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Abstract. The boundary element method is applied to calculate the stress intensity factors of a surface crack in 
the rotating inner raceway of a high-speed roller bearing. The three-dimensional model consists of an axially 
stressed surface cracked plate subjected to a moving Hertzian contact loading. A multi-domain formulation and 
singular crack-tip elements were employed to calculate the stress intensity factors accurately and efficiently for a 
wide range of configuration parameters. The results can provide the basis for crack growth calculations and fatigue 
life predictions of high performance rolling element bearings that are used in aircraft engines. 

1. Introduction 

Current development of very high performance rolling element bearings for aircraft engines 
has aroused concern about the growth of surface cracks in the inner bearing race. At high 
DN values (where D is the diameter of the bearing bore in millimeters, and N is the shaft 
speed in RPM) these cracks may propagate and ultimately lead to catastrophic failure of the 
bearing and the engine. Raceway fracture is therefore a totally unacceptable failure mechan- 
ism. An accurate crack stress analysis is essential in order to make a reliable prediction of 
the fatigue life of a surface cracked component. However, due to the complexities of the 
nature of the surface crack problem, closed form solutions are not possible, and a numerical 
or an experimental approach must be used to determine the stress intensity factors for 
surface cracks. The Boundary Element Method (BEM) is an efficient and accurate tool for 
fracture mechanics analyses if singular elements and multi-domain modelling are employed. 
Therefore this method was employed in the current research for calculating the stress 
intensity factors along the crack front of a surface crack subjected to various loading 
conditions. 

Several factors will affect the growth of surface cracks in a rotational bearing subjected 
to a rolling contact load. These include the shape and inclination of the crack, the tensile 
hoop stress due to rotation and shrink fit, the moving Hertzian load, the pressure of the 
lubricant seeping into the crack, the shear stress on the raceway surface due to the sliding 
contact, and friction along the crack surfaces. A significant amount of research has been 
conducted aimed at gaining a better understanding of the effects of each of these factors. 
While the surface crack is a three-dimensional problem, most of the analyses which appear 
in the literature are two-dimensional. These include the work of Way [1], which considers the 
effects of the lubricant, Fleming and Suh [2, 3], which considers the effects of contact surface 
friction, Rosenfield [4], which considers the effects of crack surface friction, and Clark [5], 
which considers the effects of tensile hoop stresses. A recent paper by Mendelson and Ghosn 
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[6] presents the results of a thorough BEM analysis of a crack propagating through a high 
speed bearing. The two-dimensional analysis employs a modified Forman-type crack propa- 
gation law to predict the fatigue life of a typical bearing subjected to tensile hoop stress 
superimposed on a cyclic Hertzian contact loading. They compared their results with 
experimentally observed fatigue lives and found their predictions to be conservative by a 
factor of 12. However, they demonstrated that the crack driving force in such problems is 
the alternating mixed-mode loading which occurs with each passage of the roller. Based on 
these results, the present research was aimed at quantifying the three-dimensional effects. 
The mechanical model proposed in this paper neglects some of the factors mentioned 
previously. It is assumed that lubrication renders surface sliding friction negligible. The 
pressure on the crack surfaces which may arise from the lubricant seeping into the crack is 
ignored since the Hertzian load moves past the crack very quickly and thus the viscosity, 
compressibility and inertia of the oil will prevent significant pressurization [7]. Moreover, 
since the radius of the Hertzian contact area is smaller than the assumed initial surface length 
of the crack, oil is allowed to squeeze out of the crack. The friction between the crack 
surfaces is neglected, since it tends to increase the resistance to crack growth. Including this 
friction in the model is straightforward, but was not done in the present research in order 
to save computer time. Thus the only factors assumed to be important to the present model 
are the mechanical loads which arise from the Hertzian contact, rotation, and shrink fit. 

2. Formulation 

2.1. Numerical solution of the boundary integral equations 

Because of space limitations, a detailed description of the numerical techniques and algo- 
rithms that were employed to solve the discretized form of the integral equations cannot be 
presented here. However, a brief description of some of the techniques which lead to accurate 
and efficient modelling of crack problems is warranted. 

The BEM relies on the singular solution of the Navier equations due to a point load and 
Betti's reciprocal theorem. The integral equations have the form 

C~j(P)uj + fr T~j(P, Q)uj(Q) dF(Q) = fr U~j(P, Q)tj(Q) dF(Q), (1) 

where u i and tj are the displacement and traction vectors respectively, P is the source point 
indicating the location at which the force acts, Q is the field point denoting the actual 
boundary point, and r is the distance between them. The integrals are Cauchy principal value 
integrals and C~j(P) is a field of constants which depends on the smoothness of the boundary 
at P. The procedures for obtaining a numerical solution to (1) starts out with a discretization 
of the boundary F into isoparametric surface elements. Within each element, the unknown 
functions may be assumed either constant or to vary linearly, quadratically, etc. In the 
present analysis, quadratic variations were employed. A Gaussian quadrature scheme can 
then be applied to evalulate the integrals. For the case when point P is not on the element 
which is being integrated, the quadrature is straightforward. However, when point P is one 
of the nodes of the element under integration, direct application of Gaussian quadrature will 
lead to inaccurate results because of the 1/r and 1/r 2 singularities in the tensors Ui/and T~j. 
Special treatment of the singularities must be used to obtain accurate solutions. The method 
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employed in the present research follows the work of Rizzo and Shippy [8]. The elements are 
divided into triangles and the integration is carried out after the coordinates are transformed 
into a local polar coordinate system. The transformation leads to an "r" term in the 
numerator which cancels the "r" term in the denominator. Gaussian quadrature can then be 
applied to the polar coordinate system. However the 1/r 2 singularity is not eliminated since 
the extra "r" term can only reduce the singularity to 1/r. To eliminate this remaining 
singularity, the integral equations and the shape functions are manipulated in such a way 
that when the point P is one of the nodes of the element being integrated, the terms 
containing 1/r 2 cancel. The details of the manipulations can be found in [9]. Using these 
procedures, all the singularities are eliminated and Gaussian quadrature can be used to 
reduce the integral equation to a system of linear algebraic equations in terms of the 
(discrete) unknown nodal tractions and displacements along the boundary of the body. 
Before the system of equations can be solved, the relevant boundary conditions must be 
imposed. That is, at each point along the boundary either the traction vector or displacement 
vector is prescribed. 

2.2. Subregion technique 

In linear elastic fracture mechanics, crack surfaces are modelled as infinitesimally thin cuts. 
Therefore two material points on the surface of the body are allowed to occupy the same 
geometrical point. However, the boundary integral equation is a relation where kernel 
functions include the terms 1/r, l y ,  thus this is not allowed. There are two ways a crack can 
be modelled using BEM. One can either separate the crack surfaces by a finite distance 
a priori, or partition the boundary into subregions and apply the compatibility and equi- 
librium conditions. Since the first method leads to inaccurate results, the second method is 
chosen for the present study. Consider for simplicity the case (Fig. 1) where the body 

r2 

U - Z  

Fig. 1. Partitioning of domain. 
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occupying domain f~ and bounded by surface F = 1-" 1 U F 2 is partitioned into domains 
f~l and f~l which are bounded by surfaces F~ w F~ and F 2 w F~, where F~ is the interface 
which joins the two subregions. The multi-domain technique consists of transforming 
the integral equations to algebraic equations for each subregion, as described in the pre- 
vious section, and requiring continuity of displacements as well as equilibrium along Fi, 
i.e. 

= 

u l  ; = u , ,  

(2) 

where ti and ui are the traction and displacement vectors along Fi, respectively. The details 
of the algorithms used to solve the equations can be recovered in [9]. 

2.3. Singular elements 

The variation of any function in an isoparametric element is polynomial. The degree of the 
polynomial depends on the number and arrangement of the nodes. Therefore, if a quadratic 
surface element is used in the vicinity of a crack, the distributions of stresses and displace- 
ments in the elements will at most have quadratic variations. The use of these elements would 
require a very fine mesh to capture the , f i  variation in displacements and l/x/7 variation in 
stresses predicted by linear elasticity. Fortunately, this problem was solved by Barsoum [10], 
who modified the quadratic isoparametric elements by relocating appropriate mid-side 
nodes to the quarter point (Fig. 2). This transformation leads to the proper (x/7) asymptotic 
behaviour for the displacements. To capture the l/x/7 behaviour of the stresses, the shape 
functions are modified by multiplying the stress approximations by the factor ( x / ~ ,  where 
L is the length of the element. This leads to the correct asymptotic behaviour [9]. The details 
of the stress intensity factors calibration is given in [9]. 

¢ 

5 

*3 ~ 1 Crack Front 

Crack Surfaces " ~  

Fig. 2. 8-node quarter point element. 
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3. Verification problems 

Two problems were studied to assess the accuracy and efficiency of the method. The 
calculations were performed using single precision on a CRAY X-MP. The material proper- 
ties are as follows: E = 30000ksi and v = 0.3. 

3.1. Inclined circular crack under uniform tension 

This problem was solved to assess the ability of the method to calculate stress intensity factors 
for mixed-mode fracture problems. The exact solution to the problem shown in Fig. 3 is [11] 

I 4 O-X~ sin q5 cos ~b I cos co, (4) 

1 4 ( 1 -  v) o x / ~  sin 4 cos qS] sin co, (5) 
Kk = ~(2 v) 

(Y 
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(Y 

Fig. 3. Incl ined buried c i rcular  crack. 
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Fig. 4. Double region mesh for inclined buried circular crack. 
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Fig. 5. Comparison of K~ with exact solution for inclined buried circular crack. 

360 



Surface crack in a high-speed bearing 

f 
1.0 

0.8 

0.6 

0 .4-  

0 .2-  

0.0 

-0.2 

-0.4 

-0.6 

.7 ~ Calculated KII 
-0.8 

-1.0 

-1.2 . . . . . . .  
0 45 90 135 180 225 270 315 

co 

Fig. 6. Comparison of Kjl with exact solution for inclined buried circular crack. 
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Fig. 7. Comparison of K.~ with exact solution for inclined buried circular crack. 
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Fig. 8. Semicircular surface crack under tension. 
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Fig. 9. Double region mesh of semicircular surface crack under tension. 
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Fig. 12. Model of bearing. 

where, as shown in Fig. 3, ~b is the angle between the direction of the applied stress and the 
normal to the crack plane and co is the angle which locates the point A. Because there is no 
symmetry in this problem, it is necessary to use a double region mesh. The results for the 
mesh shown in Fig. 4 (the crack is inclined at 30 deg) are presented in Figs. 5-7. The stress 
intensity factors have been normalized with respect to the quantities in the square brackets 
in (3) to (5). The errors in K(, K A and KA~ are approximately 1.2%, 2.3% and 5.7% 
respectively. The total CPU time needed to solve the problem is 131 seconds. 
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Fig. 13. Variation of K~ at 0 = 90 ° with roller position and crack length for q~ = 0 °. 
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Fig. 14. Var ia t ion  o f  K~ at 0 = 90 ° wi th  rol ler  pos i t ion  and  crack  length  for  ~b = 0 °. 

Table 1. D i m e n s i o n s  and  mater ia l  p roper t i es  o f  typical ball bea r ing  for  a i rcraf t  engines.  

Shaf t  

I n n e r  r aceway  

O u t e r  r aceway  

Bear ing length  L 

Ball bear ing  
No.  o f  ball bear ings  

Shaf t  speed 

M50 steel mate r ia l  

p roper t i es  

I n n e r  radius  a~ = 2.0in.  
O u t e r  rad ius  b~ = 2.30233 in. 

I n n e r  radius  ai = 2.3 in. 
Ou te r  radius  bi = 2,6in.  

I n n e r  rad ius  a0 = 3.1 in. 
Ou te r  radius  b0 = 3.35in.  

0.57322 in. 

Rad ius  R = 0.25in.  
28 

25 500 r p m  
E = 3.0 × 107 psi 

p = 0.2881b/in 3. 

v = 0.3 

K m = 18ksi~/in.  
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Fig. 15. Variation of g i i  I at 0 = 45 ° with roller position and crack length for q5 = 0 °. 

3.2. Semi-circular surface crack under uniform tension 

This example was solved to check the accuracy of  the me thod  for surface crack problems.  

An exact solution to the p rob lem shown in Fig. 8 does not  exist. However ,  numerical  results 

are available. T a d a  [11] presents/(1 for a semi-circular surface crack in a semi-infinite body  
subjected to un i form tension as 

2 
KI(O) = - ax/-~F(O), (6) 

where 

F(O) = 1.211 - 0.186 s , ~ 0 ( f o r  10 ° < 0 < 170 ° ) (7) 

and 0 is measured  f rom the surface as shown in Fig. 8. 
N e w m a n  and Raju [12] predict  

K~(O) =- ~r,,/-~F(O)/2.x/~-.-.-.-.-.-.-.4~ , (8) 
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Fig. 16. Variation of K~ at 0 = 90 ° with roller position and crack length for q~ = 30 °. 

where 

F(O) = 1.04 [1 + 0.1(1 - sin 0)z]. (9) 

The double region model  shown in Fig. 9 was used to solve the problem.  A compar i son  

o f  our  results with those o f  Tada  [11] and Raju [12] is shown in Fig. 10. The m a x i m u m  

difference is approx imate ly  5.7 percent at the point  where the crack meets the free surface. 

This is a result o f  KI being calculated assuming plane strain conditions and an inverse square 
root  stress singularity. These assumpt ions  may  not  be valid at this point.  

The excellent results obta ined  in this verification exercise provide confidence in studying 
the roller bearing problem.  

4. Stress intensity factor analysis 

This section presents the results o f  a quasi-static stress intensity factor  analysis o f  the inner 
raceway o f  the bearing shown in Fig. 11. The dimensions and propert ies  of  the componen t s  
are listed in Table  1. The bearing consists o f  28 ball rollers. To  simulate the passage of  each 
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Fig. 17. Variation of K. at 0 = 90 ° with roller position and crack length for q5 = 30 °. 

ball 1/28th of  the inner raceway is modelled. Since the radius o f  the inner raceway is large 
compared  to the other dimensions, the curvature is neglected and the structure is modelled 
as a surface cracked plate with flat surfaces, as shown in Fig. 12. The surface crack is 
assumed to be semi-circular with radius 1, and may be inclined at an angle q~ from the 
vertical. The hoop stresses shown in Fig. 12 arise f rom rota t ion and shrink fit. The details 
of  the calculations are given in [9]. It  was shown in [13] that  the interaction between a surface 
crack and an indentor  will not,  at least for two-dimensional  problems, significantly alter the 
contact  stress distribution. Thus, the ball bearings are replaced with a circular distribution 

given by 

X2 .1;2 ) 1/2 

P = P0 1 a2 a2 , (10) 

where a is the radius of  the circular contact  area and P0 is the maximum intensity, which is 
given in terms of  the total load P by 

3 P 
- . ( 1 1 )  P0 2 ~a 2 
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Fig. 18. Varia t ion  o f  K~ at  0 = 90 ° with polar  posi t ion and  incl inat ion angle for l = 0.02in. .  

The radius can be calculated from 

(3PR(1  - v)2~ 1/3 
a = \ ~/~ / (12) 

As discussed in [6], the experimental data indicates that for the bearing considered in the 
present analysis P0 = 285 ksi. (a = 0.02574 in.). Subsequent calculations are based on this 
value. It should be noted that the depth of the plate is assumed to be large enough so that 
the distribution of  contact stresses remains Hertzian. 

The distance x between the centre of the Hertzian distribution and the crack mouth is 
changed incrementally to simulate the passage of  each roller. 

The stress intensity factors for this problem vary with position along the crack front (0). 
A typical variation of the mode I stress intensity factor at 0 = 90 deg with roller position 
and crack length for a vertical crack (~b = 0 deg) is shown in Fig. 13. When the roller is at 
distances greater than three times the contact length from the crack mouth, the stress 
intensity factor is a constant which results from the axial stress. As the roller gets closer, the 
compressive stresses arising from the Hertzian load decrease the stress intensity factor. When 
the load is on the crack mouth the stress intensity factors for all but the longest crack become 
negative, indicating crack closure. 
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Fig. 19. Variation of K~ at 0 = 90 ° with roller position and inclination angle for l = 0.02 in.. 

The variation of the mode II stress intensity factor for the same loading conditions is 
shown in Fig. 14. The value of Ku is zero when the roller is far from the crack mouth. As 
the roller approaches the crack, Kn starts to increase and reaches a maximum value when 
the load is on the crack mouth. As the roller crosses to the other side of the crack, K~ 
abruptly changes sign and decreases to a minimum value equal in magnitude to the previous 
maximum. For small crack this change is very abrupt, but for large cracks the change is more 
gradual. As pointed out in [6], these abrupt variations in K~ and K, may significantly affect 
the propagation of short cracks. 

Although the results are not presented here, it was observed that the magnitudes and 
variations of K~ and K~ for 0 = 45 deg did not differ significantly from 0 = 90 deg. 
However, as shown in Fig. 15, at 0 = 45deg a mode IH stress intensity arises. The mag- 
nitude of K~I is less than Kn, but the variations with the location of the Hertzian load are 
similar. 

A comparison of the results for q~ = 0 deg obtained in the present analysis with those 
presented in Mendelson and Ghosn [6] revealed that while the variations of/(1 and K n with 
roller position are similar, the magnitudes of the stress intensity factors differ significantly. 
For I = 0.02 in., the maximum value of/£1 from Fig. 13 is approximately 6.4 ksix/~,  while 
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in [6] it is approximately 9 ksix/l-n. The difference in Kn is even greater. From Fig. 14 the 
maximum value of K H is approximately 1.5 ksix/~ for l = 0.02, while in [6] it is approxi- 
mately 10 ksix/]-~. These differences are due to the fact that the total load needed to produce 
the'experimentally measured 285 ksi maximum Hertzian stress using a circular contact area 
is much lower than that needed using a cylindrical contact (27.51bs instead 15001bs). This 
may have contributed to the overly conservative predictions of fatigue life in [6]. 

As pointed out in [6], the experimental results indicate that as the roller passes from left 
to right, the surface crack propagates at an angle q~ approximately equal to 30 deg. The 
simulations were therefore repeated for several values of q~. Figures 16 and 17 present the 
stress intensity factors for cracks inclined at q~ -- 30 deg for several crack lengths. As the 
roller passes to the right of the crack mouth, it forces the crack surface to separate, thus 
increasing K~. It is observed in these figures that the maximum values of both KI and K n are 
significantly higher than those for ~b = 0 deg. Figures 18 and 19 show the variation o fK I and 
K n with respect to q5 for a crack of length I = 0.02 in. These results indicate that the crack 
will propagate at an angle of 30 deg from the vertical, as observed in the experiments. 

5. Conclusions 

A preliminary stress intensity factor analysis of a typical high speed bearing was conducted 
using the boundary element method. The results confirm the conclusions made in [6] that the 
crack driving force in these types of problems is the alternating mixed-mode loading that 
occurs with each passage of the roller. However, the results obtained in the present three- 
dimensional analysis suggest much lower stress intensity factors that those predicted for the 
same problem using a two-dimensional analysis [6]. This results from the fact that the total 
Hertzian load needed to produce the experimentally observed maximum contact stress using 
the three-dimensional model is (27.5 lbs.) significantly lower than that required using two- 
dimensional analysis (1500 lbs.). Although the stress intensity factor data obtained from the 
analysis has not been reduced to a form suitable for life prediction, these preliminary results 
can provide a better understanding of the complex interactions between a surface crack, a 
moving Hertzian load, and an axial stress. 

Acknowledgements 

The authors are grateful for suport from NASA Lewis Research Center (Grant NAG3-396). 
Discussions with John Shannon and Erwin Zaretsky have been helpful. 

References 

1. S. Way, Journal of Applied Mechanics 44 (1935) A49-A58. 
2. J.R. Fleming and N.P. Suh, Wear 44 (1977) 39-56. 
3. J.R. Fleming and N.P. Suh, Wear 44 (1977) 57 64. 
4. A.R. Rosenfield, Wear 61 (1980) 125-132. 
5. J.C. Clark, Journal of Aircraft 12 (1975) 383-387. 
6. A. Mendelson and L.J. Ghosn, Analysis of Mixed-Mode Crack Propagation Using the Boundary Integral 

Method, NASA Contractor Report 179518 (1986). 



158 R. Ballarini and Yingchun Hsu 

7. C.A. Foord, C.G. Hingley and A. Cameron, ASME Journal of Lubrication Technology 91 (1969) 282-293. 
8. F.J. Rizzo and D.J. Shippy, International Journal for Numerical Methods in Engineering 11 (1977) 1753-1768. 
9. Y. Hsu, "Three-Dimensional Analysis of Surface Crack-Hertzian Stress Field Interaction", M.S. Thesis, Case 

Western Reserve University, August 1989. 
10. R.S. Barsoum, International Journal for Numerical Methods in Engineering 11 (1977) 85-98. 
11. H. Tada, P.C. Paris and G.R. Irwin, The Stress Analysis of  Cracks Handbook, Paris Productions Inc. (1985). 
12. J.C. Newman and I.S. Raju, Analysis of  Surface Cracks in Finite Plates Under Tension or Bending Loads, 

NASA Technical Paper 1578 (1979). 
13. M.D. Bryant, G.R. Miller and L.M. Keer, Quarterly Journal of  Mechanics and Applied Mathematics 37 (1984) 

467-478. 


