t ~ x - ~ + cr, - 1  < x < 1 (11) 

2G f~ e(t) dt 
- a .  - 1  < x < 1 (12)  

/17(K -'}- l)  J-I  7 : X 

where z~ is the far-field shear stress, a, and a, are the shear and normal stresses applied to 
the crack surfaces, G is the shear modulus, x = 3 - 4v for plane strain, v being Poisson's 
ratio, and f ( t )  and e(t) are the dislocation densities, which are related to the crack sliding 
and crack opening displacements by 

u+~ - u£ = I~f( t )  dt = gt (13) 

u; - Uy = I~ e(t) dt = g,. (14) 

Because the crack is closed at the endpoints the dislocation densities must satisfy the 
following conditions 

f l_lf(t) d t =  II_l e(t) dt = 0. (15) 

Since a, and % depend on the relative displacements between the crack surfaces, the singular 
integral equations are nonlinear. In order to solve these equations efficiently, a compliance 
matrix will be developed that relates the stresses at the collocation points arising from the 
applied loads to the values of the opening (or sliding) of the crack at the integration points. 
The method relies on the numerical procedure developed by Gerasoulis [13], which is used 
to reduce the integral equations to a system of algebraic equations for unknown values of 
e(t) andf ( t )  at discrete points in the interval [ -  1, 1]. With the aid of the compliance matrix, 
it will be possible to obtain the crack opening and crack sliding displacements for a 
given stress distribution on the crack surfaces by solving simultaneous algebraic equations 
and hence, the need to repeatedly solve the integral equations and integrate the dislo- 
cation densities is eliminated. The procedure for obtaining the compliance matrix is 
described in detail in [14] and is only reviewed here. Following [13], f ( t )  and e(t) are 
expressed by 

f ( t )  = ~b(t)(1 - t2) -1/2 e(t) = ~k(t)(1 - t2) -1/2 (16) 

and ~b(t) and qJ(t) are approximated as piecewise quadratic on the interval [ -  1, 1]. The result 
is that the integral equations are reduced to a system of algebraic equations through the 
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quadrature formulas given in [13]. The results can be written symbolically as 

N 

c, ~, W,(Xk)(O(t,) = rE + a,(xk) k = 1, N -  1 (17) 
i = 1  

N 

Cl ~ W,(Xk)6(t,) = G(Xk) k = 1, N -  1 (18) 
i = 1  

N 

v,¢(t,) = 0 (19) 
i = l  

N 

y, v,~p(t,) = 0 (20 )  
i = 1  

where c~ = 2G/x(x + 1), N is the number of integration points, N - 1 is the number of 
collocation points, and the weights Wi(Xk) and vi, as well as the collocation points Xk and 
integration points ti are given in [ 13] (the locations of  the integration and collocation points 
are shown schematically in Fig. 3a). These equations can be written as 

c, Gik(9 i = L k (21) 

c, G,k 6, = Mk (22) 

where matrices [L] and [M] represent the nodal values of the stresses along the crack surfaces 
and the crack closure conditions. To obtain the compliance matrices for the crack the inverse 
of matrix [G] is obtained, and the product of  this matrix and (1 - F)-~/2 is integrated term 
by term to obtain a matrix [C] which will be called the compliance matrix for this particular 
geometry. This matrix will relate the values of  crack sliding displacements (or crack opening 
displacements) at the integration points to the values of the shear (or normal) stresses at the 

(A) 

(S) 

1 2 5 N-2 N-1 N 

1 2 N-2 N-1 

1 2 3 N-5 N-2 N-1 

1 2 N-2 N-1 

• INTEGRATION POINTS (POINTS OF SPECIFIED 
CRACK SURFACE RELATIVE DISPLACEMENT) 

* COLLOCATION POINTS (POINTS OF SPECIFIED 
CRACK SURFACE TRACTION) 

Fig. 3. Location of integration and collocation points (a) locations as obtained from [13], (b) modified locations 
proposed in Section 4. 
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collocation points, that is 

 ik(T  + = ( u ;  - u ;  ),, = (g,),, (23) 

= ( u ;  - u ;  ),, = (g . ) , ,  (24) 

where Cgk is a rectangular matrix with dimensions (N, N - 1). We wish to point out that 
because of the technique employed to determine the compliance matrix, the locations at 
which the crack opening and crack sliding displacements are determined (i.e., the integration 
points) are different from the locations of crack surface tractions (i.e., the collocation points). 
Furthermore, the number of displacement points is one greater than the number of stress 
points. In order to eliminate the computational difficulties associated with differing numbers 
of collocation and integration points, we present in the following section a method for 
rendering the compliance matrix square. 

The stress intensity factors are proportional to the values of the functions q~ and ~ at the 
endpoints [13] and can be obtained by premultiplying matrices [L] and [M] by the inverse 
of matrix [G]. The details of  the calculations can be found in [13] and [14]. We note that the 
compliance matrix for shear loading is the same as that for normal loading. This is because 
the Green's functions for the two problems are the same. 

4. Numerical solution 

Before writing (23) and (24) in matrix form, it is necessary to make the compliance matrix 
square. Because the number of integration points is odd [13], there is an integration point 
at the center of the crack. By eliminating the equation corresponding to this point from (23), 
the number of displacement points is reduced by one and the compliance matrix becomes 
square. Following this procedure the location of the displacement and stress points become 
as shown in Fig. 3b. The compliance matrix is now denoted by [C] and is given by 

{Cij if i < (N + 1)/2 

[C] = Cu = .~+,)J  i f /  ~> (N + 1)/2 
(25) 

where i, j = 1, 2, . . . , N - 1. The modified forms of (23) and (24) can now be written 
collectively in incremental form as 

C j da. 
(26) 

where 

{dg, } = [(dg, },, . . . . .  (dg, },N_,]T (27) 

{da,} = [(da,)., . . . . .  (da,)xN_~] r (28) 
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with similar definitions for {dg, } and {da, }. d%~ is a vector with N - 1 components ,  each 
equal to the increment in the applied loading. 

Although the number  of  displacement points and stress points are now the same, the 
locations of  these points are different as shown in Fig. 3b. The constitutive law given by (8), 
however, relates the crack surface stresses at a point to the displacements at the same point. 
The crack displacements at the stress points can be expressed in terms of  those at the 
integration points by interpolation. For  example, the relation between the crack sliding 
displacements at the stress points and the collocation points is given by 

{dg,}.,, = [T] {dg,},, (29) 

where the coefficients o f  [T] are zero except for 

~.i = Tii+l = 0.5 

T,., = 0.75 

T,.i+ I = 0.25 

T~i i = 0.25 

T,: = 0.75 

T,.i ~ = T,,i = 0.5 

when 1 ~< i < ( N -  1)/2 

w h e n / =  ( N -  1)/2 

when i = (N - 1)/2 

when i = (N + 1)/2 

when i = (N + 1)/2 

w h e n ( N  + 1)/2 < i~< N -  1. 

(30) 

Combining (8), (26) and (29) leads to 

(3l) 

which is a system of  simultaneous nonlinear algebraic equations to be solved for the 
incremental crack opening and sliding displacements. By taking small increments in far-field 
shear loading, good convergence was attained in the numerical work,  where {E ~p} was 
computed  at each step using the displacement-stress configuration from the previous step 
and treating (31) as linear within each load increment. 

5. Results 

The problem shown in Fig. 1 was solved for the various combinat ions of  material properties 
listed in Table 1. Figures 4-6 are plots o f  stress intensity factors as functions of  the far-field 

Table 1. 

Material K~, (ksi-in !2) E (ksi) v /x 

M50 Steel 18 30000 0.3 0.20 
Concrete 1 3000 0.2 0.50 
Sintered Silicon 4 59000 0.14 0.30 
Carbide Ceramic 
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Fig. 4. Stress intensity factors as functions of  applied 
loading (Steel). 
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Fig. 5. Stress intensity factors as functions of applied 
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Fig. 6. Stress intensity factors as functions o f  applied loading (Concrete). 

shear stress for several values of the uniform asperity angle ~. It can be seen from these 
figures that as a increases, K] increases, while K. decreases. The reason for this is that 
frictional resistance and the kinematic constraint provided by the jagged surfaces resist crack 
sliding displacements and therefore reduce KH. The dilatancy, on the other hand, produces 
a normal gap between the crack surfaces, therefore increasing K~. 

The curves in Figs. 4-6 have been marked at the values of zoo that result in crack 
initiation according to the maximum principal stress criterion [15], which postulates that 
crack growth will occur in a direction perpendicular to the maximum principal stress ap, 
when this value is equal to the value of  ap in an equivalent mode I case. The angle at which 
the crack will extend with respect to the horizontal is given by [15] 

(tan 0/2) = 0.25K]/Kn - 0.25(K2/K~II + 8) '/2 (32) 
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and the fracture criterion is 

Kl, = KI cos30/2 - 3K. cos20/2 sin 0/2 (33) 

where K~c is the fracture toughness. 
Figures 7-9 are plots of  the fracture stress for several materials as functions of  ~. The angle 

of  extension 0 is also shown on these figures. As seen from these curves, the effect of  
tortuosity and friction is to increase the fracture stress and to decrease the angle o f  extension. 
In order to separate the effects o f  friction from those of  tortuosity, the case o f  steel was 
analyzed for various coefficients of  friction. It can be seen from Fig. 7 that friction has a 
significant effect on the fracture stress. When ~ = 40 ° and/~ = 0.0, the increase in fracture 
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stress with respect to zero tortuosity is approximately 20 percent, while for/z = 0.2 this 
increase is 40 percent, and for/z = 0.5, it is approximately 90 percent. 

6. Discussion 

From the results obtained in this investigation, it can be concluded that friction and 
tortuosity have a significant effect on crack tip stress fields when a crack is subjected to mixed 
mode loading. In the example problems solved in this paper the increase in fracture stress 
(as predicted from the maximum principal stress theory) with respect to zero friction and 
tortuosity ranged from 3 percent to 100 percent. The crack extension angles as predicted 
from the maximum principal stress theory were also affected by the mode I stress intensity 
which arises from the dilatancy of the interface between opposing crack surfaces. 

Although the use of the compliance matrix developed in Section 3 renders the numeri- 
cal problem very attractive, it is limited to simple geometries. The effects of tortuosity 
and friction in problems with arbitrary geometries can be conveniently analyzed using 
the constitutive law in conjunction with the finite element method or boundary element 
method. 
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R~sum~. On pr6sente un mod61e utilisable pour tenir compte des effets de friction et de la rugosit6 sur les surfaces 
d'une fissure, en appliquant une loi constitutive fi l 'interface entre les surfaces oppos6es d'une fissure. On r6soud 
le probl6me d'une fissure pr6sentant une surface en dents de scie, dans un milieu infini soumis fi un champ de 
contrainte de cisaillement appliqu6 ~ une certaine distance. On calcule les rapports de l'intensit6 de contraintes 
relative au mode I sur celle relative au mode II, pour divers coefficients de friction et diverses propri6tes de 
mat6riau. Les r6sultats montrent  que la rugosit6 et la friction conduisent ~i un accroissement de la charge 
correspondant ft. la rupture, et ~ une alt6ration de la direction de propagation de la fissure. 


