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Abstract. A model is developed for quantifying the size effect due to heterogeneity and anisotropy in poly-
crystalline films. The Monte Carlo finite element calculations predict the average and standard deviation of the
microscopic(local) stress intensity factors and energy release rate of a crack in a columnar aggregate of randomly
orientated, perfectly bonded, orthotropic crystals (grains) under plane deformation. The boundary of the near-
tip region is subjected to displacement boundary conditions associated with amacroscopic(far field or nominal)
Mode-I stress intensity factor and average elastic constants calculated for the uncracked film with a large number
of grains. The average and standard deviation of the microscopic stress intensity factors and energy release rate,
normalized with respect to the macroscopic parameters, are presented as functions of the number of grains within
the near-tip region, and the parameters that quantify the level of crystalline anisotropy. It is shown that for a given
level of anisotropy, as long as the crack tip is surrounded by at least ten grains, then the expected value and standard
deviation of the crack tip parameters are insensitive to the number of crystals. For selected values of crystalline
anisotropy, the probability distributions of Mode-I stress intensity factor and stress ahead of the crack are also
presented. The results suggest that the size effect due to heterogeneity and anisotropy is weak; crack initiation
load and direction are governed only by the details of the grains in the immediate vicinity of the crack tip.
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1. Introduction

In linear elastic fracture mechanics (LEFM) theory of homogeneous materials, the nominal
stressσn is expressed in terms of the stress intensity factorKI as

σn = KI

a1/2F
, (1)

wherea is the crack length andF is a dimensionless function which depends on the loading
and specimen geometry. In this one parameter system, the critical stressσ cn is determined, for
the desired loading, geometry, and crack length, by equating the stress intensity factor with
the material’s fracture toughnessKIc. The associated crack stress analysis for the homogen-
eous material produces amacroscopic(nominal or far-field) stress intensity factor, which will
henceforth be denotedK∞I . The critical stress intensity factor criterion is equivalent to the
condition that the energy release rate, defined forself-similarextension asG∞I ≡ (K∞I )2/E′,
reaches a critical valueGIc = K2

Ic/E
′ = 2γ , whereE′ = E for plane stress,E′ = E/(1− ν2)
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20 R. Ballarini et al.

for plane strain,γ is the surface energy,E is Young’s modulus, andν is Poisson’s ratio.
LEFM is based on the assumption that the ‘process zone’ in the immediate vicinity of the
crack tip, within which irreversible deformation occurs and linear elasticity breaks down, is
sufficiently small compared to other relevant length scales, so that there exists an annular
region surrounding it within which the stresses are dominated by the elastic stress intensity
factor. Moreover, the assumption of homogeneity implicitly assumes that the process zone
extends from the crack tip to a distance much larger than the crystal (grain) size, and thus
engulfs and in turn is engulfed by a sufficiently large number of grains that behave as a
homogeneous medium. Abdel-Tawab and Rodin (1997) suggest that a material’s tendency
to behave homogeneously can be screened by the grain brittlenessGB, defined as

GB ≡ d

rp
. (2)

Hered is the grain size, andrp is the size of the process zone, which can be estimated as

rp = 0.1c

(
KIc

σu

)2

, (3)

whereσu represents a limiting stress appropriate for a given material system (yield stress for
metals, tensile strength for brittle materials), andc is a constant close to unity. The assumption
of homogeneity is appropriate forGB � 1; if GB is not sufficiently small, then the irrevers-
ible deformations at the crack tip do not overwhelm microstructure induced inhomogeneity,
and the details of the microstructure surrounding the process zone may have a significant effect
on the fracture process. Indeed, because of the randomness of the distribution and orientation
of the grains, these effects will be of a statistical nature.

It has been established experimentally that the fracture toughness of most engineering
materials depends on specimen dimensions. The amount of this so called ‘size effect’, which
results from differences in the relative size of the process zone in geometrically similar but
different sized specimens, varies from material to material. Much research has been conduc-
ted by the fracture mechanics community in the past twenty years aimed at describing and
predicting the size effect. This effort has produced scaling laws through cohesive zone models
(Cox and Marshall, 1994), dimensional analysis (Bazant, 1993) and fractal geometry concepts
(Carpinteri, 1994). The main advantage of these formulations is that they can be easily imple-
mented into analysis/design tools for predicting crack propagation in engineered structures.
However, by smearing out the details of the deformation mechanisms involved in the fracture
process, and by treating the phenomena deterministically and/or phenomenologically, they
lose information that can be valuable in the interpretation of scatter in experimental data.

This paper focuses on characterization of the fracture mechanics parameters of a crack in a
columnar aggregate of randomly orientated crystals under plane deformation. The following
question is addressed: given the parameters that quantify the level of crystalline anisotropy,
the number of grains in a unit volume, and a far field loading defined byK∞I , what are the
average values and standard deviations of themicroscopic(local) stress intensity factorsKl

I
andKl

II and energy release rateGl? This information, which should shed some light on why
the fracture toughness of brittle polycrystalline structures is prone to scatter and size effects,
can be obtained only by using micromechanical models that treat the microstructural details
and associated deformation mechanisms explicitly (Abdel-Tawab and Rodin, 1997; Ballarini
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Heterogeneity and anisotropy on cracked polycrystalline films21

et al., 1995; Jha et al., 1997; Jha, 1997). As stated in (Abdel-Tawab and Rodin, 1997), the
ultimate goal of such models is to develop size effect maps analogous to those (Frost and
Ashby, 1982) for deformation mechanisms, and that characterization of the individual size
effects produced by inhomogeneity is the first step towards this end. The next logical step
towards this end, which is being taken at the present time by the authors, is to include the
effects of the microcracking that often develops in the vicinity of the crack tip. Abdel-Tawab
and Rodin’s analysis (Abdel-Tawab and Rodin, 1997), which addressed issues similar to those
discussed in this paper, was developed for characterizing the fracture mechanics of crystalline
columnar ice. Their approximate analytical and finite element plane strain models calculate
the difference betweenK∞I andKl

I at the tip of a crack surrounded by alargenumber of brittle
hexagonal crystals with perfectly bonded interfaces. This local parameter is needed because,
for a heterogeneous material,G∞I andγ in the fracture criterion should be replaced byGl

andγ l, whereγ l is the local value of critical energy release rate. Abdal-Tawab and Rodin’s
contribution showed that, in an aggregate comprised of a very large number of grains, the
grains remote from the crack tip do not induce significant differences between the macroscopic
and microscopic stress intensity factors. For example, their calculations showed that even for
highly anisotropic crystals,Kl

I is only twenty percent less thanK∞I (Kl
II was negligible for the

nominal mode-I loading). They concluded that for such materials the contribution of inhomo-
geneity to the size effect is relatively weak. Moreover, their results suggest that the crack tip
parameters of materials with large values ofGB are controlled by only a few grains near the
crack tip, and provide a rational explanation of why fracture toughness data exhibits signific-
ant statistical effects. As they pointed out, the results are expected to change dramatically if
microcracking within grains or along grain boundaries is included in the models.

One of the issues that was not discussed in (Abdel-Tawab and Rodin, 1997) is fatigue. For
brittle polycrystalline materials, crack growth under cyclicK∞I , or under constantK∞I and
corrosive environments, has been quantified with power law functions of the type da/dN =
C(1K∞I )m and da/dt = D(K∞I )p, whereN and t represent number of cycles and time,
respectively, andC,D,m andp are experimentally measured constants. Becausem andp
are typically larger than, say 10, small heterogeneity induced fluctuations in local crack tip
parameters may suddenly become important in lifetime predictions.

The Monte Carlo finite element model presented in this paper extends the calculations
presented in (Abdel-Tawab and Rodin, 1997) to includeorthotropic crystals and anarbit-
rary number of crystals within a unit volume. Furthermore, the model can be generalized to
quantify the effects of microcracking in the process zone that often surrounds the crack tip in
a brittle system. The model was developed to quantify the effects of heterogeneity and aniso-
tropy on thescatterand potential size effects in thenominalfracture toughness (critical value
of K∞I ) and fatigue data of microelectromechanical systems (MEMS), whose dimensions are
of the same order as the microstructure. Using a first generation microfracture specimen, they
reported (Ballarini et al., 1997) that the criticalJ integral (which provided a nominal fracture
toughness) of notched polycrystalline silicon, which is one of the principal materials currently
used in the fabrication of MEMS devices, exhibited significant scatter, but was not sensitive
to the number of crystals in the uncracked ligament. The number of crystals in the uncracked
ligament was larger than ten. Figure 1(a) shows the second generation microfracture device
that is currently being used by the authors to study fatigue and fracture of MEMS. The
close-up view of the crack path through the originally uncracked ligament shown in Fig-
ure 1(b) clearly demonstrates that the characteristic lengths in MEMS devices are of the same
order of magnitude as the grain size. These experiments are ideal for studying statistical effects
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Figure 1. (a) Polycrystalline silicon microfracture specimen consisting of a cantilevered beam with a reduced
section containing an initial smooth notch. The electrostatic load is provided by a comb actuator system, partially
shown at the bottom of the figure; (b) Close-up of notch-tip showing the crack propagation path.
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Figure 2. Cross-sectional transmission electron micrograph (TEM) of chemical vapor deposition film. This
particular film was deposited using a two-step process, as indicated by the two layers of nearly columnar
polysilicon.

Figure 3. Poisson-Voronoi tessellation of microstructure forn-grains.

in the fracture mechanics of brittle materials; the integrated circuit processing technology used
to fabricate the specimen involves batch fabrication, allowing production of a large number of
identical specimens that are both dimensionally accurate and inexpensive. The details of the
experimental program and results will be presented in a future communication.

Silicon possesses cubic symmetry, aKIc ≈ 0.8 MPa
√

m, σult = 1.2 GPa, and for the
specimens shown in Figure 1, a crystal sized ≈ 0.5µm. The resultingGB ≈ 10 suggests
that heterogeneity and anisotropy may play a significant role in the fracture behavior of
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Figure 4. Poisson-Voronoi tessellation of a crack in an aggregate of crystals.

polycrystalline silicon devices that are comprised of a small number of grains (connecting
beams are typically a few microns wide, and may be comprised of less than ten grains). As
observed in the SEM micrograph in Figure 2, the microstructure of typical devices is (nearly)
columnar. This supports the assumption of two dimensional behavior in subsequent finite
element analyses. While the film is in plane stress, plane strain was assumed for convenience.

2. Near-tip mechanics

This section defines the mechanics problem and a review of the deterministicdual length
scale mechanicsnear the tip of a crack in a polycrystalline material. Before proceeding to
the fracture mechanics problem, the procedure for determining the nominal elastic constants
of a columnar aggregate of anisotropic crystals is presented. Figure 3 shows the geometry
and loading of the model used to calculate the average elastic constants of an aggregate of
randomly orientated anisotropic crystals of average sizel. Figure 4 shows the same aggregate
with a crack, loaded, as explained subsequently, with prescribed displacements at the bound-
ary consistent with a macroscopic stress intensity factorK∞I (or G∞I ). The problem consists
of calculating theaverageand standard deviationof the microscopic crack tip parameters
Kl

I ,K
l
II andGl as functions of the level of crystalline anisotropy and the number of grains in a

unit volume. This information is needed because the crack will extend at a critical combination
of the microscopic stress intensity factorsKl

I andKl
II , which are linearly related toK∞I , but

otherwise depend on the details of the microstructure in the immediate vicinity of the crack
tip. Alternatively, the crack can be assumed to propagate at an energy release rateGl (which
is defined subsequently) equal to a critical valueγ l. The propagation criterion in a single
crystal, which is beyond the scope of this paper, is an important issue that is receiving attention
(Azhdari and Nemat-Nasser, 1996; 1998). The problem of predicting crack propagation in the
polycrystalline medium is complicated by the fact that functionF in (1) now depends on
details such as the number of crystals in a unit area, the relative position of the crack tip
within the crystal, and the orientations of the principal material directions within each crystal.
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The crystalline structure in both models is approximated as a Poisson-Voronoi tessellation,
consisting ofn grains, using the approach taken in (Kumar, 1992; Mullen et al., 1997). Each
grain is assumed to possess either cubic or orthotropic symmetry.

With respect to the local coordinate axes 1–2 shown in Figure 3, which represent the
principal material directions of a typical grain, the stress-strain relations are given, in matrix
and component form, by Hooke’s law in plane strain

{σ } ≡
 σ11

σ22

σ12

 = [S]{ε} ≡
 s11 s12 0

s12 s22 0

0 0 2s44


 ε11

ε22

ε12

 , (4)

whereσij and εij (i, j = 1,2) are, respectively, components of the symmetric stress and
strain tensors. System 1–2 is rotated through angleθ from the globalx-axis. The stiffness
coefficients in the globalx-y axes are calculated using standard transformation formulas. The
level of anisotropy is quantified by the parametersA, ν andλ, defined as

A ≡ 2s44

s11− s12
, (5a)

ν ≡ s12

s11+ s12
, (5b)

λ = s11

s22
. (5c)

For isotropic materialsA = 1, ν = ν, andλ = 1. The randomness of the orientation of
the principal directions is introduced, in each ofm simulations (m varied from 200–300), by
assigning, to each cell, a uniformly distributed random angleθ , where 0< θ < 2π . The
nominal Poisson’s ratio and nominal plane strain Young’s modulus are defined asνn ≡ ν

andEn/(1 − (νn)2), respectively. The normalized plane strain modulusE, is obtained by
normalizing the nominal plane strain modulus with respect to the ‘isotropic’ plane strain
modulusE isotropic, which is obtained by equating the first entry in the stiffness matrixS, for
A = 1 (for fixedν), with that of an isotropic material, i.e.E isotropic≡ c11(1−2ν)/(1−ν2). For
an aggregate comprised of a very large number of grains (an average ofn = 750 grains within
a unit area of film), Figures 5 show, as functions ofA andν, the average values of the nominal
Poisson’s ratio and normalized plane strain Young’s modulus. The most interesting result in
these figures is the negative nominal Poisson’s ratio that results from crystalline anisotropy,
as first reported in (Mullen et al., 1997). As discussed in (Mullen et al., 1997), the nominal
elastic constants are more sensitive toν than toλ.

Figures 6 present, for highly anisotropic cubic and orthotropic crystals, the fraction of
occurrences of the average plane strain modulus. It is observed that these are nearly symmetric
about the mean, and are associated with a well defined peak.

The near-tip mechanics is summarized through the local-global representation of the cracked
polycrystalline plane region shown in Figure 7. LetL represent the macroscopic length scale
(crack length, uncracked ligament length, or any other relevant characteristic length), and
recall that l represents the average grain size. For a given (deterministic) aggregate, it is
expected that for large values ofL/l, a near-tip,small scale heterogeneouszone exists, and
arguments analogous to those presented for small scale process zones can be used to study
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Figure 5. Average values of normalized plane strain Young’s modulus and Poisson’s ratio as functions of
anisotropy parameters;ν = 0,0.1, 0.2,0.3, 0.4,0.5.

the evolution of the near-tip stress fields (Ballarini et al., 1995; Jha et al., 1997; Jha, 1977).
For example, in small scale yielding, the near-tip plastic zones that develop with increasing
load disturb the singular elastic solution giving rise to other near-tip asymptotics such as the
HRR fields in deformation plasticity and power law hardening materials (Rice and Rosengren,
1968; Hutchinson, 1968). Similarly, it is expected that for the polycrystalline material, the
heterogeneity perturbs the singular fields predicted by the homogeneized aysmptotic solution
giving rise to dual asymptotics consistent with the dual length scales in the near-tip region.
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Average plane strain modulus

Average plane strain modulus

Figure 6. Distributions of average plane strain modulus.

Figure 7. A schematic representation of the regions dominated by distinct asymptotics.
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Moreover, for largeL/l, the mechanical response of the polycrystalline material at distances
sufficiently away from the physical crack tip can be studied by ignoring the microstructure
while employing the properties of a homogeneous isotropic medium instead. The latter proper-
ties can be calculated using the properties of the individual crystals through homogeneization
techniques; this paper uses the results presented in Figures 5. The stresses associated with the
response of the homogeneous medium reflect average stress measures acting over the length of
an appropriate microstructural unit cell. Under such conditions, the average unit cell stresses
and displacements in the neighborhood of the crack tip are square root singular, and can be
characterized via an isotropic macroscopic stress intensity factorK∞I . These are given by
(Anderson, 1995) σxx

σyy
σxy

 = K∞I√
2πr

cos1
2θ


1− sin 1

2θ sin 1
23θ

1+ sin 1
2θ sin 1

23θ

sin 1
2θ cos1

23θ

 , (6)

{
ux
uy

}
= K∞I

2G

√
r

2π

{
cos1

2θ
[
κ − 1+ 2 sin2 1

2θ
]

sin 1
2θ
[
κ + 1− 2 cos2 1

2θ
] } , (7)

where ther-θ polar coordinate is centered at the crack tip,G = E/2(1 + ν) is the shear
modulus,κ = 3− 4ν for plane strain,κ = (3− ν)/(1+ ν) for plane stress.

As shown in Figure 7, the outermost radiusr3 from the physical crack tip of the zone
dominated byK∞I is expected to depend on the macroscopic characteristic lengthL, and
in turn, r3 is some fraction ofL. Thus, in a homogeneized medium, region III as shown in
Figure 7 is defined as being dominated by the isotropic singular stress field given by (6) and
(7). While this may be a realistic approximation for material systems with largeL/l ratios,
it is underscored that this approach may only provide useful stress field approximations at
material points located within region III at distances from the physical crack tip which are
much larger than the microstructural characteristic lengthl. As a result of the microstructure,
it is clear that distinctly different asymptotics will dominate the mechanics at material points in
region I (which contains the physical crack tip and extends to a distancer1), and that these will
determine the crack propagation load and direction. The extentr1 of region I from the crack
tip depends on the position of the crack tip relative to the adjacent crystal, and the degree of
crystalline anisotropy. The distinct asymptotics dominating regions I and III discussed above
are assumed to develop in heterogeneous systems with largeL/l. In polycrystalline systems
with nearly isotropic crystals, the dominance of region I would clearly prevail over region III,
with r1 extending tor3. For high levels of anisotropy, the asymptotic fields in regions I and III
are expected to be matched through other fields dominating the transition region II, extending
from r1 to r2.

In the immediate vicinity of the crack tip (region I), which is anisotropic, the stress and
displacement components are given by (Sih et al., 1965)

 σxx
σyy
σxy

 = Kl
I√

2πr
Re



µ1µ2
µ1−µ2

[
µ2√

cosθ+µ2 sinθ
− µ1√

cosθ+µ1 sinθ

]
1

µ1−µ2

[
µ1√

cosθ+µ2 sinθ
− µ2√

cosθ+µ1 sinθ

]
µ1µ2
µ1−µ2

[
1√

cosθ+µ1 sinθ
− 1√

cosθ+µ2 sinθ

]
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+ Kl
II√

2πr
Re



1
µ1−µ2

[
µ2

2√
cosθ+µ2 sinθ

− µ2
1√

cosθ+µ1 sinθ

]
1

µ1−µ2

[
1√

cosθ+µ2 sinθ
− 1√

cosθ+µ1 sinθ

]
1

µ1−µ2

[
µ1√

cosθ+µ1 sinθ
− µ2√

cosθ+µ2 sinθ

]


, (8a)

{
ux
uy

}
= Kl

I

√
r

2π
Re

{ 1
µ1−µ2

[µ1p2(cosθ + µ2 sinθ)1/2− µ2p1(cosθ + µ1 sinθ)1/2]
1

µ1−µ2
[µ1q2(cosθ + µ2 sinθ)1/2− µ2q1(cosθ + µ1 sinθ)1/2]

}

+Kl
II

√
r

2π
Re

{ 1
µ1−µ2

[p2(cosθ + µ2 sinθ)1/2− p1(cosθ + µ1 sinθ)1/2]
1

µ1−µ2
[q2(cosθ + µ2 sinθ)1/2− q1(cosθ + µ1 sinθ)1/2]

}
,(8b)

where Re(Im) denotes real (imaginary) part

pj = c′11µ
2
j + c′12− c′16µj, j = 1,2, (9a)

qj = c′12µj +
c′22

µj
− c′26, (9b)

the c′ij are the flexibility coefficients (the components of the inverse of matrix C in (4)),
transformed to the global axes, andµj are the roots (with positive imaginary parts) of the
characteristic equation

c′11µ
4− 2c′16µ

3+ (2c′12+ c′44)µ
2− 2c′26µ+ c′22 = 0. (10)

The energy release rate for self-similar extension is given as

Gl = −1
2K

l
I c
′
22 Im

[
Kl

I (µ1+ µ2)+Kl
II

µ1µ2

]
+ 1

2K
l
IIc11 Im[Kl

II (µ1+ µ2)+Kl
Iµ1µ2]. (11)

Because the crystals in a real material are randomly orientated, the behavior of the stress
intensity factors and of the stresses in the vicinity of the crack is more complicated; these
physical parameters can only be discussed in terms of their probability distributions. Indeed,
the scatter in the stresses ahead of the crack may be large enough to render the previous near-
tip discussion irrelevant. In other words, distinct asymptotics may not be observed, as will be
subsequently shown.

3. Near-tip finite element model

Consider the near-tip plane strain region shown in Figure 4. The physical dimensions of this
zone areRxR (with R = 1) such thatR 6 r3, wherer3 signifies the boundary of region III
consistent with Figure 7. In this model, the Poisson-Voronoi tessellation approximation of the
polycrystalline structure is retained. The region under consideration includes the crack tip,
whose position within the crystal is a random variable. The crack surfaces are traction-free.
Mode-I loading is applied by prescribing, along the boundary of the region, the displace-
ments in (7). It should be understood that this model does not incorporate finite geometry
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Figure 8. Fraction of occurrences of local stress intensity factor for highly anisotropic cubic crystals.

characteristics. In other words,R does not directly represent a macroscopic length, rather it
provides an indirect measure of a macroscopic characteristic length. The only requirement on
R is that stated earlier, i.e.R 6 r3. Various morphologies corresponding to differentL/l are
modeled by changing the number of crystalsn within the modeled region. It is expected that
this approach will capture the various near-tip asymptotics and the transitional characteristics
from region I to region III through region II. The relation betweenR andL could be quantified
only by modeling specific finite geometries.

The microscopic stress intensity factors are calculated using the displacement correlation
technique (Barsoum, 1977; Ingraffea and Manu, 1980), which involves equating the square
root portion of the finite element displacement interpolation of the crack opening and crack
sliding displacements, with the analytical values given by (8b). These in turn are used to
calculate the local energy release rate.

4. Results

The average and standard deviation (denoted by subscripts avg and sd, respectively) ofK ≡
Kl

I /K
∞
I andG ≡ Gl/G∞I are summarized in Table 1. Form simulations (the results presented
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Figure 9. Fraction of occurrences of local stress intensity factor for highly anisotropic, slightly orthotropic
crystals.

Figure 10. Fraction of occurrences of local stress intensity factor for highly anisotropic orthotropic crystals.

in Table 1 correspond tom= 200–400), the standard deviation ofx is defined as√
(6mx

2/(m− 1))−mx2
avg/(m− 1). The results for the isotropic crystals(A= λ=1) show

that the errors in the calculated stress intensity factors and energy release rates are on the order
of a few percent.
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Table 1. Calculated crack tip parameters

A ν λ n Kavg Gavg Ksd Gsd

1 0 1 10 0.9846 0.9696 0.00692 0.01398

1 0 1 100 0.9848 0.9699 0.00664 0.01377

1 0 1 250 0.9831 0.9666 0.00405 0.0077

1 0 1 500 0.9839 0.968 7.4E-05 0.00015

1 0 2 10 0.9969 0.9818 0.11 0.1203

1 0 2 100 0.9792 0.9575 0.08638 0.08356

1 0 2 250 0.9938 0.9651 0.083 0.07982

1 0 2 500 0.9852 0.9566 0.08823 0.08569

1 0 10 10 1.035 0.9767 0.3407 0.4097

1 0 10 100 0.992 0.8872 0.2745 0.2537

1 0 10 250 0.9601 0.8665 0.2644 0.2299

1 0 10 500 0.9303 0.8395 0.2191 0.1949

1 0.2 2 10 0.9853 0.9647 0.1117 0.1224

1 0.2 2 100 0.9778 0.9574 0.08969 0.09426

1 0.2 2 250 0.9835 0.96 0.09177 0.08819

1 0.2 2 500 0.9771 0.948 0.08347 0.08796

1 0.2 10 10 1.022 0.9687 0.3543 0.4279

1 0.2 10 100 0.9242 0.8389 0.2285 0.2121

1 0.2 10 250 0.9484 0.8393 0.2372 0.2289

1 0.2 10 500 0.9043 0.802 0.2329 0.1912

1 0.4 2 10 0.9558 0.9216 0.1005 0.1155

1 0.4 2 100 0.9485 0.9153 0.08509 0.09749

1 0.4 2 250 0.9417 0.9011 0.0798 0.08157

1 0.4 2 500 0.9489 0.9047 0.08087 0.07973

1 0.4 10 10 0.8912 0.8295 0.2974 0.3599

1 0.4 10 100 0.7999 0.6814 0.1737 0.1962

1 0.4 10 250 0.8087 0.6948 0.1591 0.1861

1 0.4 10 500 0.821 0.7024 0.16 0.1941

3 0 1 10 0.9727 0.9617 0.02514 0.04963

3 0 1 100 0.968 0.9521 0.0216 0.04259

3 0 1 250 0.968 0.9519 0.01872 0.03676

3 0 1 500 0.9675 0.951 0.01883 0.03715

3 0 2 10 0.9855 0.9766 0.1248 0.1485

3 0 2 100 0.978 0.9529 0.105 0.1255

3 0 2 250 0.9705 0.9406 0.1081 0.1212

3 0 2 500 0.966 0.9424 0.1034 0.1123

3 0 10 10 1.061 1.005 0.3984 0.4662

3 0 10 100 0.9493 0.8667 0.2769 0.2766

3 0 10 250 0.9744 0.8869 0.272 0.264

3 0 10 500 0.9866 0.8936 0.2886 0.2839

3 0.2 1 10 0.9732 0.9681 0.02889 0.05746

3 0.2 1 100 0.9729 0.9615 0.1134 0.1235

3 0.2 1 250 0.965 0.9515 0.02521 0.04959
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Table 1.(Contd.). Calculated crack tip parameters

A ν λ n Kavg Gavg Ksd Gsd

3 0.2 1 500 0.9631 0.9478 0.0253 0.04997

3 0.2 2 10 0.9922 0.9742 0.1181 0.1344

3 0.2 2 100 0.9708 0.9498 0.09824 0.1031

3 0.2 2 250 0.9827 0.9554 0.09156 0.09461

3 0.2 2 500 0.9822 0.9566 0.09097 0.09325

3 0.2 10 10 1.073 1.02 0.3866 0.4397

3 0.2 10 100 1.007 0.9227 0.2873 0.3059

3 0.2 10 250 0.9962 0.9105 0.2977 0.283

3 0.2 10 500 0.9834 0.9068 0.2634 0.2585

3 0.4 1 10 0.9597 0.9542 0.06316 0.118

3 0.4 1 100 0.9431 0.9221 0.05847 0.1119

3 0.4 1 250 0.9481 0.9313 0.05737 0.1074

3 0.4 1 500 0.9577 0.9498 0.0766 0.1456

3 0.4 2 10 0.9774 0.9557 0.1104 0.1238

3 0.4 2 100 0.9764 0.9425 0.09122 0.101

3 0.4 2 250 0.9766 0.9468 0.08848 0.09471

3 0.4 2 500 0.9688 0.9418 0.08373 0.08225

3 0.4 10 10 1.037 0.9866 0.3548 0.3915

3 0.4 10 100 0.9849 0.8779 0.2811 0.2693

3 0.4 10 250 0.9347 0.8322 0.245 0.211

3 0.4 10 500 0.9376 0.8399 0.2447 0.2211

5 0 1 10 0.9711 0.9648 0.04471 0.07122

5 0 1 100 0.9567 0.9364 0.03651 0.05684

5 0 1 250 0.9592 0.9412 0.03872 0.05649

5 0 1 500 0.9604 0.9398 0.04123 0.05033

5 0 2 10 0.9809 0.9708 0.122 0.1472

5 0 2 100 0.9621 0.9425 0.1037 0.119

5 0 2 250 0.9638 0.9488 0.1051 0.1296

5 0 2 500 0.95 0.932 0.09389 0.1007

5 0 10 10 1.055 1.022 0.4035 0.4877

5 0 10 100 0.9945 0.9171 0.3043 0.3055

5 0 10 250 0.9684 0.9034 0.2968 0.3025

5 0 10 500 0.9475 0.8725 0.2836 0.2766

5 0.2 1 10 0.9593 0.9577 0.03936 0.07897

5 0.2 1 100 0.9506 0.9396 0.0345 0.06848

5 0.2 1 250 0.9524 0.9431 0.03362 0.06683

5 0.2 1 500 0.952 0.9325 0.1455 0.1505

5 0.2 2 10 0.9759 0.9687 0.1191 0.1415

5 0.2 2 100 0.9581 0.9437 0.1003 0.1194

5 0.2 2 250 0.9723 0.9534 0.09271 0.1078

5 0.2 2 500 0.9712 0.9447 0.08757 0.101

5 0.2 10 10 1.077 1.063 0.4268 0.5295

5 0.2 10 100 0.9624 0.8901 0.2908 0.3069
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Table 1.(Contd.). Calculated crack tip parameters

A ν λ n Kavg Gavg Ksd Gsd

5 0.2 10 250 0.9841 0.892 0.286 0.27

5 0.2 10 500 0.9676 0.8927 0.2917 0.2902

5 0.4 1 10 0.9303 0.9299 0.04891 0.09878

5 0.4 1 100 0.9123 0.8944 0.05005 0.09767

5 0.4 1 250 0.9143 0.8976 0.04615 0.09006

5 0.4 1 500 0.9229 0.9153 0.05063 0.1015

5 0.4 2 10 0.9762 0.9643 0.1165 0.1416

5 0.4 2 100 0.9662 0.9458 0.09975 0.1183

5 0.4 2 250 0.9558 0.9297 0.09285 0.1054

5 0.4 2 500 0.9677 0.9406 0.09325 0.1083

5 0.4 10 10 1.105 1.054 0.3949 0.466

5 0.4 10 100 0.9975 0.8837 0.2743 0.2613

5 0.4 10 250 0.9845 0.8991 0.2702 0.2659

5 0.4 10 500 0.9684 0.8628 0.2486 0.2308

9 0 1 10 0.9579 0.956 0.04177 0.08366

9 0 1 100 0.9386 0.9162 0.02891 0.0563

9 0 1 250 0.9372 0.9134 0.02816 0.05491

9 0 1 500 0.9444 0.9254 0.04802 0.07167

9 0 2 10 0.9678 0.9596 0.1291 0.1637

9 0 2 100 0.9439 0.922 0.1051 0.1243

9 0 2 250 0.9269 0.9031 0.09488 0.1116

9 0 2 500 0.9367 0.9143 0.09702 0.1162

9 0 10 10 1.038 1.041 0.4261 0.5412

9 0 10 100 0.9199 0.8478 0.3257 0.3755

9 0 10 250 0.9021 0.8214 0.2705 0.2901

9 0 10 500 0.9342 0.8535 0.3035 0.3358

9 0.2 1 10 0.94 0.948 0.04818 0.09767

9 0.2 1 100 0.9255 0.9172 0.04194 0.08291

9 0.2 1 250 0.9188 0.9035 0.03489 0.06888

9 0.2 1 500 0.9227 0.9111 0.03523 0.06972

9 0.2 2 10 0.9676 0.9695 0.1692 0.2056

9 0.2 2 100 0.9378 0.9171 0.0987 0.123

9 0.2 2 250 0.935 0.9131 0.1016 0.1204

9 0.2 2 500 0.9463 0.9269 0.09811 0.1199

9 0.2 10 10 1.073 1.073 0.4394 0.5444

9 0.2 10 100 0.9414 0.866 0.3021 0.31

9 0.2 10 250 0.9385 0.8598 0.2882 0.3136

9 0.2 10 500 0.921 0.8624 0.305 0.3383

9 0.4 1 10 0.9006 0.9132 0.05919 0.1214

9 0.4 1 100 0.8835 0.8786 0.06104 0.1216

9 0.4 1 250 0.875 0.8609 0.054 0.1073

9 0.4 1 500 0.869 0.8504 0.06049 0.1189

9 0.4 2 10 0.963 0.9636 0.127 0.1614
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Table 1.(Contd.). Calculated crack tip parameters

A ν λ n Kavg Gavg Ksd Gsd

9 0.4 2 100 0.9376 0.9131 0.1017 0.1272

9 0.4 2 250 0.9387 0.9093 0.09749 0.1212

9 0.4 2 500 0.9396 0.9168 0.09734 0.1183

9 0.4 10 10 1.089 1.064 0.3915 0.4936

9 0.4 10 100 0.9735 0.9041 0.3105 0.318

9 0.4 10 250 1.009 0.9125 0.2921 0.304

9 0.4 10 500 0.9823 0.8908 0.2944 0.3047

For cubic crystals(λ = 1), the effects of anisotropy and heterogeneity on the crack tip
parameters are relatively small. Consider the results forn=500; for the highest levels of
anisotropy considered(A = 9, ν = 0.4), the average stress intensity factor is slightly reduced
to ≈ 0.87± 0.06 (±x represents± one standard deviation), and the average energy release
rate is reduced to≈ 0.85± 0.12. Moreover, the results are not sensitive ton. Polycrystalline
silicon is defined byA = 1.65, ν = 0.282; for all values ofn, the average stress intensity
factor is≈ 0.93± 0.02, and the average energy release rate is≈ 0.91± 0.03.

The results for orthotropic crystals show that anisotropy and heterogeneity produce signi-
ficant effects for highly anisotropic crystals. For example, ifn=500, A= 9, λ= 10, andν =
0.4, the stress intensity factor is≈ 0.98± 0.29, and the energy release rate is≈ 0.89± 0.30.
Moreover, for highly anisotropic crystals, the results are significantly influenced by the num-
ber of grains; forn = 10, the standard deviations of the stress intensity factor and energy
release rate, for the previous example, increase to 0.39 and 0.49, respectively.

Figures 8–10 show, respectively, the fraction of occurrences of the local Mode-I stress
intensity factor for highly anisotropic cubic crystals, highly anisotropic ‘slightly’ orthotropic
crystals, and high anisotropic orthotropic crystals. It is observed that for cubic crystals, the
distribution is relatively narrow and nearly symmetric about the mean, while for orthotropic
crystals the distribution is wider and not symmetric. Moreover, for orthotropic crystals, a small
population of realizations is associated with stress intensity factors that are more than double
of the nominal. It is interesting to note that unsymmetric distributions of stress intensity factors
were also predicted by the model developed by Scavia and Carpinteri (1991) in their study of
the interaction between a crack with a random distribution of surrounding microcracks. How-
ever, while Figure 10 indicates peaks in the shielding range and a long tail in the amplification
range, similar plots in (Scavia and Carpinteri, 1991) show that distributed microcracking leads
to peaks in the amplification range and a long tail in the shielding range.

The scatter of the normalized stressσ ≡ √2πRσyy/K∞I ahead of the crack for highly
anisotropic cubic crystals, and highly anisotropic orthotropic crystals, are shown in Figures
11 and 12, respectively. In these figures the distance from the crack tipr, actually represents
the nondimensional distancer/R, with R = 1. It is observed that for cubic and orthotropic
crystals, even at high levels of anisotropy, the dual length scale asymptotics disappear within
the scatter; the stress is square root singular, with upper and lower bounds modulated by the
deviation of the local stress intensity factor from the mean. Furthermore, the distribution of
stress is nearly independent of the number of crystalsn.
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Figure 11. Scatter of normalized stress ahead of crack for several values ofn(λ = 1, A = 9, ν = 0.4).
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Figure 12. Scatter of normalized stress ahead of crack for several values ofn(λ = 10, A = 9, ν = 0.4).
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It is important to note that the effects of anisotropy are expected to increase drastically
if cracking within crystals or along grain boundaries is taken into account. The authors are
currently calculating these effects, and those of finite geometry.

5. Conclusions

In a columnar aggregate of randomly orientated, perfectly bonded, orthotropic crystals under
plane deformation, only the grains surrounding the crack tip significantly perturb the average
values and standard deviations of the stress intensity factors and energy release rate from
the nominal applied values. For very high levels of crystalline anisotropy, the average values
and standard deviations for cubic and orthotropic crystals are perturbed by approximately 10
percent and 30–40 percent, respectively.

Appendix. Calculation of nominal elastic constants

With respect to the global coordinate systemx-y-z shown in Figure 3, the film is analyzed
under plane strain conditions,uz = ∂( )/∂z = 0, whereuz is the displacement in thez
direction, and ( ) denotes any physical quantity. For a given number of grainsn, the topology
of the microstructure within theunit volume shown in Figure 3 is approximated, foreachof m
simulations, as a Voronoi tessellation. The tessellation is constructed by first generating, using
a Poisson process, a set of random nucleus pointsri (i = 1, n). The set of all points which are
closer tori than to any other nucleusrj (i 6= j) comprise theith Voronoi cell. The assembly
of then convex, planar edged cells, defines the tessellation. Each grain is discretized with a
sufficient number of quadratic displacement finite elements.

For determination of the effective elastic constants, the filmstructureis loaded, as shown
in Figure 3, through the following boundary conditions

uy = 1, y = 1, (A1)

ux = σxy = 0, x = 0, x = 1, (A2)

uy = σxy = 0, y = 0. (A3)

These are associated with nominal (average) strain componentsεnyy = 1/1, εnxx = 0, εnxy = 0.
The finite element method is used to calculate the total reaction forces (per unit thickness)
Fx andFy shown in Figure 3, which for the unit length edges, correspond to nominal stress
componentsσ nxx andσ nyy, respectively. The associated nominal values of the Poisson ratioνn

and plane strain Young’s modulusE
n ≡ En/[1− (νn)2] are defined by invoking Hooke’s law

for the isotropiccontinuum under plane strain conditions
σnxx = Fx
σ nyy = Fy
σ nxy = 0

 =
En

(1+ νn)(1− 2νn)


1− νn νn 0

νn 1− νn 0

0 0 (1− 2νn)



εnxx = 0

εnyy = 1
εnxy = 0

 . (A4)

Equations (A4) provide

νn = 1

1+ Fy

Fx

, (A5)
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E
n = En

[1− (νn)2] =
(1+ νn)(1− 2νn)

νn[1− (νn)2]
Fx

1
. (A6)

The steps described above are repeatedm times for each value ofn.

E
n

is normalized with the ‘isotropic’ plane strain Young’s modulusE
isotropic

obtained by
equating the first entry in the stiffness matrix for cubic symmetry, forA = 1 (for fixedν) with
that of an isotropic material, i.e.

E
isotropic≡ c11(1− 2ν)

(1− ν)2 . (A6)
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