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Two dimensional problems in linear elastic fracture mechanics are often 
reduced to a singular integral equation (or system of integral equations) 
of the form 

1 1 

ff(t) dt +f K(x't) f(t) dt = g(x) - l < x < I t - x  , (I) 

-i -i 

where f(t) is a function to be determined, and K(x,t) and g(x) are known 
functions related to the geometry of the cracked body and the loading on 
the crack surface(s), respectively. The function f(t), which is called the 
dislocation density, is the slope of the crack profile and, if the crack is 
closed at its tips, satisfies the consistency condition 

1 

f(t) dt = 0 (2) 

-i 

In this paper an algorithm is presented which can be used to develop a 
compliance matrix for a cracked solid when such a formulation is used. This 
matrix relates the stresses at the collocation points arising from the 
applied loads (including those applied to the crack surfaces) to the values 
of the opening of the crack at the integration points. The method relies 
on the numerical procedure developed by Gerasoulis [i], which is used to 
reduce (i) to a system of algebraic equations for unknown values of f(t) at 
discrete points in the interval [-i,i]. 

The algorithm is best explained through a simple example. For the crack- 
ed plate shown in Fig. 1 the governing equations for the dislocation density 
are 

1 
r 

..... 2~ J f(t) dt -l<x<l (3) 
w(<+l) __ t-x = o , 

1f(t) dt = 0 (4) 

-i 

where ~ is the shear modulus, <= 3-4w for plane strain, andw is Poisson's 
ratio. 

The crack opening displacement is given by 

1 

t- u-= l f(t) dt (5) 

X 
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The exact solution to this problem is 

f(x) = [(<+l)ooo/2p] [xI/(l-x2)l 

+ 
u - u- = [(<+l)Croo/2p] / /(l-x 2) 

(6) 

(7) 

Following [I] (and nondimensionalizing by setting 2p/~o=(<+l) equal to 
unity), f(t) is expressed by 

f(t) = ~(t)//(l-t 2) (8) 

and ~(t) is approximated as piecewise quadratic in [-I,i]. The result is 
that (3) and (4) are reduced to a system of algebraic equations through 
quadrature formulas. The details of the quadrature can be found in [i] and 
are omitted here. The results are 

2 N+I 

wi(x k) ~(t i) = 1 k=l,2N 
i=l 

3 

(9) 

2n+l 

v ,(ti) = 0 
i=l i 

(1o) 

We note that the unknown values of , are those at the integration points ti, 
while the stresses on the right hand side of (9) are at the collocation 

points x k- 

For illustration we take five points for the quadrature, and (9) and 
(i0) become 

-3.236 1.527 .699 .683 .328 

- .948 -2.311 1.626 1.190 .443 

- .443 -1.190 -1.626 2.311 .948 

- .328 - .683 - .699 -1.527 3.236 

• 571 .858 .283 .858 .571 

Gik x 

!il 
'51 ol 

*i = L k 

(li) 

In (ii), matrix G is characteristic of the geometry of the problem and 
matrix L represents the loading and crack closure condition. What is 
usually of interest in such a problem is the stress intensity factor, and 
since the stress intensity factor is proportional to the value of , at the 
endpoints [i], (Ii) is solved for the unknown vector ,. 

Instead of doing this, in this report the inverse of matrix G is obtain- 
ed, and the product of this matrix and i//(l-t~ is integrated term by term 
to obtain a matrix C which is called the compliance matrix for this particu- 
lar geometry. The integration of each term is performed using the weights 
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for the Lagrange interpolation polynomials, 
mated in this manner. 

since the function ~ is approxi- 
The results of the integration lead to the following 

0.000 0.000 0.000 

0.087 0.121 0.049 

0.029 0.130 0.130 0.029 

0.019 0.049 0.121 0.087 

0.000 0.000 0.000 0.000 

Cik x 

o o0o II 
0.019 

(u +- tl-). 
(u +- u-)i 

Z 

(u +- u-). 

(u +- u-) 

(u +- u-) 

(12) 

oXk (u +- u ) ti 

We note that matrix C is not a square matrix. This is because the number 
of integration points is one more than the number of collocation points. 
Matrix Cik relates the displacement of the crack faces at the point t i to 
the stress at point x k. 5 

For the present problem the applied loading vector is unity, and pre- 
multiplying it by the compliance matrix leads to 

(u + U-) 1 = 0.0 
(u + U-) 2 = 0.276 

(u +- u-) 3 = 0.318 (13) 

(u +- u-) 4 = 0.276 

(+- u-) 5 = 0.0 

The above displacements agree with the exact solution. 

The utility of the compliance matrix becomes evident when one is inter- 
ested in investigating the effects of many loading cases, and in particular, 
if the stresses along the crack surfaces depend on the crack opening dis- 
placements. Such loadings are used in models for fiber reinforced concrete, 
rocks, ceramics, and other materials where microcracking, fiber bridging, 
and other nonlinear effects are modeled as nonlinear springs along the crack 
surfaces [2,3,4,5]. For these models (i) becomes nonlinear, and an iterative 
solution is needed. With the use of the compliance matrix, this iteration 
procedure is efficient and rapid. 

As an example, let us assume that the crack surfaces are bridged by 
fibers, and that the stresses transmitted by the fibers to the crack depend 
on the opening of the crack. The displacements along the crack will be 
governed by 

(u+- u-)t'l = Cik x [oxk(applied loads) + oxk(u+- u-)] (14) 

where now the stresses are decomposed into those arising from+the applied 
loads, and those due to the fiber bridging. The function q(u -u-) is deter- 
mined from experiments [6]. For the first iteration the stresses due to 
fiber bridging are assumed to be equal to zero. Premultipiying the stresses 
arising from the applied loading by the compliance matrix results in the 
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first approximation to the crack opening displacements. From these dis- 
placements the first approximation to the fiber bridging stresses are de- 
termined, and these are applied to the crack surfaces. The procedure is 
repeated until convergence is reached. This procedure was used in [4] 
(where experiments performed on concrete and fiber reinforced concrete were 
analyzed) and convergence was observed to be very fast (only several iter- 
ations were needed for three and four point bending specimens). 
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Figure i. Cracked plate showing integration and collocation points for five 
point quadrature 
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