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Stability Analysis of Bridged 
Cracks in Brittle Matrix 
Composites 
The bridging of matrix cracks by fibers is an important toughening mechanism in 
fiber-reinforced brittle matrix composites. This paper presents the results of a non
linear finite element analysis of the Mode I propagation of a bridged matrix crack 
in a finite size specimen. The composite is modeled as an orthotropic continuum 
and the bridging due to the fibers is modeled as a distribution of tractions that resist 
crack opening. A critical stress intensity factor criterion is employed for matrix 
crack propagation, while a critical crack opening condition is used for fiber failure. 
The structural response of the specimen (load-deflection curves) as well as the stress 
intensity factor of the propagating crack is calculated for various constituent prop
erties and specimen configurations for both tensile and bending loading. By con
trolling the length of the bridged crack, results are obtained that highlight the 
transition from stable to unstable behavior of the propagating crack. 

Introduction 
Crack bridging is an important toughening mechanism in 

many engineering materials, including fiber and whisker-rein
forced ceramic and metal matrix composites, plain and fiber-
reinforced concrete, matrices reinforced with ductile secondary 
phases, and glassy polymers. This fact has led to a significant 
amount of research aimed at gaining a better understanding 
of the mechanics of bridged cracks. Various models have been 
proposed by researchers in different fields in which the bridging 
is modeled as a distribution of discrete forces or continuous 
stresses which resist crack opening. While they differ in the 
conditions specified to calculate the lengths of the bridging 
zone and the propagation criterion, all of the proposed models 
are essentially of the Dugdale-Barenblatt type [1, 2]. 

A typical model for a bridged crack is shown in Fig. 1 (a). 
The "effective'' crack length is the sum of a traction-free length 
and of a "process zone," within which a traction is prescribed 
that models the bridging arising from the active mechanisms. 
In this figure the process zone consists of fibers. However, the 
mechanisms may include aggregate interlock, microcracking, 
crazing, plastic yielding, fiber bridging, etc. In metals the Dug-
dale model has been used to simulate yielding ahead of a crack 
tip. In this model the closing stress is equal to the yield stress 
of the material, and the length of the process zone is calculated 
by requiring the stress intensity factor due to the closing stress 
to cancel the one resulting from the applied loading. Propa
gation is assumed to occur when the crack opening displace
ment at the tip of the traction-free crack reaches a specified 
critical value. The reason the stress intensity factor is taken as 
zero is that the energy release rate associated with the stress 
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intensity factor is negligible compared to the energy dissipated 
in the yielding process. A zero net stress intensity factor has 
also been assumed in several models for plain and fiber-rein
forced mortar and concrete [3, 4], since the energy dissipated 
in the stretching of steel fibers is much greater than the fracture 
energy of the matrix. In these strain-softening materials the 
closing stress is taken as a monotonically decreasing function 
of crack opening displacement [3-6]. In composites composed 
of brittle fibers and matrix, the assumption that the fracture 
toughness of the matrix is negligible is not valid. Marshall and 
Cox [7, 8] have developed a model for ceramic matrix com
posites in which the crack is assumed to propagate when the 
net stress intensity factor reaches the critical stress intensity 
factor of the matrix. Using a micromechanical model they 
determined [7] that the stress that resists crack opening is 
proportional to the square root of the crack opening displace
ment. Using this relation, they obtained extensive numerical 
results, which provide a much better understanding of possible 
failure mechanisms in tension loaded ceramic matrix com
posites. In particular, they showed that the fiber strength is a 
parameter that governs whether a matrix crack will be fully 
bridged or partially bridged as it propagates through the spec
imen. Strong fibers lead to fully bridged cracks, which can 
grow in the matrix through the specimen while the fibers remain 
•intact. As shown schematically in Fig. 2, this "noncatas-
trophic," or "ductile" mode of failure leads to large strains, 
since further loading beyond the first matrix crack leads to 
multiple matrix cracking and an ultimate strength, which is 
governed by the bundle strength. Relatively weak fibers, on 
the other hand, lead to matrix cracks, which are bridged in a 
relatively small region behind the crack tip as they propagate. 
Moreover, as a partially bridged crack propagates, the fibers 
behind the crack tip break sequentially, eventually breaking 
the specimen in two. In this paper a model similar to the one 
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Fig. 2 Possible failure modes of brittle matrix composites 

developed by Marshall and Cox is used to study the effects of 
loading and specimen size on the behavior of bridged cracks 
in continuously reinforced brittle matrix composites. Of par
ticular interest in this study is the transition from ductile to 
brittle behavior of such cracks, and how this transition is 
affected by constituent properties, specimen size, and type of 
loading. This transition will be highlighted by controlling the 
length of the bridged crack, as was done by Carpinteri [9] in 
his study of crack growth in concrete. In the course of this 
investigation the authors became aware that Cox and Marshall 
[10, 11], using an integral equation approach, performed an 

Fig. 3 Superposition scheme 

analysis similar to the one presented in this paper. The ad
vantage of the numerical model presented in this paper is its 
ability to treat complicated geometries, anisotropic materials, 
nonhomogeneous structures, and cracks that propagate in di
rections that do not coincide with principal axes. 

Finite Element Model 
The present work is directed toward developing a numerical 

analysis tool that can be used to analyze anisotropic fracture 
specimens of finite size. Typical examples include, as shown 
in Fig. 1(b), the edge-notched beam and the compact tension 
specimens. Moreover, the crack surfaces are bridged as shown 
in Fig. 1(a). The fibers within a distance a-a0 from the crack 
tip remain intact and bridge the crack, while the remaining 
fibers over distance a0 from the crack mouth are broken and 
do not contribute to crack tip shielding. Failure of the com
posite may be initiated either by fiber failure or matrix crack 
growth. 

The influence of fiber shielding is to restrain the crack open
ing, and, consequently, reduce the stress field in the vicinity 
of the matrix crack tip. The bridged crack can be viewed as 
the superposition of a traction-free crack subjected to a remote 
loading, and a crack whose surfaces are loaded with the forces 
arising from the fibers (Fig. 3). For closely spaced fibers and 
relatively long cracks, the discrete forces are assumed to be 
equivalent to a continuous distribution of closing stress p(x). 
This superposition can be performed using different tech
niques. For cracks in infinite bodies and for relatively simple 
finite geometries, a singular integral equation approach can 
be used. With this approach the problem is reduced to an 
integral equation, which represents the traction boundary con
dition along the crack surfaces. The integral equation is then 
solved for the unknown dislocation density along the crack 
line, which can be used to calculate relevant physical quantities 
such as stress intensity factor and crack opening displacement. 
Because the closing stress is a nonlinear function of the crack 
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opening displacement, or dislocation density, the integral equa
tion is nonlinear and an iterative solution is needed. This ap
proach has been used in studies of plain and fiber reinforced 
concrete [6]. An integral equation approach in which the crack 
opening displacements are treated as unknowns has been used 
for ceramic matrix composites [7, 8, 10, 11]. 

In the present work, the finite element method is imple
mented for this superposition. The physics is assumed as fol
lows. The matrix crack will propagate when the stress intensity 
factor in the matrix reaches a critical value Kfc, which is related 
to the composite stress, intensity, K°IC, by the relation 
Kcic = ̂ fcEc/Em [7]. This relation is based on strain compati
bility between fibers and matrix, and hence is not rigorously 
valid for very short cracks, nor for fibers slipping ahead of 
the crack tip. The closing stress relation is given by [7] 

P(x)=2Vf[TEf(\+v)/R]U2{u{x))ul (1) 

where 

V;{ V,„) = volume fraction of fibers (matrix) 
T = interfacial shear strength 
Ef(Em) = elastic modulus of fiber (matrix) 
R = fiber radius 
r,=EfV/EmV„ 
u (x) = crack opening displacement 

Equation (1), which represents a closing stress that increases 
monotonically with "crack opening displacement, was derived 
with the assumption of a single valued fiber strength. A closing 
stress function that initially increases and subsequently de
creases was derived, assuming the fiber strengths satisfy weak
est link theory, by Thouless and Evans [12]. Their analysis led 
to the following equation for the stress displacement relation 
for the bridging fibers: 

2 exp [-(«/«„ )""+1)/2] + 

1 " exp[-K/«„) (" ! + 1 ) / 2] jx 

(a/L) = (« /«„ ) ' 

1-
(l + ?7) (m+\) 

\y[(m + 2)/(m + l), {u/u„) 

where 

£=<s>/r 

E2i?(l 

(m + 2)/2i E(w + 1) 
2Ef 

(2) 

m + 2 
m+1 

' Vf)E, 
Un~' 4rEfE 

m = Weibull modulus of fiber strength distribution 
(s) = Average strength of the fiber bundle 

y[(m + 2)/(m+l), a]-- c\ 0 
Jo 

l/(m+l)--0 dp 

r(«) = r exp(-j8)tf/8 

a= (u/um) (m+l)/2 

For the case of single-valued strength fibers, m = oo, (s) = oju, 
where oju is the ultimate fiber strength, and Eq. (2) reduces to 
Eq. (1), which is used in the present analysis. A recent analysis 
of tension loaded notched beams by Cox and Marshall [11] 
was performed for several values of m. Equation (1) can be 
conveniently represented as 

p{x)- Qa) 
\A\fu[x) x>a0 

[o x<a0 

where 
A = 2 VJE/ii.1 + n)/R]1/2 (3b) 

The quantity u„ corresponds to the critical opening, which 

Node n 

t F. 

Fig. 4 Finite element nodes representing the crack line 

produces a stress in the fiber equal to o/„. In this work fiber 
failure is assumed to occur when the crack opening equals u„. 
It should be noted that the assumption of single-valued strength 
implies that fiber failure first occurs at the far edge of the 
bridging zone, since the crack opening displacements decrease 
monotonically towards the crack tip (this has been confirmed 
in [8] and in the present work). A statistical fiber strength 
distribution may lead to fibers nearest to the crack mouth 
remaining intact while others closer to the crack tip breaking. 

With reference to Fig. 4, n nodes are distributed along the 
fracture line. The crack opening displacements can be repre
sented as 

Uj = KijFj+(jCj i,j=\, (4) 

where 
Uj = crack opening at node i 
Fj = load (due to the fibers) at nodey 
Cj = influence coefficients representing crack opening at node 

/ due to unit applied far field stress 

Kjj: = influence coefficients representing crack opening at 
node / due to unit load Fj 

a= applied stress 

The load point deflection can be represented as 
A = DjFj+oA0 j=\ ,n (5) 

where 
Dj = influence coefficients for load-point displacement due 

to Fj 
A0 = load-point displacement due to unit applied stress. 
Equations (4) and (5) can be modified for any far-field 

loading by appropriately modifying the remote loading a. For 
the single-edge notch specimen considered in this paper, the 
deflection A is measured, for tensile loading, at points of the 
typical finite element model shown in Fig. 5, while for the 
three-point bend loading, it is measured at the point B. The 
specimen has length L = 20 cm and width W=5cm. The ge
ometry is modeled with quadratic elements. To calculate the 
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Fig. 5 Schematic of finite element model for constant tension and 
three-point bending 

stress intensity factors accurately, the elements emanating from 
the crack tip were converted to singularity elements by shifting 
their midside nodes to the quarter point. The stress intensity 
factor calibration, which provides the Mode I and Mode II 
stress intensity factors as functions of the displacements of 
certain nodes of the singularity elements behind the crack tip, 
is given in [13]. The Ky and C, were calculated for the ortho-
tropic material by modifying the element stiffness matrix of 
an isotropic finite element program. Although the comparisons 
are not presented here, the stress intensity factors calculated 
for p(x) =0 agreed within a few percent with those presented 
by Bowie [14] for the tested values 0.1 <«/w<0.7. 

The system was loaded in n + 1 different loading conditions, 
corresponding to unit loads at each node and a unit far field 
stress. For each loading case the displacements of each node 
were calculated including the load-point displacement. This 
procedure provided the nxn terms of Ky, and the n terms of 
Q. Note that the global stiffness matrix needs to be inverted 
only once for a given crack length. Once the coefficients 
are calculated, the problem is reduced to a system of n non
linear algebraic equations as follows. Recalling that 
p(x) = A\ju(x), the expression for nodal forces becomes 

"ATq^ --A(Uj)1 (6) 

where a is the crack length and q is the number of quadratic 
displacement elements along the crack line. The resulting sys
tem of equations for crack opening becomes 

u, = A [Ky] u)n + o[C,\ i,j=l, . • • , n (7) 
The nonlinear system of equations was solved using the 

IMSL routine 'DNEQNF,' which is based on the Levenberg-
Marquadt and Powell algorithms [15]. 

It should be noted that Eq. (6) assumes that each node acts 
as an independent (leaf) spring. Although the work-equivalent 

Table 1 

Constituent 

SiC fibers 
Si3N4 matrix 

Constitutive material properties 

Young's modulus, Poisson 
GPa ratio 

390 0.3 
206 0.3 

Kic 
MPaVm 

5.0 
4.6 

STRESS FOR 
- MATRIX CRACKING 

UNBR1DGED CRACK a / a 
o 

Fig. 6 Possible failure modes for brittle matrix composites [8] 

nodal forces for the distributed closing stress for a quadratic 
element should be used in the calculations, numerical exper
imentation showed differences of approximately 4 percent in 
stress intensity factors between "exact" nodal forces and the 
"leaf" springs. Subsequent results were calculated using in
dependent springs. 

Results 
The material properties used for the constituents are shown 

in Table 1. They correspond to the properties of a SiC rein
forced Si3N4 matrix composite. The volume fraction of the 100 
/rni-dia (2R in Fig. la) fibers is V/=0A. The shear strength of 
the fiber-matrix interface is taken as T= 10 MPa. Consistent 
with these values, the orthotropic bulk properties are [16, 17]: 
£„ = 253.9 GPa, £22 = 279.6 GPa, d2 = 0.3, and Gi2 = 97.66 
GPa. 

Composite failure is initiated when the applied stress exceeds 
the smaller of the matrix cracking stress am (the stress that 
makes the stress intensity factor in the matrix equal to the 
fracture toughness of the matrix) and fiber failure stress oy. 
Subsequent failure events (at constant applied stress) involve 
combinations of stable and unstable fiber failure and/or matrix 
cracking. The sequence of these events depends on initial crack 
configuration a and a0, specimen configuration, type of load
ing, and fiber strength oy„. As shown in Fig. 6, taken from 
[8], for initially fully bridged cracks two different sequences 
of failure events are possible for the case when the fiber failure 
stress is less than the matrix cracking stress. The first corre
sponds to the case in which the matrix cracking stress is slightly 
greater than the first fiber failure stress. Fiber failure initiates 
at point A and is unstable until point B. At this point the 
matrix cracks. Beyond point B the fibers fail as the matrix 
crack propagates. The second possibility corresponds to a ma-
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Fig. 7 Normalized CMOD as functions of normalized applied stress, tensile loading 

trix cracking stress much greater than the fiber failure stress. 
In this case fiber failure is initiated at point A and is unstable 
until point B. At point B the system stabilizes. That is, an 
increasing stress is required to break additional fibers. This 
continues until point D, at which point the matrix cracks in 
an unstable manner. The third possible scenario corresponds 
to high fiber strengths in which the matrix cracks without any 
fiber failure, and hence the matrix cracks through the specimen 
leaving fibers intact. All of these possible events have been 
captured in the present analysis by varying afu and crack length. 

Two types of simulation were performed in this work for 
each type of loading (tension and bending). In the first, the 
total crack length was held constant while the load was mon
itored in such a way as to capture the stability characteristics 
of fiber failure. In these simulations the stress intensity factor 
at the tip of the matrix crack was not specified. The second 
type corresponds to a matrix crack propagating at a constant 
specified value of stress intensity factor. All of the cracks 
considered are initially fully bridged. 

Fixed Crack Length Simulations—Constant Stress 
Loading 

Effects of a/w. Numerical calculations were performed 
first for tension loading at fixed crack lengths in the range 

0.02 < a/w < 0.8. However, only the results for 0.02 < a/w < 0.2 
are presented, since it was observed that for the tension loading 
and the considered specimen width the stable to unstable tran
sition occurs in this range. 

In the first type of simulation the far-field stress is increased 
for a fixed length, initially fully bridged crack until the crack 
opening at a point reaches the critical value u„. When this 
critical crack opening is reached at a node, the node is released, 
and the applied stress is either increased or decreased, de
pending on the stability of fiber failure. If the stress level has 
to be increased to break additional fibers, the event is termed 
stable. If the stress level that produces fiber failure at a node 
is held constant, and additional fibers fail, the event is termed 
unstable. It may be possible, however, for unstable events to 
stabilize. For the unstable events, the load has to be controlled 
in order to capture the sequence of fiber failure (trace the 
unstable path). 

Figures l(a-d ) are plots of normalized crack mouth opening 
displacement (CMOD) u0 as functions of normalized stress for 
oy„= 1830 Mpa. For very short crack lengths {a/w = 0.02) no 
fiber failure occurs for normalized stress levels less than 0.4, 
which corresponds to the bundle strength Vjufu. This implies 
that most likely matrix cracking will occur before any fiber 
failure. For a/w = 0.1 the failure of the first fiber is stable, 
since increasing stress is required for additional fiber failure. 
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For cracks longer than a/ve = 0.16, initial fiber failure (until 
ao/a = 0.1) is unstable. Fiber failure stabilizes, for this config
uration, at ao/a = 0A. Consider point 1 in Fig. 7(c). If the 
stress were held constant, additional fibers would fail until a0/ 
as0.4. The stress would then have to be increased to break 
additional fibers. Moreover, if the stress is not decreased at 
point 1, subsequent fiber failure produces a discontinuity in 
the CMOD. 

Consider next the stress intensity factors. The net stress 
intensity factor ^7- is related to the far-field (KA) and fiber 
bridging (KF) stress intensity factors by KT=KA-KF, SO that 
the shielding due to the fibers is KF=KA -KT. 

Figures 8(a-d) and 9(a-d) are plots of normalized KT and 
Kf, respectively, as functions of applied stress. The length a„ 
is defined by 

a„ = [TTER (\-Vf )Em]/ll6rVjE/{ 1 - v2)} (8) 

As discussed in [11], a„, which is associated with a fully bridged 
crack in an infinitely extended material and is referred to as 
the bridging length scale, has special significance. For a< <a„, 
the crack is considered short in the sense that its bridging zone 
is still developing. For these short fully bridged cracks the 
forces in the fibers are relatively small, since the crack opening 
displacements are small. Hence the fibers do not shield the 
crack tip significantly, and the stress required to propagate the 
matrix crack is inversely proportional to the square root of 
the crack length, as for a monolithic matrix. For a> >a„ the 
crack is termed long, because the bridging zone has fully de
veloped and a steady state is reached for matrix cracking (the 

stress required to propagate the matrix crack is independent 
of crack length). For the considered composite a„ = 0.256 mm, 
1.56 mm, and 2.56 mm for fiber strengths (which will be 
discussed subsequently) o-=300 MPa, 1830 MPa, and 3000 
MPa, respectively. 

The stability of the fiber failure can also be seen in these 
figures. For example, compare KF for a/iv = 0.02 and 
«/w = 0.16. For 0.02 the shielding monotonically increases, 
while for 0.16 there is a sharp reduction after the first nodal 
failure (which corresponds to the discontinuous increase in KT 
in Fig. 8c). Also note that for 0.16, even if the stress is reduced 
at the point of first fiber failure, the net stress intensity factor 
still increases. If the normalized matrix toughness were high 
enough (above point 4 in Figs. 8c and 8c?), unstable nodal 
failure would occur before matrix cracking until ao/a~0A, at 
which point the fiber failure stabilizes. If, on the other hand, 
the matrix toughness is below point 1, the matrix would crack 
before fiber failure. 

From these graphs the qualitative response of initially par
tially bridged cracks can also be seen. Take, for example, Fig. 
• 1(c). If a partially bridged crack of total length a/w = 0.16 
(a0/a = 0.2) has propagated in the matrix from an initial (un-
bridged) notch of length a/w (a0/a= 1.0), no instability would 
be observed, since the CMOD versus applied stress curve would 
be as shown in dashed lines. For a crack length a/w = 0.2 with 
the same unbridged length (ao/a = 0.16), the curve would be 
also as shown in dashed lines, and instability would still be 
observed. This suggests that for initially partially bridged cracks 
the transition from stable to unstable fiber failure occurs at 
longer crack lengths. 
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Effects of oy„. To investigate the effects of fiber strength 
on the stability of fiber failure, the following values of fiber 
strength were used: oy„ = 300, 1830, and 3000 MPa. 

The effects of fiber strength on the stability of fiber failure 
can be observed by comparing Figs. 1(d) and 10(a). For 
OfU= 1830 MPa, initial fiber failure is unstable, but stabilizes 
at aa/a = 0.42. For oy„ = 3000 MPa, on the other hand, unstable 
fiber failure does not stabilize. 

This effect can also be observed by comparing Figs. 8(d) 
and 10(6). The net stress intensity factor for the lower fiber 
strength increases monotonically as the unstable fiber failure 
is traced. However, an increasing stress is needed to increase 
the net stress intensity factor after fiber failure stabilizes. For 
the higher fiber strength, on the other hand, as the unstable 
path is traced, the stress intensity factor increases drastically 
at stress levels less than the level that caused first fiber failure. 
These differences are also observed in Figs. 9(d) and 10(c), 
which show that the reduction in shielding beyond first fiber 
failure for the higher fiber strength is much more drastic than 
for the lower strength. 

Matrix Crack Propagation Simulations—Constant Stress 
Loading 

In these simulations, an initially fully bridged crack of length 
a/w = 0.02 is loaded until the stress intensity factor at its crack 
tip is equal to the fracture toughness of the matrix, taken as 
4.6 MPa-m1/2. As the load is increased, if the crack opening 
displacement at any node reaches u, the node is released. When 

the stress intensity factor reaches the critical value, the matrix 
crack is extended. 

Load Deflection Curves. Figure 11 (a) is a plot of applied 
stress versus load point displacement for <r/„ = 300 MPa. Figure 
11 (b) is an enlarged view of the snap back region in Fig. 11 (a). 
The stress is increased until point 1, at which time approxi
mately 63 percent of the fibers behind the crack tip have failed, 
and the matrix cracks. The matrix crack extends to «/w = 0.1. 
At this point the stress is reduced to point 2, at which time 
the fibers at the trailing edge of the bridging zone start break
ing. The stress is then increased until point 7, at which time 
all the nodes are released (it may be possible that a few fibers 
remain intact, but since the first node behind the crack tip is 
a finite distance from the crack tip, this is not captured), a0/ 
a/1.0, and the matrix crack extends to a/w = 0.2, with a0/ 
(7=1.0. This process of complete fiber rupture/matrix crack 
extension continues (points 10, 12, 14) until point 16 at which 
point a/w = 0.6. Figure 11(a) was obtained by monitoring the 
fiber failure events. If the total crack length were controlled 

. the stress-deflection curve would be as shown in Fig. 12. Note, 
however, that information is gained by monitoring the fiber 
failure events. For example, if the stress is kept constant at 
point 1 of Fig. 11 (a) (or point A of Fig. 12), the extension of 
the matrix crack through the specimen is accompanied by si
multaneous fiber failure. Thus the failure is catastrophic. 

For ofu= 1830 MPa, Figs. 13 and 14 show that the failure 
is not catastrophic, since as the matrix crack propagates through 
the specimen most of the fibers behind the crack remain intact 
(«o/w = 0.25). Although the simulations were not continued 
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beyond point 16 in Fig. 13, an increase in stress is needed to 
break the remaining fibers. 

For the highest fiber strength considered, Fig. 15 shows that 
the matrix crack propagates through the specimen while all 
the fibers behind the crack tip remain intact. This will lead to 

0.02 0.04. 0.06 O.Oa 

A 

Fig. 12 Stress-deflection curve, tensile loading 

multiple matrix cracking and an ultimate strength governed 
by the bundle strength. 

The stress-deflection curves clearly demonstrate the brittle 
to ductile transition of the considered initially fully bridged 
cracks. It should also be noted that the critical stress for crack 
extension and the strain to failure are higher for the noncat-
astrophic failure modes than for the catastrophic failure modes. 
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Resistance Curves. Figures 16 (a-(ft) are plots of the nor
malized applied stress intensity factor, which leads to matrix 
crack growth as functions of matrix crack length for the dif
ferent fiber strengths. For <T/„ = 300 MPa, the applied stress 
intensity factor is greater than the fracture toughness of the 
matrix for a/w-< 0.1, since the crack is partially bridged. Be
yond a/w = 0.1 the normalized applied stress intensity factor 

Fig. 16 Normalized resistance curves, tensile loading 

is equal to 1.0, since for each crack length all the fibers break 
before the matrix crack extends. 

For o/„= 1830 MPa, Fig. 16(b) shows that the applied stress 
intensity factor increases monotonicaliy as the matrix crack 
extends through the specimen. For this value of fiber strength 
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a steady-state value is not reached, but this figure suggests that 
if the simulation were carried out for slightly lower strength, 
steady state would be reached. Recall that for this fiber strength 
matrix crack growth is accompanied by fiber failure. If a smaller 
fiber strength was used in the calculations the fiber bridging 
would be limited to a relatively small region behind the crack 
tip, and as the matrix crack propagates, for every fiber the 
crack crosses, a fiber behind the crack tip would fail. For 
OfU = 3000 MPa, the normalized applied stress intensity factor 
also increases monotonically. Although the simulations were 
not continued beyond a/w = 0.8, Fig. 16(c) suggests that the 
stress intensity factor would increase drastically as the matrix 
crack approaches the free edge. 

Three-Point Bend Loading 
The results presented in the preceding section demonstrate 

the effects initial crack length and fiber strength have on the 
stability of fiber failure. Similar results are presented next for 
the three-point bending case. These will demonstrate that the 
distribution of stresses that result from the applied loads also 
strongly influence the failure mechanisms. 

Figures 17-20, which are similar to the figures presented for 
the constant tension loading, clearly show the effects of ex
ternal loading on the stability of the bridged cracks. Figures 
17-19 are for fixed a/w, while Fig. 20 is for a propagating 

matrix crack. The load P is nondimensionalized with respect 
to the load P0, which represents the load that would produce 
a stress equal to afu at the outer fibers in an unnotched mon
olithic beam made out of fiber material. Recall that for the 
constant tension specimen, the crack lengths a/w = 0.02 and 
0.10 were stable, while cracks of length o/w = 0.16 and 0.2 
exhibited instabilities in fiber failure. Moreover, the severity 
of the instabilities increased with increasing fiber strength. 
Figure 11(b) shows an instability in a/w = 0,1 at the lowest 
fiber strength. Furthermore, when the fiber failure stabilizes 
at point 8, 80 percent of the fibers behind the crack tip are 
broken. Figure 20 is the stress-displacement curve of a matrix 
crack propagating from an initially fully bridged length 
a/w = 0.1. The load increases to point 1, at which point the 
unbridged length is a ao/a = 0.8 and the matrix crack propa
gates. If the stress is held constant there is a discontinuity in 
the curve and the matrix crack ends up at a/w = 0.6 at a rel
atively low stress. 

The results clearly show that the bending specimen inherently 
more unstable than the constant tension specimen. 

Conclusions and Recommendations 
The examples considered in this paper clearly demonstrate 

that: 
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Fig. 18 Normalized stress intensity factor as functions of three-point bending load 

1 Specimen configuration, distribution of applied loads, 
and constituent properties (fiber strength, etc.) strongly influ
ence the amount of crack tip shielding the fibers provide in a 
bridged crack. 

2 If two specimens having different configurations (or if 
they have the same configuration but are loaded differently) 
have the same applied stress intensity factor, their failure char
acteristics may differ significantly. One may fail catastroph-
ically, while the other may fail noncatastrophically. 

3 The critical stress for crack extension and the strain to 
failure for noncatastrophic failure are higher than for cata
strophic failure. 

4 As pointed out in [11], conclusions 1, 2, and 3 may lead 
to nonconservative predictions of material properties if current 
testing standards are applied to materials that exhibit crack 
bridging, since these procedures were developed for materials 
that do not exhibit crack bridging. 

5 The bridging force-crack opening displacement (C. O. D.) 
relation p(x)=p(C.O.D.) should be included in analyses of 
experimental specimens or components. This relation should 
be treated as an engineering property of the material. 
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