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Abstract The interaction between a straight crack
and a circular inhomogeneity with interface stiffness
and energy is considered. The Gurtin and Murdoch
model is adopted, wherein the interface between the
inhomogeneity and the matrix is regarded as a mate-
rial surface that possesses its own mechanical proper-
ties and surface tension. The elastostatics problem is
decomposed into two complimentary problems for (1)
a circular disk with unknown distributions of traction
and displacements along its boundary and (2) a loaded
isotropic plane containing a circular hole with unknown
distributions of traction and displacements along its
boundary. The unknown distributions are determined
through the application of the constitutive relations at
the material surface. For selected values of the dimen-
sionless parameters that quantify the geometry, mate-
rial properties and applied loading, the stress field,
stress intensity factors and energy release rates are
calculated using a complex boundary integral equa-
tion approach. Particular attention is paid to crack-tip
shielding and anti-shielding that develops as a result
of the stresses introduced by the material surface. An
illustrative example involving a perforated plate loaded
in tension suggests that the material surface produces
a modest level of expected effective toughening.
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1 Introduction

This paper presents the results of a two-dimensional
elastostatics analysis of the effects of surface stress
on the interaction between a matrix crack and a circu-
lar inhomogeneity. The surface stress is accounted for
through the Gurtin and Murdoch model of a material
surface (Gurtin and Murdoch 1975, 1978), wherein the
interface between the matrix and the inhomogeneity is
regarded as a material surface possessing its own elas-
ticity and surface tension. Particular attention is paid to
the potential reduction in flaw sensitivity of the matrix
resulting from the residual stresses produced just out-
side the inhomogeneity by the interface tension and
elasticity.

The Gurtin and Murdoch model has received ren-
ewed attention because of the potential influence of sur-
face effects on the mechanical properties and response
of nanoscale structures that involve relatively large sur-
face-to-volume ratios. Most applications of the model
to date involve analyses of the stress fields produced
by isolated spherical or cylindrical inhomogeneities
embedded in an infinite or semi-infinite matrix (Miller
and Shenoy 2000; Sharma and Ganti 2002, 2004;
Sharma et al. 2003; Yang 2004; Duan et al. 2005a,b,c,
2006, 2007; He and Li 2006; Huang and Wang 2006;
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Lim et al. 2006; Mi and Kouris 2006; Chen et al.
2007; Zhang and Wang 2007; Tian and Rajapakse
2007a,b). Most of the papers, including Tian and Rajap-
akse (2007c) two-dimensional finite element method
formulation for the analysis of multiple interacting
anisotropic inhomogeneities, invoke simplifications of
Gurtin and Murdoch’s constitutive equations made by
neglecting a whole or a part of the term associated with
the gradient of surface displacement. Mogilevskaya
et al. (2008) provided a basis for critical review of the
significance to inhomogeneity problems of such sim-
plifications by deriving the precise component forms of
Gurtin and Murdoch’s three-dimensional equations for
interfaces of arbitrary shape, and applying the complete
model to the two-dimensional problem of multiple,
arbitrarily located, interacting circular inhomogenei-
ties. They showed that the stress and strain fields in the
vicinity of the interface are sensitive to the choice of
the interface constitutive law.

Application of simplified forms of the Gurtin and
Murdoch model to problems involving point defects
and cracks include the analysis of interaction of an edge
dislocation with a single inhomogeneity (Fang and Liu
2006; Fang et al. 2007), and the configurational equi-
librium of isolated cracks and voids (Rajapakse 1975;
Thomson et al. 1986; Chuang 1987; Wu 1999; Wu
and Wang 2001). No results are available, however, for
the interaction of a crack and an inhomogeneity. This
open problem is worth exploring because the surface
tension and surface elasticity produce residual stress
fields in the vicinity of the material surface that can
either suppress or enhance crack initiation and propa-
gation within the matrix. He and Li’s closed-form solu-
tion for the stress field produced by a spherical void in
an infinite matrix demonstrated that significant tensile
and compressive stresses develop just outside the void.
Because the Gurtin and Murdoch model introduces
an intrinsic length scale, the magnitude of the resid-
ual stresses increase with decreasing hole-size. For the
representative parameters considered in their paper, the
residual stress can approach the better part of a GPa.

This paper explores the expected amount of shield-
ing/antishielding induced by the residual stress field
on the tips of a matrix crack. The configuration con-
sidered involves a straight crack interacting with a cir-
cular inhomogeneity (Fig. 1). The surface effects are
included only on the interface between the circular
inhomogeneity and the matrix. Even though it is clear
that those effects are also present on the surface of the

Fig. 1 Problem formulation

crack, their precise analysis is still elusive in spite of
several past contributions in that area. Various possible
modeling approaches have been discussed, for exam-
ple, by Oh et al. (2006) but no systematic and widely
accepted methodology of solving the problem has
emerged. There are approximate methods of solving
the problem of a crack with surface effects, such a very
skillful approach presented by Wu (1999). However, his
approach is based either on the overall energy consid-
erations or includes surface effects approximately, by
considering geometry of the deformed crack surfaces
without those effects (acknowledging the difficulties
with the systematic solution of the problem). Further-
more, his approach provides only the modifications to
the stress intensity factors, which is not sufficient in
the analysis of the complete boundary value problem,
as done in this work. Thus, we have decided to consider
a crack without surface effects in the believe that those
effects (whatever they are) will be superposed with the
effects that we discuss herein.

The formulation involves the superposition of two
problems; (1) a circular disk with arbitrary traction and
displacement conditions along its boundary (Fig. 2a),
and (2) a loaded infinite matrix containing a crack
interacting with a circular hole with arbitrary trac-
tion and displacement boundary conditions along its
surface (Fig. 2b). The crack–inhomogeneity interac-
tion is achieved by enforcing continuity of displace-
ments along the interface and the stress jumps across
the interface associated with the Gurtin and Murdoch
model. Sections 2, 3 and 4 summarize the problem
statement, governing equations, and numerical solu-
tion (with details provided in the Appendix). These are
followed by illustrative examples in Sect. 5 and conclu-
sions in Sect. 6.
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Interaction between a crack and a circular inhomogeneity 193

(a) (b)

Fig. 2 a A circular disc. b A circular hole and a crack in an
infinite plane

2 Problem statement

Consider (Fig. 1) the two-dimensional, plane strain
problem of an infinite, isotropic elastic plane containing
a perfectly bonded circular, isotropic elastic inhomo-
geneity interacting with a straight crack. The crack is
arbitrarily located outside of the region defined by the
inhomogeneity but does not intersect its boundary. The
elastic properties of the inhomogeneity are quantified
through the shear modulus µ1 and Poisson’s ratios ν1

while those of the plane are µ, and ν. Let R and L
denote the radius and boundary of the inhomogeneity,
and z0 = z01+i z02 (i = √−1) the complex coordinate
of its center. We suppose that a = a1+ia2, b = b1+ib2

are the complex coordinates of the beginning and end
points of the crack with the boundary Lc. The inter-
face between the inhomogeneity and the plane (matrix)
is modeled as a material surface of vanishing thick-
ness adhering to the bulk material without slipping.
This surface is characterized by elastic constants (shear
moduli µ0 and Lamé parameters λ0) and the residual
surface tension σ0. The crack is either traction free or
loaded with the prescribed pressure σ c(t), t ∈ Lc. The
applied loading consists of a biaxial stress field at infin-
ity (σ∞

xx , σ
∞
yy , σ

∞
xy ). The distributions of stresses, dis-

placements, and strains in the composite and the stress
intensity factors at the crack tips are to be determined.

3 Governing equations

3.1 Boundary integral equations

The problem can be decomposed into two problems: the
first is an elastic disc whose boundary is subjected to an
unknown distributions of tractions and displacements
and the second is an isotropic elastic plane contain-
ing a crack and a hole whose boundary is subjected to

unknown distributions of tractions and displacements.
The two problems are interrelated through the Gur-
tin and Murdoch interface boundary conditions (Gurtin
and Murdoch 1975).

Each elastostatic problem is formulated by using
the direct boundary integral method, where all the
elastic fields are represented in integral form via the
Somigliana identities. The solution relies on the com-
plex variables boundary element method described
in Mogilevskaya and Linkov (1998), Linkov and
Mogilevskaya (1998) and Linkov (2002).

The system of complex boundary integral equations
for the problem includes the following:

(i) Somigliana’s traction identity at the boundary
of the disc (Linkov and Mogilevskaya 1998;
Linkov 2002)

2π i
κ1 + 1

4µ1
σ inh(t)

= 2
∫

L

uinh(τ )

(τ − t)2
dτ

−
∫

L

uinh(τ )
∂

∂t
d K1(τ, t)

−
∫

L

uinh(τ )
∂

∂t
d K2(τ, t)

+1 − κ1

2µ1

∫

L

σ inh(τ )

τ − t
dτ

− κ1

2µ1

∫

L

σ inh(τ )
∂

∂t
K1(τ, t)dτ

+ 1

2µ1

∫

Lk

σ inh(τ )
∂

∂t
K2(τ, t)d τ̄ (1)

where the superscript inh indicates the elastic
fields for the inhomogeneity; t = x + iy is com-
plex coordinate of a point (x, y) on the contour
L; κ1 = 3 − 4ν1; σ inh(t) = σ inh

n (t) + iσ inh
� (t)

are the complex tractions at the boundary point
t in a local coordinate system shown in Fig. 2a;
uinh(τ ) = uinh

x (τ ) + iuinh
y (τ ) are the complex

displacements at the boundary point τ in a global
coordinate system; and a bar over a symbol
denotes complex conjugation. The direction of
integration is counterclockwise along boundary
L .

123



194 S. G. Mogilevskaya et al.

The two kernels in Eq. (1) are:

K1(τ, t) = ln
τ − t

τ̄ − t̄
, K2(τ, t) = τ − t

τ̄ − t̄
(2)

(ii) Boundary integral equation at the boundary
of the hole or crack [obtained by summing
Somigliana’s traction identity for the infinite
plane with the hole with the complex hypersin-
gular integral equation for the crack (Linkov and
Mogilevskaya 1998; Linkov 2002)]

2
∫

L

umat(τ )

(τ − t)2
dτ

−
∫

L

umat(τ )
∂

∂t
d K1(τ, t)

−
∫

L

umat(τ )
∂

∂t
d K2(τ, t)

+1 − κ

2µ

∫

L

σmat(τ )

τ − t
dτ

− κ

2µ

∫

L

σmat(τ )
∂

∂t
K1(τ, t)dτ

+ 1

2µ

∫

L

σmat(τ )
∂

∂t
K2(τ, t)d τ̄

+2
∫

Lc

	uc(τ )

(τ − t)2
dτ

−
∫

Lc

	uc(τ )
∂

∂t
d K1(τ, t)

−
∫

Lc

	uc(τ )
∂

∂t
d K2(τ, t)

= 2π i
1 + κ

4µ

[
ασ(t)

+σ∞(t)
]
, t ∈ L ∪ Lc (3)

where the superscript mat indicates the elastic
fields for the matrix; κ = 3 − 4ν; the complex
displacements umat(τ ) and the complex tractions
σmat(t) are defined similarly as those for the disc;
	uc(τ ) = 	uc

x (τ ) + i	uc
y(τ ) is the complex

displacement discontinuity at the point τ ∈ Lc

in a global coordinate system, σ∞ is a complex
function that can be expressed via the stress at
infinity as follows (Mogilevskaya and Crouch
2001):

σ∞(t) = −
[
σ∞

xx + σ∞
yy

+dt̄

dt

(
σ∞

yy − σ∞
xx − 2iσ∞

xy

) ]
; (4)

dt̄/dt = exp(−2iβ); β is the angle between the
axis Ox and tangent at the point t ; and the coef-
ficients α and the function σ(t) are defined as
follows:

α=
{

1 t ∈ L
2 t ∈ Lc

, σ (t)=
{
σmat(t) t ∈ L
σ c(t) t ∈ Lc

(5)

The direction of integration is clockwise for the
boundary of the hole L and arbitrary for the
boundary of the crack Lc. The unit normal n
points to the right of the direction of travel (i.e.
inside the hole); the unit tangent � is directed in
the direction of integration (Fig. 2b).

(iii) Gurtin and Murdoch equations for the mate-
rial surface (Mogilevskaya et al. 2008). The real
variables forms of the equations are:

(a) Kinematic equations for the material sur-
face. They include definitions of strain
εsur

εsur = ∂u�
∂s

+ un

R
(6)

and rotation ωsur

ωsur = −u�
R

+ ∂un

∂s
(7)

where u� and un are tangential and normal
components of surface displacements in a
local coordinate system shown in Fig. 2a
and s is the arc length of the undeformed
surface.

(b) Constitutive equation for the surface

σ sur = σ0 + (2µ0 + λ0)ε
sur (8)

where σ sur is a one-dimensional surface
stress.

(c) Continuity of displacements along the
material surface

uinh
x =umat

x =ux , uinh
y =umat

y =uy (9)

(d) Surface equilibrium conditions

σ inh
� − σmat

� = ∂σ sur

∂s
+ σ0ω

sur

R

σ inh
n − σmat

n = − 1

R
σ sur + σ0∂ω

sur

∂s

(10)
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Interaction between a crack and a circular inhomogeneity 195

Often times only the first terms on the right hand
sides of the above equations are retained. However, in
many situations (e.g. large surface tension σ0, small
radius R of the inhomogeneity) the second terms have
been shown (Mogilevskaya et al. 2008) to have signif-
icant effects. The presence of those terms reflects the
fact that the true surface stress is tangent to the sur-
face deformed configuration, while Eqs. (10) are writ-
ten in its initial configuration. Relative to that initial
configuration, the stress tensor has a tangent compo-
nent described by Eq. (8) and a normal component of
magnitude σ0ω

sur. The second terms of the right-hand
side of Eqs. (10) represent contributions of that normal
component to the surface equilibrium conditions.

It was shown in Mogilevskaya et al. (2008) that the
Gurtin and Murdoch equations for the material surface
can be expressed in the following complex forms:

uinh(τ ) = umat(τ ) = u(τ ) (11)

σ inh
n (τ )− σmat

n (τ ) = − 1

R

[
σ0+(2µ0 + λ0)Re

∂u(τ )

∂τ

]

−σ0Re

[
∂2u(τ )

∂τ 2 g−1(τ )

]

σ inh
� (τ )−σmat

� (τ )= −(2µ0 + λ0)Im

[
∂2u(τ )

∂τ 2 g−1(τ )

]

−σ0

R
Im
∂u(τ )

∂τ

where

g(τ ) = R

τ − z0
(12)

It can be seen from Eqs. (10) and (7) that when
R → ∞, the jump in the tangential component of
tractions is entirely due to surface elasticity; while the
jump in the normal component is entirely due to sur-
face tension. In the simplified versions of the Gurtin
and Murdoch equations (employed in most of the pub-
lications on the topic) the term ωsur is neglected and
thus the jump in normal component vanishes when
R → ∞.

3.2 Evaluation of the elastic fields in the composite
system and the stress intensity factors at the crack
tips

The displacements and stresses at any point in the
composite can be expressed in terms of two complex
Kolosov–Muschelishvili potentials ϕ(z) and ψ(z) by

using well-known Kolosov–Muschelishvili formulae
(Muskhelishvili 1959). After the solution of the sys-
tem (1), (3), and (11), the expressions for the potentials
can be written in terms of integrals of known boundary
tractions and stresses at infinity as follows:

(a) potentials for the circular disc (Linkov and
Mogilevskaya 1998; Linkov 2002)

ϕ(z) = − 1

2π i(κ1 + 1)

∫

L

σ inh(τ ) ln(τ − z)dτ

+ µ1

π i(κ1 + 1)

∫

L

u(τ )

τ − z
dτ (13)

ψ(z) = − 1

2π i(κ1 + 1)

⎡
⎣
∫

L

σ inh(τ )
τ

τ − z
dτ

+κ1

∫

L

σ inh(τ ) ln(τ − z)dτ

⎤
⎦

+ µ1

π i(κ1 + 1)

⎡
⎣
∫

L

u(τ )d
τ

τ − z

−
∫

L

u(τ )

τ − z
dτ

⎤
⎦

(b) potentials for the bulk material of the matrix
(Linkov and Mogilevskaya 1998; Linkov 2002)

ϕ(z) = ϕh(z)+ ϕc(z)+ ϕ∞(z)
ψ(z) = ψh(z)+ ψc(z)+ ψ∞(z)

where

ϕh(z) = 1

2π i(κ + 1)

⎡
⎣−

∫

L

σmat(τ ) ln(τ−z)dτ

+ 2µ
∫

L

u(τ )

τ − z
dτ

⎤
⎦ (14)

ψh(z) = 1

2π i(κ + 1)

⎧⎨
⎩−

⎡
⎣
∫

L

σmat(τ )
τ

τ − z
dτ

+κ
∫

L

σmat(τ ) ln(τ − z)dτ

⎤
⎦
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+2µ

⎡
⎣
∫

L

u(τ )d
τ

τ − z

−
∫

L

u(τ )

τ − z
dτ

⎤
⎦
⎫⎬
⎭

ϕc(z) = 1

2π i(κ + 1)

⎡
⎢⎣−

∫

Lc

σ c(τ ) ln(τ − z)dτ

+ 2µ
∫

Lc

	uc(τ )

τ−z
dτ

⎤
⎥⎦ (15)

ψc(z) = 1

2π i(κ + 1)

⎧⎪⎨
⎪⎩−

⎡
⎢⎣
∫

Lc

σ c(τ )
τ

τ − z
dτ

+κ
∫

Lc

σ c(τ ) ln(τ − z)dτ

⎤
⎥⎦

+2µ

⎡
⎢⎣
∫

Lc

	uc(τ )d
τ

τ − z

−
∫

Lc

	uc(τ )

τ − z
dτ

⎤
⎥⎦
⎫⎪⎬
⎪⎭

and where the potentials at infinity are as follows:

ϕ∞(z) = σ∞
xx + σ∞

yy

4
z

ψ∞(z) = σ∞
yy − σ∞

xx + 2iσ∞
xy

2
z (16)

The displacements are defined up to some additional
terms, which can be found by a procedure similar to the
one described in Mogilevskaya et al. (2008).

The stress intensity factors at the tips of the crack
can be calculated from the following expressions
(Mogilevskaya 1996):

(K1 − i K2)a

= −
√

2πµi

κ + 1
exp (−iθ1/2) lim

τ→a

(
	u√
τ − a

)

(K1 − i K2)b

= −
√

2πµi

κ + 1
exp (−iθ2/2) lim

τ→b

(
	u√
b − τ

)
(17)

where θ1 (θ2) is the angle between the axis Ox and the
tangent to the tip a (b).

4 Numerical solution

4.1 Circular disc

We expand the unknown tractions σ inh(τ ) and the dis-
placements u(τ ) at the boundary of the disc into com-
plex Fourier series of the forms

σ inh(τ ) =
∞∑

m=1

Binh−m gm(τ )

+
∞∑

m=0

Binh
m g−m(τ ), τ ∈ L (18)

uinh(τ ) = u(τ )

=
∞∑

m=1

A−m gm(τ )

+
∞∑

m=0

Am g−m(τ ), τ ∈ L (19)

where g(τ ) is defined by Eq. (12). The complex coef-
ficients in series (18) and (19) are unknown. After
substituting expressions (18) and (19) into Eq. (1), eval-
uating all integrals analytically and using the properties
of complex Fourier series, the coefficients for the trac-
tions (Binh−m, Binh

m ) can be expressed in terms of those
for the displacements (A−m, Am) (see Mogilevskaya
et al. 2008 for more details).

4.2 Infinite plane containing the hole and the crack

The complex Fourier series for the unknown tractions
σmat(τ ) at the boundary of the hole can be written as
follows

σmat(τ ) =
∞∑

m=1

Bmat−m gm(τ )

+
∞∑

m=0

Bmat
m g−m(τ ), τ ∈ L (20)

The displacements u(τ ) at the same boundary can be
represented by series (19) due to condition (11).

To represent the unknown displacement discontinu-
ities at the boundary of the cracks we first map the crack
segment [a, b] onto the segment [−1, 1] as follows:
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Interaction between a crack and a circular inhomogeneity 197

s = 2τ − a − b

b − a
, τ ∈ Lc

The displacement discontinuity distribution	uc(s)
along the segment [−1, 1] is then approximated by
series of Chebyshev polynomials multiplied by a
weight function

√
1 − s2

	uc(s) =
√

1 − s2
∞∑

n=0

dnUn (s) (21)

where Un (s) is the Chebyshev polynomial of the sec-
ond kind defined as

Un (s) = sin [(n + 1) arccos s]

sin (arccos s)
(22)

The weight function involved in Eq. (21) is intro-
duced to take into account the correct tip asymptotics.
The complex coefficients in series (20) and (21) are
unknown.

Using relations (19) and (11), we can express the
coefficients for the tractions (Bmat−m , Bmat

m ) in terms of
those for the displacements (A−m, Am) (see
Mogilevskaya et al. (2008) for more details). Thus, one
can rewrite Eq. (3) in terms of unknown coefficients
for the displacements and displacement discontinuities
only. After these coefficients are determined, the trac-
tions and displacements at the boundary of the inho-
mogeneity and the displacement discontinuities at the
boundary of the crack can be found. The procedure of
determining the unknown coefficients for the displace-
ments and displacement discontinuities is outlined in
the Appendix 1.

The displacements, stresses, strains and stress inten-
sity factors in the system can be evaluated as explained
in Appendix 2.

5 Examples

5.1 Parametric studies

The number of the parameters that govern the problem
is rather large and, in this section, we restrict our stud-
ies to the cases we deem the most interesting from the
point of view of influence of the surface effects on the
stress intensity factors at the crack tips. Thus we con-
sider the problem depicted in Fig. 3. We also assume
that the Poisson’s ratios of the matrix and inhomogene-
ity are fixed: ν = 0.35, ν1 = 0.3 (ν1 = 0 for a cavity)
and that the crack is traction-free. Using the following
scaling for the unknowns

Fig. 3 Example problem

σ/µ, u/R, 	u/� (23)

one can conclude from the analysis of Eqs. (29)
and (31) in Appendix 1 (taking into account that
η/µ = λ/2, η(1)/µ = (λ+χ)/2, η(2)/µ = (λ−χ)/2)
that the problem is governed by the following dimen-
sionless parameters

λ = (2µ0 + λ0)/(2µR),

χ = σ0/(2µR), �/R, µ1/µ, d/R, ϑ,

ζ = σ∞
yy /(2µ) (24)

Below we study the influence of these parameters on
the stress intensity factors at the crack tip located clos-
est to the inhomogeneity. All examples, with the excep-
tion of the one presented in Sect. 5.1.2.6, assume that
ϑ = 0◦, for which the mode-I stress intensity factor is
likely to be the largest. In all the numerical simulations
reported we take the computational tolerance parame-
ters δ and δ1 to be δ = 0.005, δ1 = 0.01 (Appendix
1). For the illustration purposes, in some examples, the
range of values for parameters λ and χ was chosen
significantly larger than the available data character-
izing nano-composites reported in the literature (see
e.g. Gurtin and Murdoch (1978); Miller and Shenoy
(2000); Sharma and Ganti (2002, 2004); Yang (2004);
Duan et al. (2005c, 2006); He and Li (2006); Chen et al.
(2007)).

5.1.1 Qualitative evaluation of shielding and
anti-shielding related to the parameters λ
(surface elasticity) and χ (surface tension)

First we consider an isolated cavity with no crack
(�/R = 0, ϑ = 0◦, µ1/µ = 0) and investigate the
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198 S. G. Mogilevskaya et al.

Fig. 4 Variation of the normalized stresses along the axis Ox
with the parameter r/R (λ = 0, �/R = 0, µ1/µ = 0, ζ = 0.0)

influence of the surface tension and surface elasticity
on the distribution of σrr/µ and/or σθθ/µ. This ref-
erence example, which can be solved in elementary
fashion, will facilitate the better understanding of the
subsequent results related to the shielding/antishielding
effects.

To study the influence of the parameter χ on the
stresses we assume that λ = 0 and ζ = 0. It can be
seen from Fig. 4 that, as expected, the surface tension
produces tensile radial stresses σrr/µ and compressive
hoop stresses σθθ/µ, both rapidly decreasing with the
distance from the cavity. This stress distribution is axi-
symmetric, thus components of σxx , σyy and σxy rela-
tive to a coordinate system xy are invariant with respect
to its rotation.

Figure 5a shows the contours of normalized stress
component σyy/µ and provides insight into whether
the stress intensity factors will be reduced or amplified
when the crack is located at a particular location per-
pendicular to y axis. This figure, appropriately rotated,
can provide qualitative information about shielding or
antishielding for a arbitrary located crack. For exam-
ple, for a crack AB shown on Fig. 5b, the coordinate
axes and the boundaries separating the zones of shield-
ing and antishielding (dashed lines) are rotated so as to
make the x ′ axis parallel to the crack. For this particu-
lar location of the crack, the surface tension is likely to

(a)

(b)

Fig. 5 a Contours of 103σyy/µ around the cavity (λ = 0, χ =
0.00083, �/R = 0, µ1/µ = 0, ζ = 0.0), b contours rotated to
determine shielding/antishielding for a particular crack AB

amplify the stress intensity factor at tip A and reduce
it at tip B.

The above analysis is only qualitative, since the pres-
ence of the crack disturbs the stress field produced by
the surface tension. Nonetheless, the analysis provides
a general view of the interaction between the crack and
the cavity with the surface tension. This view is con-
firmed in several examples presented in the following
subsections.

A qualitative illustration of how surface elastic-
ity alone (χ = 0, λ �= 0) affects crack tip stress
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Interaction between a crack and a circular inhomogeneity 199

Fig. 6 Variation of the normalized stresses along the axis Ox
with the parameter r/R (χ = 0, �/R = 0, µ1/µ = 0, ζ =
0.0014)

intensity factors requires a specific load. Consequently,
in Fig. 6 we present only a normalized distribution of
hoop stress σθθ/σ clas

θθ (where σ clas
θθ is the hoop stress

for the corresponding classical problem without sur-
face effects) along the radial direction perpendicular
to the load ζ = 0.0014. For the selected two values
of surface elasticity parameters, the influence of sur-
face elasticity is insignificant and localized. For a crack
along that specific radial direction a positive (nega-
tive) value of the surface elasticity parameter will be
associated with shielding (antishielding). Although this
is only a specific situation, it is arguably, very repre-
sentative. Figure 6 indicates that, in absence of surface
tension, the interaction between the crack and the cav-
ity will not be significantly affected by surface elas-
ticity, and if so than only when the parameter d/R
is very small. The influence of surface elasticity and
surface tension on the stress intensity factor at crack
tip b will generally be small, particularly for longer
cracks.

5.1.2 Quantitative evaluation of crack–cavity
interaction

We now proceed to study the interaction between the
crack and the cavity in a more precise manner.

5.1.2.1. Dependence of stress intensity factor
on surface parameters

We consider the following parameters:
d/R = 0.2, �/R = 10, ϑ = 0◦, µ1/µ = 0, ζ =
0.0014. Figure 7 shows the contours of the normal-
ized stress intensity factor F1(a) at the crack tip a
as the function of the parameters λ and χ(F1(a) =
K1(a)/K clas

1 (a) where K clas
1 (a) is the stress intensity

factor of the corresponding classical problem in which
λ = 0, χ = 0). In accord with the observation in the
preceding subsection, one can conclude that for the
considered configuration of the crack, an increase in
surface tension results in a decrease in the normalized
stress intensity factors, and that the influence of sur-
face elasticity is insignificant. Even though the con-
tours presented in Fig. 7 may be perceived as straight
lines, careful examination of the figures does reveal that
dependence of F1(a) on the parameters λ and χ is, in
fact, slightly non-linear.

5.1.2.2. Influence of the parameters χ (normalized
surface tension) and ζ (normalized load)

The form of the governing equations, containing sur-
face tension σ0 and the load σ∞

yy , does not allow for
the superposition with respect to the load. This exam-
ple is meant to present the quantitative representation
of that feature. We choose the following parameters
d/R = 0.2, �/R = 10, ϑ = 0◦, µ1/µ = 0, λ = 0.
Figure 8 shows the contours of the normalized stress
intensity factor F1(a) at the crack tip a as the function of
the parametersχ and ζ . One can see from the figure that
the dependence of F1(a)on the surface tension and load

Fig. 7 Variation of the
normalized stress intensity
factor F1(a) with the
parameters λ and χ (d/R =
0.2, �/R = 10, ϑ =
0◦, µ1/µ = 0, ζ = 0.0014)
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200 S. G. Mogilevskaya et al.

Fig. 8 Variation of the normalized stress intensity factor F1(a)
with the parameters ς and χ (d/R = 0.2, �/R = 10, ϑ =
0◦, µ1/µ = 0, λ = 0)

is strongly non-linear, particularly for smaller loads and
larger surface tension. We emphasize that it happens
even though in this example we have neglected surface
elasticity. Consequently, this non-linearity is entirely
due to the presence of ωsur in Eq. (10). Although pres-
ent in the original Gurtin and Murdoch model, this term
has been neglected in virtually all publications deal-
ing with the effects of surface tension. This is another
example illustrating important influence ofωsur, which
persists even if R → ∞.

5.1.2.3. Influence of the relative crack length

We take the following parameters d/R = 0.04, ϑ =
0◦, µ1/µ = 0, σ∞

yy /(2µ) = 0.0014 and choose the
three sets of surface/interface parameters (1) λ = χ =
0 ; (2) λ = −0.0052, χ = 0; (3) λ = 0, χ = 0.00083.
Figure 9 shows the results for the normalized stress
intensity factor F1(a) at the crack tip a as the function of
the parameter �/R. It is observed that surface elasticity
has insignificant effect on the normalized stress inten-
sity factor F1(a). The effect of the surface tension on
F1(a) is more pronounced. The effects of both the sur-
face elasticity and surface tension on F1(b) (not shown

Fig. 9 Variation of the normalized stress intensity factor F1(a)
with the parameter �/R (d/R = 0.04, ϑ = 0◦, µ1/µ = 0, ζ =
0.0014)

here) are less pronounced and they rapidly decrease
with increasing �/R.

5.1.2.4. Influence of the contrast in elastic properties
of the bulk material and inhomogeneity

Consider the problem governed by the following
parameters: d/R = 0.04, �/R = 10, σ∞

yy /(2µ) =
0.0014 and choose the three sets of surface/interface
parameters (1) λ = χ = 0; (2) λ = −0.0052, χ = 0;
(3) λ = 0, χ = 0.00083. We assume the incli-
nation angle ϑ = 0◦ and emphasize that Poison’s
ratios of the matrix and inhomogeneity are different,
ν = 0.35, ν1 = 0.3. Figure 10 shows the results for the
normalized stress intensity factor F1(a) at the crack tip
a as the function of the parameter µ1/µ. The effects of
both surface elasticity and surface tension decrease as
the stiffness of inhomogeneity increases. These trends
are natural in view of the fact that for a rigid inhomo-
geneity surface/interface effects play no role.

5.1.2.5. Influence of the relative separation parameter
d/R

We take the following parameters �/R = 10, ϑ =
0◦, µ1/µ = 0, σ∞

yy /(2µ) = 0.0014 and choose the
surface/interface parameters to be the ones described
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Fig. 10 Variation of the normalized stress intensity factor F1(a)
with the contrast µ1/µ (d/R = 0.04, �/R = 10, ϑ = 0◦, ζ =
0.0014)

Fig. 11 Variation of the normalized stress intensity factor F1(a)
with the parameter d/R (µ1/µ = 0, �/R = 10, ϑ = 0◦, ζ =
0.0014)

in Sect. 5.1.2.3. Figures 11 shows the results for the
normalized stress intensity factor F1(a) at the crack tip
a as the function of the parameter d/R. It can be seen
from this figure that for the data we have considered,
the surface/interface effects are of the order of 5–10%
along the entire range of values d/R. The effects due

Fig. 12 Variation of the normalized stress intensity factor F1(a)
with the inclination angle ϑ (d/R = 0.04, �/R = 10, µ1/µ =
0, ζ = 0.0014)

to surface tension are more profound than the ones due
to surface elasticity. As expected both effects diminish
with the increase in the relative separation parameter.

5.1.2.6. Influence of the inclination angle ϑ

We take the following parameters d/R = 0.04, �/R =
10, µ1/µ = 0, σ∞

yy /(2µ) = 0.0014 and choose the
surface/interface parameters to be the ones described
in Sect. 5.1.2.3. Qualitative observations of Sect. 5.1.1
suggest that with the rotation of the crack its sta-
tionary tip initially shielded by the surface tension
(approximately for 0 ≤ ϑ < 45◦) ends up experi-
encing antishielding (approximately for 45◦ < ϑ ≤
90◦). Similar qualitative observations of Sect. 5.1.1
related to surface elasticity suggest it produces less
pronounced shielding/antishielding effects. This is
reflected in Fig. 12, which shows the results for the
normalized stress intensity factor F1(a) at the crack
tip a as the functions of the parameter ϑ . One
can see from Fig. 12 that surface tension has a pro-
nounced influence on the normalized stress intensity
factor F1(a), except for a neighborhood of ϑ =
45◦. This angle approximately defines the position
of the crack at which the influence of the surface
tension changes from shielding to anti-shielding. As
can be seen from Fig. 12 for ϑ = 90◦, there is
about eight-fold amplification of F1(a). However, this
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Fig. 13 Variation of the
normalized stress intensity
factor F1(a) with the
parameters λ and χ (d/R =
0.2, �/R = 10, ϑ =
90◦, µ1/µ = 0, ζ =
0, σ∞

xx /(2µ) = 0.0014)

Fig. 14 a The problem
used to investigate flaw
tolerance of porous
material. b Simplified
model of the problem

(a) (b)

picture may be somewhat misleading as the absolute
value of K1(a)/(

√
π�σ∞

yy ) = 0.46 for ϑ = 90◦ is
still significantly smaller than the absolute value of
K1(a)/(

√
π�σ∞

yy ) = 2.32 for ϑ = 0◦.
For the case ϑ = 90◦, the far-field load assumed

in the analysis is parallel to the crack. Classical
solution (without surface effects) for this case yields
very small K1(a). The contribution of surface tension
in this case is dominant, which explains the large ampli-
fication factor. To gain additional insight, we consider
the same case of ϑ = 90◦ and applied the load σ∞

xx
instead of σ∞

yy . Figure 13 shows the contours of the nor-
malized stress intensity factor F1(a) as the function of
the parameters λ and χ . As can be seen from this figure
the qualitative dependence of F1(a) on λ and χ is sim-
ilar to the one presented in Fig. 7. The difference is that
now amplification takes place rather than shielding and
its magnitude is significantly larger than that of Fig. 7.
Still the absolute value of K1(a) in this case is smaller
than that K1(a) for ϑ = 0◦ (discussed in the previous
paragraph).

5.2 Effects of surface tension on flaw tolerance
in porous materials

The issue we would like to illustrate here is a very
complex one and we provide only a very approximate
qualitative analysis of an idealized problem. We assume
that we have a perforated plate with circular cavities
of radius R, distributed on a perfect square grid with
dimension 2d = 8R (for example). We further assume
that the load is parallel to one side of the grid and that
a crack develops that is centered along the line per-
pendicular to the load and connecting two neighbor-
ing cavities, Fig. 14a. The half-length � of the crack
may vary in the interval (R, 2.96R) and its orientation
ϑ in the interval (−0.5π, 0.5π), and every value of
� and ϑ is equally likely (uniform probability
distribution).

The question we ask is how the expected value
of the energy release rate G is affected by surface
tension. The answer to this question can be gleaned
from the value of the ratio

123



Interaction between a crack and a circular inhomogeneity 203

ρ = G

Gclas

with

G = 1 − ν

2µ

π/2∫

−π/2

R∫

R

[
(K1(a))

2 + (K2(a))
2
]

d�dϑ

Gclas = 1 − ν

2µ

π/2∫

−π/2

R∫

R

[(
K clas

1 (a)
)2

+
(

K clas
2 (a)

)2
]

d�dϑ

where the superscript “clas” , relates to the values
associated with the corresponding classical problem
in which λ = 0, χ = 0. Shielding (antishielding) is
associated with ρ < 1 (ρ > 1).

To analyze the problem shown in Fig. 14a we assume
that distance d = 4R is large enough to neglect
interactions between the cavities, and that the analysis
can be performed using the model shown in Fig. 14b.
For the data assumed in the analysis (λ = 0, χ =
0.00083, µ1/µ = 0, σ∞

yy /(2µ) = 0.0014) we obtain
ρ = 0.925, which implies that surface tension is likely
to increase slightly the flaw tolerance of the porous
material.

6 Conclusions

In this paper, for the first time, we investigated the
problem of the interaction between a circular inho-
mogeneity with surface/interface effects and a straight
crack. Numerical examples are presented to quantify
and discuss the main features of that interaction. Those
examples were solved using an effective numerical
technique that allows one to obtain accurate informa-
tion about the elastic fields inside and outside of the
inhomogeneity.

The obtained results, reported in Sect. 5, reveal sev-
eral characteristics of the problem. It has been shown
that, for some values of the problem parameters, surface
tension may significantly change the stress intensity
factors at the tips of the crack. However, the effects of
surface elasticity are rather insignificant. We have also
documented thatωsur causes the stress intensity factors
to depend non-linearly on surface tension. This feature,
as well as the lack of superposition with respect to the

load, is one of the main characteristics of problems with
the surface/interface effects.

While we restricted ourselves to the problem of a
single crack and a single inhomogeneity, the technique
employed in this work is applicable to problems with
multiple inhomogeneities and cracks. Such scenario
would be more typical for practical applications, par-
ticularly in the analysis of nano-composite materials.
Incorporation of surface tension and surface elasticity
in crack model is another direction for possible exten-
sion of the method.

Appendix 1

System of complex equations

The system of equations that contains the unknown
coefficients for the displacements and displacement
discontinuities only has the following form:

(i) t ∈ L

4Re
A1

R

[
µ1/µ

κ1 − 1
+ η

µ
+ 1

2

]

+
∞∑

m=1

m
A−m

R
gm+1(t)

[
1 + κ

(
µ1

µ
+ m

η(1)

µ

)]

+
∞∑

m=1

(m + 1)
A(m+1)

R
g−m(t)

[
1 + µ1/µ

κ1
+ (m + 1)

η(1)

µ

]

−
∞∑

m=2

(m − 1)(m + 1)
η(2)

µ

A−(m−1)

R
g−m(t)

−
∞∑

m=2

(m − 1)(m + 1)κ
η(2)

µ

A(m+1)

R
gm(t)

+ i

π

∞∑
n=0

dn

b − a

[
I1 (st , n)− γ1g2(t)I1 (st , n)

]

− i

π

∞∑
n=0

dn

b − a

{[
1 + γ1g2(t)

]
I1 (st , n)

+2γ1g2(t) (st − st ) I2 (st , n)
}
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= κ + 1

4µ

[
σ∞

xx + σ∞
yy

−g2(t)
(
σ∞

yy − σ∞
xx − 2iσ∞

xy

)]
− σ0

µR
(25)

(i) t ∈ Lc

2

γ1
g2(t)Re

A1

R[
1 − (κ − 1)

(
µ1/µ

κ1 − 1
+ η

µ

)]

−
∞∑

m=1

m
A−m

R
gm+1(t)

[
1 − µ1

µ
− m

η(1)

µ

]

+ 1

γ1

∞∑
m=1

(m + 1)
A(m+1)

R
gm(t)

×
{[

1 − κ

κ1

µ1

µ
− κ (m + 1)

η(1)

µ

− (m − 1) (m + 1)
η(2)

µ

]
g2(t)

+ (m − 1)
η(2)

µ

[
−γ1 + mg−1(t)g(t)

]}

− 1

γ1

∞∑
m=1

m
A−m

R
gm+1(t)

×
{ [
γ1 − (m + 1) g−1(t)g(t)

+ (m + 2) g2(t)
] [

1 − µ1

µ
− m

η(1)

µ

]

+κ (m + 2)
η(2)

µ
g2(t)

}

−
∞∑

m=2

(m − 1)(m + 1)

× η(2)

µ

A(m+1)

R
gm(t)

+2i
∞∑

n=0

dn

b − a
(n + 1)Un (st )

= κ + 1

4µ

[
2σ c(t)−

(
σ∞

xx + σ∞
yy

)

− 1

γ1

(
σ∞

yy − σ∞
xx − 2iσ∞

xy

) ]

+κ − 1

2γ1

σ0

µR
g2(t) (26)

where

η = (2µ0 + λ0) / (4R) ,

η(1) = η + 0.25σ0/R, η(2) = η − 0.25σ0/R

I1 (st , n) =
1∫

−1

√
1 − s2Un (s) ds

(s − st )
2

= π (n + 1)

(
st −

√
s2

t − 1

)n+1

√
s2

t − 1
(27)

I2 (st , n) =
1∫

−1

√
1 − s2Un (s) ds

(s − st )
3

= −1

2
I1 (st , n)

⎡
⎣ n + 1√

s2
t − 1

+ st

s2
t − 1

⎤
⎦

and st = (2t − a − b) / (b − a) , γ1 = (b − a) /(
b − a

)
.

To solve the system (25), (26) and define the
unknown coefficients one needs to truncate the series.
The displacements and the displacement discontinu-
ities should be truncated as follows:

σ inh(τ ) =
Mh∑

m=2

Binh−m gm(τ )+
Mh∑

m=0

Binh
m g−m(τ )

σmat(τ ) =
Mh∑

m=2

Bmat−m gm(τ )+
Mh∑

m=0

Bmat
m g−m(τ )

u(τ ) =
Mh−1∑
m=1

A−m gm(τ )+
Mh+1∑
m=1

Am g−m(τ )

	uc(s) =
√

1 − s2
Mc∑

n=0

dnUn (s) (28)

Reduction to a linear algebraic system

A system of linear algebraic equations can be obtained
by using a Galerkin (weighted residual) method. Mul-
tiplying both parts of Eq. (25) by functions g p(t) (p =
−Mh +1, . . .−1, 1, . . .Mh +1) and integrating along
the boundary L , one obtains the system of following
equations:
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[
1 + κ

(
µ1

µ
+ p

η(1)

µ

)]
A−p

R

− (p + 2) κ
η(2)

µ

A(p+2)

R

+iγ p
1

Mc∑
n=0

{
− dn

b − a
G pn

(
szc

)

− dn

b − a

[
− γ1 (p + 2)G(p+2)n

(
szc

)

+pG pn
(
szc

)

+ (p + 1)
szc − szc

γ2
G(p+1)n

(
szc

)]}

= −κ + 1

4µ

(
σ∞

yy − σ∞
xx

−2iσ∞
xy

)
δp1, p = 1, . . . ,Mh − 1

× 4

[
µ1/µ

κ1 − 1
+ η

µ
+ 1

2

]
Re

A1

R

+i
Mc∑

n=0

[
dn

b − a
G1n

(
szc

)

− dn

b − a
G1n

(
szc

) ]

= κ + 1

4µ

(
σ∞

yy + σ∞
xx

)

− σ0

µR

[
1 + µ1/µ

κ1
+ p

η(1)

µ

]
Ap

R

− (p − 2)
η(2)

µ

A−(p−2)

R

+i
Mc∑

n=0

dn

b − a
G pn

(
szc

)

= 0, p = 2, . . . ,Mh + 1 (29)

where γ2 = 2R/(b − a), δpq is the Kronecker delta,
and G pn (z) is defined as

G pn (z) = γ
p−1

2
1

π

1∫

−1

√
1 − s2Un (s)

(s − z)p+1 (30)

The integral involved in (30) is evaluated analyti-
cally using recursive relations, as explained in Wang
2004.

Similarly, multiplying both parts of Eq. (26) by func-

tions
√

1 − s2
t Uq (st ) (q = 0, . . . ,Mc) and integrating

along the boundary Lc, one obtains the following equa-
tion (q = 0, . . . ,Mc):

2Re
A1

R

[
1 − (κ − 1)

(
µ1/µ

κ1 − 1
+ η

µ

)]
G1q

(
szc

)

− 1

γ1

Mh−1∑
m=1

A−m

R
m

[
1 − µ1

µ
− m

η(1)

µ

]
Gmq

(
szc

)

+
Mh∑

m=1

γm
1 (m + 1)

Am+1

R

{[
1 − κ

κ1

µ1

µ

−κ (m + 1)
η(1)

µ

−(m − 1)(m + 1)
η(2)

µ

]
Gm+1q

(
szc

)

+(m − 1)
η(2)

µ

[
m − 1

γ1
Gm−1q

(
szc

)

+m
szc − szc

γ 2
Gmq

(
szc

)]}

−
Mh−1∑
m=1

γm+1
1 m

A−m

R

⎧⎨
⎩
[
− m

γ1
Gmq

(
szc

)

−(m + 1)
szc − szc

γ 2
Gm+1q

(
szc

)

+ (m + 2)Gm+2q
(
szc

)] [
1 − µ1

µ
− m

η(1)

µ

]

+κ(m + 2)
η(2)

µ
Gm+2q

(
szc

)}

−
Mh∑

m=1

(m − 1)(m + 1)

γ1

η(2)

µ

Am+1

R
Gm−1q

(
szc

)

+i(q + 1)
dq

b − a

1

γ 2γ2

= κ + 1

8µ

1

γ 2γ2

[
2σ c(t)−

(
σ∞

xx + σ∞
yy

)

− 1

γ1

(
σ∞

yy − σ∞
xx − 2iσ∞

xy

) ]
δ0q

+(κ − 1)
σ0

2µR
G1q

(
szc

)
(31)

Separating real and imaginary parts in Eq. (29) and
(31), we get the system of 4Mh + 2Mc + 1 real lin-
ear algebraic equations, where the transposed vector of
unknowns is[

ReA−(Mh−1), ImA−(Mh−1), . . . ,

ReA−1, ImA−1,ReA1,ReA2, ImA2, . . . ,

ReA(Mh+1), ImA(Mh+1),Red0, Imd0, . . . ,

RedMc , ImdMc

]
(32)
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Appendix 2

Calculations of the displacements, stresses, strains and
stress intensity factors in the system

After substituting expressions (28) into formulae (13),
(14) and (15), all integrals can be evaluated analyti-
cally. The final expressions for the potentials for the
disc (13) and the hole (14) are the same as the cor-
responding expressions in Mogilevskaya et al. (2008).
The final expressions for terms involved in Eq. (15) are
as follows

ϕc(z) = − iµ

κ + 1

Mc∑
n=0

dn I0(sz, n)+ fϕ(σ
c)

ψc(z) = iµ

κ + 1

Mc∑
n=0

{
dn I0(sz, n)

+ 2

b − a

[
γ1(z − a)+ a

]
dn I1(sz, n)

}

+ fψ(σ
c) (33)

where

I0(sz, n) = 1

π

1∫

−1

√
1 − s2Un(s)

s − z

= −
(

sz −
√

s2
z − 1

)n+1

(34)

and the functions fϕ(σ c), fψ(σ c) are known after one
evaluates the integrals from Eq. (15) that contain σ c.

Resulting potentials define the stresses in the matrix
and an inhomogeneity in unique way, as the displace-
ments are defined by the potentials up to some addi-
tional terms. These terms correspond to rigid body
translations and rotations, and are found the following
procedure similar to one described in Mogilevskaya
et al. (2008).

The stress intensity factors at the tips of the crack
can be calculated from the coefficients of the Cheby-
shev polynomials by using expressions (17) and (21).
The final expressions are the following (Wang et al.
2001):

(K1 − i K2)a

= −2
√

2πµi

κ + 1

exp(−iθ1/2)√
b − a

Mc∑
n=0

(−1)n(n + 1)dn

(K1 − i K2)b

= −2
√

2πµi

κ + 1

exp(−iθ2/2)√
b − a

Mc∑
n=0

(n + 1)dn (35)
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