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Abstract. This paper presents the results of an analysis which considers the interaction between a semi-infinite crack 
and a dislocation dipole. Applying the operator derived by Denda [1] to the crack/dislocation interaction solution 
developed by Lo [2], explicit expressions are obtained for the stress intensity factors at the tip of the crack. Results 
are computed and discussed for a variety of geometrical configurations, with the intent of developing an 
understanding of the effects of position and orientation of the dislocation dipole on crack tip shielding and 
antishielding. The solution can be used as a Green's function in semi-empirical analyses such as the one proposed 
by Chudnovsky [3], where the interaction between a crack in a polymeric material and the damage (crazing) which 
surrounds it is solved by experimentally measuring the crack opening displacements of the crazes and calculating 
the amount of toughening caused by the damage. 

I. Introduction 

It is well known that in many materials crack growth is accompanied by the formation of 
damage (microcracking, crazing, etc.) around the main crack. Because this damage can 
constitute an important toughening mechanism, the elastic interaction of a crack with an 
array of microcracks has been addressed by various authors. The mathematical treatment 
of the problem of interaction between random cracks in a three dimensional body is very 
complicated. Therefore, most of the solutions that have been developed reduce the problem 
to two dimensions. Approximate solutions to the problem which neglect the interaction 
between the cracks were developed by Panasjuk [4] (only pairs of cracks interact) as well as 
Carpinteri et al. [5] (none of the cracks interact), in their analyses of a thin plate with random 
cracks subjected to biaxial tension. Their analyses assume that propagation of the most 
dangerous crack leads to failure of the solid. The failure load was determined using fracture 
mechanics formulas. The interaction between many cracks can in principle be reduced to a 
system of singular integral equations which represent appropriate traction boundary 
conditions along the surfaces of the cracks. However, since these equations require a 
numerical solution, the interaction between more than a few cracks cannot be calculated. To 
circumvent this problem several approximate techniques have been proposed in an attempt 
to gain insight into the interaction between several microcracks and a main crack. Rose [6] 
developed a very interesting solution where the microcracks are represented as point sources 
whose strengths are determined using a self-consistent scheme. The solution to the problem 
involves solving a system of algebraic equations, thus eliminating the need to solve a 
system of integral equations. However, the algebra involved in setting up the equations is 
quite laborious, and, as pointed out by Rose, the method becomes inpractical when the 
number ofmicrocracks becomes large. Chudnovsky [7, 8] has also proposed a selfconsistent 
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procedure which is valid for three-dimensional problems as well as two-dimensional problems 
based on the combination of the double layer potential (dislocation dipole) technique and 
Willis' polynomial conservation theorem. Again, the computations involved in solving the 
problem become prohibitive when the number of cracks becomes large. Rubinstein [9] 
performed an exact stress analysis of the interaction between a two-dimensional microcrack 
and a semi-infinite main crack for the special case where the cracks are collinear. His results 
are significant since they provided a basis for checking the previously described approximate 
solutions. While the solutions described above have led to significant qualitative under- 
standing of the effects of several microcracks on a main crack, it can be concluded that the 
problem of elastic interaction between many cracks is still unsolved. 

In their study of fracture propagation in polystyrene, Chudnovsky and Ben Ouezdou [ 10] 
approached the problem of the interaction between damage and a main crack from a 
different viewpoint. Realizing that for a random configuration of a large number of micro- 
cracks the solutions which satisfy traction-free boundary conditions on all cracks involve 
extremely tedious and time consuming numerical procedures, they proposed to solve the 
interaction problem in a semi-empirical manner. In their analysis an approximate integral 
representation for the stress intensity factors produced by the damage was developed 
in terms of the crack opening displacements of the crazes surrounding the main crack 
(dislocation dipole approach), and by employing experimentally observed crack opening 
displacements, they calculated the amount of toughening induced by the damage around the 
main crack. The solution was approximate because the Green's function they used did not 
satisfy all of the boundary conditions. However, their approach offers considerable promise 
for quantifying the toughening produced by the damage, since it eliminates the need for 
satisfying boundary conditions along the large number of crazes (it might be added that the 
boundary conditions along the crazes are not known anyway, since the surfaces of the cracks 
are not necessarily stress free). 

In this paper the Green's function which represents the stress intensity factor produced by 
a dislocation dipole on a main crack is presented. This function satisfies the traction-free 
boundary conditions on the surfaces of the main crack, and can be used in the semi-empirical 
analysis by integration along paths which represent the damage (crazing). This solution is 
practical because the integration can be performed using simple quadrature and does not 
involve solving a large number of algebraic equations. 

2. Method of analysis 

The analysis is based on a straightforward extension of the results obtained by Lo [2] 
considering the interaction of a dislocation and a crack. As shown by Lo, the stress and 
displacement fields in the vicinity of a crack interacting with an edge dislocation located at 
an arbitrary point z0 = x0 + iy0 (Fig. 1) are given by 

O'xx -'1- lTyy = 4 Real (do(z)) 

~yy - -  O'xx + 2iGy = 2[2do'(Z) + W(Z)I (1) 

2/~(u' + iv') = xdo(z) - zdo'(z) - dO(z) - q ' ( z ) ,  
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Fig. 1. Dislocation interacting with a crack. 
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Fig. 2. Dislocation dipole interacting with a crack. 

in which # is the shear modulus, x is related to Poisson's ratio (x = 3 - 4v for plane strain; 
= (3 - v)/(1 + v)for plane stress), and b = ei°{[ur] + i[v0]} = bx + ib~ is the Burgers 

vector ([x] denotes the jump in the quantity x). 
The potentials (I) and W, as defined in (2)- (4), satisfy the traction-free boundary condition 

on the crack surface. They were derived using the formalism and techniques developed by 
Muskhelishvili [11], based on the properties of Cauchy integrals and piecewise analytic 
functions. 

It should be noted that in the present work the interest lies in assessing the influence of 
a dislocation dipole, therefore terms representing the external loading have been omitted. 
These can be included using the principle of superposition. 

As shown by Denda [1], the interaction between a dislocation dipole and a crack (Fig. 2) 
can be obtained by the superposition of the solutions to a pair of edge dislocations, with 
Burgers vectors of the same magnitude but of the opposite directions separated by an 
infinitesimally small distance dQ. This leads to [1] 

~(I) ci 0 do + (~(ID ¢-i0 = de ,  (5) 

where (I) d and Wd are the complex potentials which represent the solution to the dislocation 
dipole problem, and (I) and W are given by (2). 

Application of the differential operator (5) to the limit as IZol/2c approaches zero of the 
Green's functions for a discrete dislocation interacting with a crack leads to the following 
expressions for the Green's functions for a dislocation dipole interacting with a semi-infinite 
crack. 

(l)a = (I)al + (I)a: 

= % 1 + % :  
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• ~.(z; Zo) = ~ Fzo [(z - Zo) -~] ® e ° 

O 
tFa,(z; Zo, Zo) = ~Zo ~ [(z - Zo) -2] de e i° 
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& 
-'b a(e i° -- e - i ° ) ~  ° [(7.1/2 q- ~/2)-1] do 

} + a(zo - ~o) ~ [(z ~ + ~ ) - ' ]  de e -~° 

% ( z )  = , ~ ( ~ )  - ~ , ~ ( z )  - z ~ , 4 ( z ) .  

It should be noted that the limit, which represents the case for which the distance between 
the crack tip at z = 0 and the dislocation dipole is very small is taken to simplify the 
algebraic manipulations. These terms can be retained if one is interested in introducing the 
crack length as a parameter. 

3. Stress intensity factor analysis 

The stress and displacement fields can be determined from the potentials ~d and ~a through 
(1). In particular, the stress intensity factors, defined by 

K~ - iK~ = lim ~ ( a y y  - -  iaxy) (7) 
~/z~O 

become 

3i~ 
K~ - iKu = Q-3/Z de ~ c o s ( 0 -  3 / 3 / 2 ) - - ~ - s i n f l c o s ( 0 -  5/3/2) 

+ i~ sin 0 e 3i#/2 q'- ~ sin fl sin (5fl/2 - 0) (2~z) ~/2 (8) 
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Fig. 3. Angular variation of stress intensity factors. 

where z0 = Q e i#. For  the special case where the dislocation dipole is parallel to the main 
crack (0 = 0), (8) reduces to 

KI - iKu 
p dQ 

2n(K + 1)Q 3/2 {by[2 cos (3fl/2) + 3 sin (5fl/2) sin fl] 

+ bx[3 sin fl cos (5fl/2)] + i {by [ -  3 sin fl cos (5fl/2)1 

+ b~[3 sin fl sin (5fl/2) - 2 cos (3fl/2)]}} (27r) 1/2 (9) 

Equat ion (9) is nondimensionalized by defining the following. 

K ?  - igl~ ~-- (7/;/2) 1/2 (K + 1)Q 3/2 ( g  1 _ iK~,), (10) 
/a dQ Ibl 

fi2 ~1/2 where Ibl = (b 2 + -y ,  is the magni tude of  the Burgers vector. 
The angular variation of  these dimensionless stress intensity factors are shown in Fig. 3 

for several combinat ions  of  bx and by. In this plot Ki* (i = I, II j = x, y) represents the 
stress intensity factor K* due to bj. The most  interesting and valuable information obtained 
from these results is the shielding effect the dislocation dipole produces on the crack, 
especially the mode I intensity due to by(b~ = 0). For  fl < 68.4 ° this dipole contributes a 
positive K* (amplification), while for fl > 68.4 ° it produces a negative K* (shielding). The 
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Fig. 4. Contours of equal levels of nondimensionalized mode I stress intensity factor due to by. 
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maximum value of  the mode I stress intensity factor due to by occurs at 36 deg for anti- 
shielding and at 108 deg for shielding. 

Figures 4-7 are contour plots of  equal levels of  the quantities 

K * *  - iK**  = (re/2) '/2 (x + 1) ib l , /2(K ' _ iKn)  (11) 
p do 

as functions of  the dimensionless distance (o/Ib[), where Ki** represents K**(i = I, II) due 
to bj( j  = x, y). 

These results agree with those calculated by Chudnovsky and Ben Ouezdou, and are 
similar to those obtained by Rose in his study of a microcrack interacting with a main crack. 
It seems reasonable to expect similarities between the effects of  a microcrack and a dislocation 
dipole, since it is well known that a crack can be modeled as a continuous distribution of  
dislocations (or dislocation dipoles). 

4. Use of the Green's function in semi-empirical analyses 

This section presents a brief description of how the Green's function for the stress intensity 
factor caused by a dislocation dipole can be utilized to quantify the effect of  damage in a 
semi-empirical analysis. 

Imagine an experiment being conducted on a cracked specimen, where the damage which 
evolves during crack propagation, which for this material consists of lines of discontinuity 
(crazes, for example), is monitored optically (the crack opening displacements of each line 
of  discontinuity are measured). The stress intensity factor produced by the damage can be 
calculated by integrating (8) as follows: 

(K1 -- iKn) = fr {~e(0' fl) cos [0(O , fl) - 3/3/2] 

3 i w  
2 ~(e, /3) sin/3 cos [0(0, /3) -- 5/3/2] 

+ ice(0,/3) sin 0(O,/3) e 3i#/2 

+ ~ co(0,/3) sin/3 sin [5/3/2 - 0(0,/3)]} (2rc)1/20-3/2 do, (12) 

where F are all paths representing the lines of  discontinuity (damage). As a simple example 
consider a craze with a constant opening by located ahead of  the crack tip as shown in 
Fig. 8. For this case (12) can be integrated in closed form. This results in 

2/~(2/n) I/2 
K1 = (x + 1) b~{o~-l/: - 02'/2}' (13) 

where Qz and 02 are the left and the right coordinates of the craze, respectively. 
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Fig. 8. Craze interacting with a crack. 

5. Conclusion 

A Green's function has been derived for the stress intensity factors produced by the 
interaction between a dislocation dipole and a crack. This solution can be utilized in 
semi-empirical analyses to quantify the effects on a crack of the damage which evolves during 
its propagation. While the discussion has been limited to the case where the damage consists 
of infinitesimally thin discontinuities, the method could be generalized [1] to include damage 
which is continuous over an area. 

Work is currently under way to gather experimental data using polystyrene as a model 
material. The experimentally measured crack opening displacements of the crazes surrounding 
a crack will be substituted into (12), and the equation will be solved numerically. This will 
quantify the effect of damage on the fracture behavior of the material. The results of this 
work will be presented in a future communication. 
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R6sum6. On pr6sente les r/:sultats d 'une analyse prenant en compte l'interaction entre une fissure semi-infinie et 
une paire de dislocations. En appliquant un opbrateur dfi ~i Denda fi la solution d'interaction fissure/dislocation 
propos6e par Lo, on obtient des solutions explicites pour les facteurs d'intensit6 de contraintes ~i l'extr6mit6 de la 
fissure. Les r6sultats sont calcul6s et discut~s pour une gamme de configurations g6om6triques, dans le but de 
d6velopper une intelligence des effets de la position et de l'orientation de la paire de dislocations sur l'effet de 
couverture ou de non-couverture fi l'extr6mit6 de la fissure. La solution peut 6tre utilis6e sous la forme d'une 
fonction de Green darts les analyses semi-empiriques telles que eelles propos6es par Chudnovsky, off l'interaction 
entre une fissure dans un mat6riau polym6re et l 'endommagement (criques) qui l'environne est r6solue par une 
mesure exp6rimentale des COD des criques et par le calcul de l'intensitb du durcissement associ~ h l'endommagement. 


