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Local-Global Analysis of Crack 
Growth in Continuously Reinforced 
Ceramic Matrix Composites 
This paper describes the development of a mathematical model for predicting the 
strength and micromechanical failure characteristics of continuously reinforced ce
ramic matrix composites. The local-global analysis models the vicinity of a prop
agating crack tip as a local heterogeneous region (LHR) consisting of springlike 
representations of the matrix, fibers, and interfaces. This region is embedded in an 
anisotropic continuum (representing the bulk composite), which is modeled by 
conventional finite elements. Parametric studies are conducted to investigate the 
effects of LHR size, component properties, interface conditions, etc. on the strength 
and sequence of the failure processes in the unidirectional composite system. The 
results are compared with those predicted by the models developed by Marshall et 
al. (1985) and by Budiansky et al. (1986). 

Introduction 
The failure characteristics of fiber-reinforced composites are 

dictated by various micromechanical failure processes such as 
matrix microcracking, slipping between matrix and fibers, de-
lamination, and fiber breakage. This paper presents a local-
global model (it combines micromechanical and macrome-
chanical analyses), which considers the vicinity of a crack tip 
a "process zone" capable of modeling such phenomena. Of 
special interest to our study are quantities such as critical matrix 
cracking stresses, since such damage leads to oxidation and 
eventually to fiber degradation, and is therefore used as an 
important criterion in design. Also of interest is the global 
response of the system to external loads and the ultimate load 
that the composite can sustain. 

Before presenting a detailed description of the present model, 
a comparative review of existing models for fracture mechanics 
of brittle matrix composites (BMC) is warranted. The most 
quoted models are those developed by Aveston et al. (1971), 
Marshall et al. (1985), and Budiansky et al. (1986). The fol
lowing are some of the key concepts underlined in these models 
that we shall seek to study or validate through our model. 

Marshall et al. (1985) have developed a model that can be 
used to predict the stress at which a matrix crack propagates 
across the specimen. This stress will, henceforth, be called the 
critical matrix cracking stress, <rmat. In their analysis, a fac
tional bond between fibers and matrix was assumed whereby 
slipping takes place when the interface shear stress reaches a 
critical value. Using a stress intensity factor approach, they 
have shown that a distinction needs to be made between short 
and long cracks. Short cracks are those for which the entire 
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crack length contributes to the stress intensity factor as a result 
of fiber bridging, and therefore propagate at a stress that 
depends on the crack length. Long cracks experience a crack 
mouth displacement that asymptotically approaches a constant 
value u0. This limiting displacement is reached at a distance 
c0 from the crack tip. For such cracks, amat is independent of 
the crack length, since the contribution to the stress intensity 
factor from the fibers is limited to the length c0 behind the 
crack tip. It is important to note that this model implicitly 
assumes the stress-strain diagram shown in Fig. 1(a), since no 
nonlinearities are assumed prior to the matrix cracking stress. 
It will be shown using the model proposed in this paper that 
this assumption leads to a good estimate of o-mat. However, for 
various constituent properties the present model shows that 
significant nonlinearities may occur prior to <rmat (Fig. 1(b)). 
These irreversible deformations, which are due to slipping be
tween fiber and matrix and microcracking may prove to be 
significant for fatigue types of loading. 

Budiansky et al. (1986) have considered steady-state matrix 
cracking stresses for two conditions: (1) unbonded, frictionally 
constrained fibers, where the frictional restraint is the same as 
in Marshall et al. (1985); and (2) initially bonded fibers, which 
debond due to crack tip stresses. The analysis is based on the 
Griffith energy criterion, which considers the change in po
tential energy with respect to crack growth. The critical crack
ing condition is associated with the upstream and downstream 
stress states, far ahead of and behind the crack front. 

For case (1), the results generalize those of the ACK theory 
by considering matrix cracking stresses for conditions that lie 
between the no-slip and the large slip cases. They showed that 
the critical cracking stress, crmat, can be obtained using the graph 
shown in Fig. 2 in conjunction with equations (1) and (2). The 
procedure includes first evaluating the two parameters <r0

 a nd 
au given by 
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(A) LINEAR BEHAVIOR UNTIL MATRIX CRACKING. 

STRAIN 

(B) OBTAINED BY USING LHR MODEL. 

Fig. 1 Typical stress-strain curve tor BMC 

NO SLIP 

2.0 
a-,/0, 1/u0 

Fig. 2 Graph from Budiansky et al., for calculating matrix cracking 
stress 
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Fig. 3 Local heterogeneous region (LHR) and its components 

is the composite modulus using the rule of mixtures, v is the 
Poisson ratio, ty and vm are fiber and matrix volume fractions, 
respectively, r is the fiber radius, Gm is the critical strain energy 
release rate of the matrix, and T0 is the interface shear strength. 

It is observed that for ox/o0 < 1.0, the ACK expression for 
large slip cracking stress is recovered, i.e., 

6v}Efr0(Kfc)\l-Vl) 
VmElfir 

1/3 

(3) 

where (Kjc) is the fracture toughness of the matrix. The ratio 
(Tj/ao is then calculated and Fig. 2 is used to obtain the cor
responding value of ffmat/ffo-

For bonded-debonding fibers, the following expression was 
derived: 

l +
4 y ' 
v m \ r j \ GJ 

"o 
1 + 

6E 
(1 + vJE,. TO. 

(4) 

Er and Em are the Young's moduli of the fiber and matrix, E 

where ld is the debond length and Gd is the critical energy 
release rate of the interface. 

Expressions for the slip length ls (case (1)) and debond length 
\d (case (2)) will be discussed subsequently. 

This paper presents the preliminary results obtained using 
a model that can be used to predict the fracture characteristics 
of reinforced ceramic matrix composites. This model has been 
used to simulate an experiment in which a notched specimen 
is subjected to tensile stresses. The results are compared to 
those obtained using the aforementioned models. 

Local Model 
The local heterogeneous region (LHR) shown in Fig. 3 con-
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Fig. 4 Spring model of the LHR zone 

sists of three distinct components: fibers, matrix, and fiber-
matrix interface. Following Kanninen et al. (1977), each com
ponent is assumed homogeneous and isotropic and is modeled 
by a succession of rectangular spring elements (Fig. 4). 

Each LHR spring element consists of four extensional springs 
and one rotary spring at each of the corner nodes. Each node 
has two degrees of freedom as shown in Fig. 5. An assembly 
of such elements behaves like a homogeneous anisotropic con
tinuum in a state of plane deformation. 

The stiffness matrix of a LHR element is given by 

lF)=[K\[d) (5) 
where [F] is the nodal force vector, [Al is the element stiffness 
matrix, and [d] is the nodal displacement vector. 

The LHR element spring stiffnesses are related to the elastic 
properties of the material. The derivations for the spring stiff
nesses and for the LHR stiffness matrix are given in Appendix 
A. 

Each LHR fiber and matrix element is capable of fracturing 
in either of the four possible modes shown in Fig. 6. Modes 
1 and 2 correspond to crack growth in the x direction by an 
amount a/2, while modes 3 and 4 represent cracking in the y 
direction within the element by a length of b/2, where a and 
b are the length and width, respectively, of an LHR element. 
These damage lengths have been used for the sake of simplicity 
in representing fracture events in the LHR elements. Each event 
contributes to a loss of stiffness of the element, and conse
quently leads to a change in the strain energy, AES, given by 

AE„ 
{u]T[5K][u} 

2Ac (6) 

Fig. 5 LHR element stiffness components 

where (u ] is the displacement vector of the element, [5K] is 

Fig. 6 Local fracture modes in an LHR element 

the change in the element stiffness due to a fracture event, and 
Ac is the length of the crack in the element, i.e., a/2 or b/2. 
The above relationship is derived in Appendix B. 

It is assumed that for each material (fiber and matrix) a 
critical rupture energy is known. This provides a decision rule 
for breakage in each separate element of the LHR. 
. For purposes of comparison with the results of Marshall et 

al. (1985), preliminary simulations were conducted assuming 
that fiber slipping occurs at a critical shear stress T0. In sub
sequent studies, more realistic modeling, which includes de-
lamination and an elastic-plastic friction model, will be 
employed. 

Local-Global Model 
A schematic representation of a typical local-global model 
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Fig. 7 Schematic of the LHR zone embedded in the finite element mesh 
(not to scale) 

Table 1 Constitutive material properties 

Constituent 

SiC fibers 
Si3N4 matrix 
Interface 

Young's 
modulus, 

GPa 

390 
206 
206 

Poisson's 
ratio 

0.3 
.3 
.3 

KIO,_ 
MPaWm 

5.0 
4.6 

is shown in Fig. 7 (not to scale). The notched composite spec
imen modeled has a length / = 20 cm and width w = 5 cm. 
The LHR surrounds the crack tip and is embedded in the bulk 
anisotropic composite, discretized by standard four-node con
stant strain isoparametric finite elements. The LHR and the 
outer zone are coupled through the enforcement of displace
ment compatibility at the nodes between the LHR and standard 
finite elements. 

Analysis 
The specimen is loaded incrementally in tension perpendic

ular to the crack plane and parallel to the direction of the 
fibers. Displacements are evaluated at every nodal point in the 
LHR, and the strain energy associated with each possible rup
ture event in every LHR element is calculated. The critical 

— 

I 

°ult 

"mat 

I I I I 
500 610 780 920 1060 

LHR LENGTH, MIT 

Fig. 8 Effect of LHR length on r/mal and aM (v, = 0.4, T 0 = 10 MPa, Kj£ 

= 4.6 MPa Vm). 

rupture energies of the fiber and matrix elements are obtained 
from their fracture toughnesses as follows: 

(E?/) = — ^ X (Ac) x (1 - vlj) (7) 

where Kfc (Kfc) is the fracture toughness of the matrix (fiber) 
material, E% (E{r) is the critical energy for a given length of 
damage growth within the matrix (fiber) LHR element; and 
vm (pj) is the Poisson ratio of the matrix (fiber). 

The critical regions, if any exist, are allowed to fracture in 
any one of the four modes described earlier and appropriate 
modifications are made in the LHR stiffness matrix. 

As stated earlier, failure of the interface elements is based 
on the maximum interfacial shear stress criterion. For each 
load level, the shear stress rxy is computed in every LHR in
terface element and this value is compared to the prescribed 
critical shear stress T0. If rxy < T0 (no-slip condition) relative 
displacement between the fiber and matrix is constrained. For 
elements where rxy > T0, the fiber is allowed to slip through 
the matrix and appropriate changes are made in the shear 
stiffness of the interface element so that slip takes place at a 
constant shear stress rxy = T0. 

The solution procedure is repeated for the next load incre
ment to reflect additional local rupture events. The progression 
of the main crack through the matrix (and eventually through 
the fibers) is followed by expanding the LHR zone continu
ously. The load at which the LHR elements begin to fail without 
any further increment of load is recorded as the ultimate 
strength of the composite. This is generally found to occur at 
a stage when the main crack has broken through four (or 
sometimes fewer) successive fibers. 

Results 

Physical Properties and Parameters. Most of the results 
presented in this paper assume material properties (refer to 
Table I) obtained from the following sources: Weeton et al. 
(1986), DiCarlo (1984), and Bubsey et al. (1983). 

Two fiber volume fractions were considered, 0.2 and 0.4. 
These values were consistent with the properties of the ani
sotropic bulk composite: 
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Fig. 9 Variation of amat with crack length c (T0 = 10 MPa, K& = 4.6 

MPa V m ) , v, = 0.4) 
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Fig. 10 Variation of am„ and aM with KJJ (T0 = 10 MPa, v, = 0.4) 

iy=0.2: £ ^ = 242.8 GPa; £ ^ = 227.47 GPa; 
^ = 0.3; Gxy = 100.42 GPa 

iy=0.4: £,,, = 279.6 GPa; £ ^ = 253.92 GPa; 
<V = 0.3; Gxy = 112.93 GPa 

The interface shear strength, T0, was varied in the practical 
range of 0 to 10 MPa. The fracture toughness of the matrix 

was also varied from 1.0 to 5.0 MPa yjm. 
The diameter of the SiC fibers (If) was taken as 100 ixm. 

Assumption of regular hexagonal packing arrangement gave 
an interf iber distance of about 213 and 150 /on (center to center) 
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Fig. 11 Variation of <7m„ and aU|, with r0 (Kfc = 4.6 MPa V m , v, = 0.4) 
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Fig. 12 Effect of fiber volume fraction v,on amal and <rU|, variation 

for volume fractions of 0.2 and 0.4, respectively. The interface 
was assumed to have a nominal thickness of 5 /xm. 

To investigate the convergence of the local-global model, 
ultimate and matrix cracking stresses were studied for various 
LHR sizes. Figure 8 shows the effect of starting LHR size on 
the ultimate stress trult and the critical matrix cracking stress, 
ffmat- Convergence is observed for LHR lengths greater than 
about 1000 fjm and hence LHR sizes of the order of 1000 to 
1500 jim were used throughout the study. 
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Fig. 13 Variation of crack opening displacement u„ with crack length 

c(r0 = 10 MPa, K& = 4.6 MPa V m , v, = 0.4) 

Comparisons With Results Obtained by Marshall et al. 
(1985) 

Effect of Crack Length. As mentioned previously, Mar
shall et al. (1985) have shown that when the crack length is 
greater than a certain characteristic size, matrix cracking stresses 
are independent of the crack length c. To check this result, 
critical matrix cracking stresses (amat) were calculated for var
ious crack sizes. For the case T0 = 10 MPa, Kfc = 4.6 MPa 

\Jm, and ty = 0.4, the results are presented in Fig. 9. Although 
amat is high for small crack lengths, it is found to be independent 
of crack length for c > 0.046 cm. This compares favorably 
to the steady-state crack length proposed by Marshall et al. 
(1985) obtained from the relation 

: _ 3 \4P/3) 

s0.034 cm 

K%Emvttl + v)r 
T0v

2
fE/(.l-ul) (8) 

where -q = VjEf/v„fim, Kfc is the fracture toughness of the 
matrix,and / is 1.2 for straight cracks. 

It should be noted that equation (8) was derived by assuming 
that the matrix stress intensity factor, Kf, is related to the 
composite stress intensity, Kf, by the relation Kf = KfEm/ 
E. This relation is not valid unless the crack length is of the 
order of several fiber spacings. In a future communication, 
the range of validity of this equation will be reported. 

Effect of Matrix Fracture Toughness on amat and 
auU. Having obtained the steady-state crack length, the crit
ical matrix cracking stress, crmat, and ultimate strength of the 
composite, ault, were investigated next using an initial crack 
length such that steady-state conditions are obtained. The ul
timate strength and amat depend on several constituent material 
properties such as fracture toughness of the components, in
terface shear strength, fiber spacing and volume fraction of 
the fibers, etc. Each of these parameters is considered sepa
rately. The variation of <rmat with Kfc over the range of 1.0 to 

5.0 MPa V m is studied for a notch length of 1 cm and in-
terfacial shear strength of 10 MPa. The critical matrix cracking 
stress is found to increase with Kfc and the results compare 
well with those of Marshall et al. (1985) given by 

,= 1.83 
(l-pl,)(Kyc)

2ToEjv}vm(l+n)
2 

Emr 
(9) 

The results from our model and those obtained from the 
above relationship are shown in Fig. 10. Since the results of 
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Fig. 14 Schematic representation of the principal failure events in the 

LHR zone (T0 = 10 MPa, Kfc = 4.6 MPa V m , v, = 0.4) 
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Fig. 15 Axial load deflection curve for various T0 values (Kj£ •• 

\jm, v, = 0.4) 

.35 
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Marshall et al. (1985) and Budiansky et al. (1986) are almost 
equivalent, they do not plot as separate curves. The ultimate 
strength is not affected significantly by variation in Kfc, since 
the ultimate strength of the composite is controlled primarily 
by the fiber-bundle strength. If /„ is the length of the initially 
uncracked ligament in the notched specimen of width w, the 
bundle strength is given by ojVf(lu/w), where oyis the tensile 
strength of the fibers. For the SiC fibers, oy = 1.83 GPa. 
Hence, for a notch length of 1 cm and w = 5 cm, the theoretical 
bundle strength is 586 MPa for vf = 0.4, and 293 MPa for vf 
= 0.2. The ultimate composite strength, aah, obtained using 
our model is slightly less than these calculated values. This is 
due to the sequential breakage of the fibers leading to cata
strophic failure. 

Effect of Interfacial Shear Strength. Since interface shear 
strengths are difficult to estimate, a parametric study was con
ducted for T0 ranging from 5.0 to 10.0 MPa. The variation of 
ffmat with To> shown in Fig. 11, shows good agreement with 
results obtained by Marshall et al. (1985) using equation (9). 

Effect of Fiber Volume Fraction. Two fiber volume frac-
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tions Vf were considered, 0.2 and 0.4. The fiber volume fraction 
controls the interfiber spacing and its effects on amat and auU 

with respect to Kfc and T0 are presented in Figs. 12(a) and 
12(6). It is observed that o-mat and au)t values for vf = 0.2 are 
approximately half of those for ty = 0.4. These results agree 
with those obtained using equation (9). 

Variation of Crack Mouth Opening Displacement With 
Crack Length. Another key concept introduced in the model 
developed by Marshall et al. (1985) is that of the equilibrium 
crack opening u = u0 for long cracks. To study the effect of 
crack length on u, the crack opening displacement at the mouth 
of the crack was recorded for various crack lengths (Fig. 13). 
Although u increases with increasing crack length for crack 
lengths less than 1 cm, it appears to approach a constant value 
of approximately 1 /xm for crack lengths greater than that size. 
This value may be compared to the limiting displacement u„ 
estimated by Marshall et al. (1985) by the relationship 

<rV 
{4T0V}EJ(1+V)} 

(10) 

where a is the far-field applied load. For a = crmat = 300 MPa, 
T0 = 10 MPa, and ty 
quite good. 

0.4, u0 => 0.8 ftm. The agreement is 

Comparison With Results Obtained by Budiansky et al. 
(1986) 

Comparison of Critical Matrix Cracking Stress amat. The 
critical matrix cracking stresses obtained using our model are 
compared to those obtained by Budiansky et al. (1986) for 
unbonded composites (equations (l)-(3)). Because their results 
lead to predictions equivalent to those of Marshall et al. (1985) 
they plot as the same curve in Figs. 10 and 11. 

Comparison of Slip Lengths. For unbonded composites, 
the slip length has been derived by Budiansky et al. (1986) as 

ovmEm 
(11) 

r 2VJET0 p 

where 4 is the slip length on either side of the crack face, a is 
the applied stress, and 

6E 
Ej(\ + vm)\ 

(12) 

For T0 = 10 MPa, Kfc = 4.6 MPa \fm; and a = amat = 300 
MPa, 4 = 806 ixm. 

Results of our simulation are schematically presented in Fig. 
14. The slip length is approximately 900 to 1000 jtm on either 
side of the crack face, which agrees quite well with the results 
of Budiansky et al. (1986). 

Composite Failure Sequence. While the existing models are 
concerned only with the steady-state condition, the present 
model enables a detailed study of the failure sequence as the 
specimen is loaded incrementally. A schematic representation 
of the failure events in the LHR for a notch length of 1 cm, 

T0 = 10 MPa, and Kfc = 4.6 MPa \ / m is shown in Fig. 14. 
Slipping first occurs at an applied stress of 140 MPa, and the 
interface continues to slip with increasing load. The first matrix 
crack is observed around the crack tip at a stress of 295 MPa. 
For matrices with lower Kfc, some microcracking is observed 
around the crack tip before the growth of the main crack. The 
matrix crack steadily progresses through the composite section 
and traverses it completely at a critical matrix cracking stress 
of about 305 MPa (ffmat). As the load is increased, several 
secondary matrix cracks appear in the matrix. The first fiber 
failure occurs at a load of 505 MPa, and in general, this occurs 
at a load of about 90 percent of the ultimate stress. With 

increasing load, the crack breaks through three successive fi
bers before catastrophic failure occurs at an ultimate stress of 
550 MPa. 

Load-Deflection Behavior. The load-deflection curves as 
functions of the interfacial shear strength are shown in Fig. 
15. Except for the case T0 = 0, it is observed that nonlinearities 
begin at point (a) before amsX is reached. This decrease in 
stiffness is a result of fiber slipping and matrix microcracking. 
A further reduction in stiffness occurs at region (b). This region 
corresponds to extensive matrix cracking through the section 
of the composite, so that the load is now essentially carried 
by the fibers. The ultimate failure load (ouh) is reached at (c). 

Conclusion 

A model is presented that can be used to predict the failure 
characteristics of fiber-reinforced composites. Preliminary re
sults obtained using the model compare favorably with those 
predicted by existing models. This model may be generalized 
to consider more complicated geometries and loading condi
tions as well as the behavior of composites containing a random 
distribution of microflaws and strengths. It has been suggested 
(Dollar and Steif, 1988) that assumption of constant interface 
shear strength may not be accurate. The model is currently 
being improved through the implementation of more realistic 
interfacial constitutive modeling. In subsequent work, special 
friction interface elements developed by Plesha et al. (1987) 
will be used. 
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A P P E N D I X A 

Derivation of LHR Element Stiffness 
For a homogeneous isotropic material, the stress-strain re

lationship is given by 
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1 X 

Fig. A2 Continuum element in pure shear 
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Fig. A1 Finite continuum element under uniform strain and equivalent 
LHR element 
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The continuum is modeled by a set of spring elements as 
described previously. The values of the spring constants are 
related to the material's elastic properties by the following 
relationships: 

Jxxy 

IS-yy 

E\2 

bEu 

a 

aE-g 

b 

(A3) 

Q-
a>b'En 

for all i,j=\ 4 
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Fig. A3 LHR element in pure shear 

of the LHR element, respectively; K^ is the extensional stiff
ness in the x direction between the rth and y'th nodes; ICjy is 
the extensional stiffness in the y direction between the rth and 
yth nodes; K?ly is the cross extensional component (Poisson's 
contraction effect); and Q is the rotational stiffness at each 
node. 

The above relationships are derived as follows: Consider a 
finite continuum element of dimensions a x b, which is modeled 
by an LHR spring element of the same dimensions. By forcing 
the spring element to behave like the continuum element, ap
propriate relationships may be obtained for the spring stiff
nesses, Kxx, Kxy, Kyy, and Cj. Since the material is isotropic, 

Jf l2 _ l/ii, _ if . i(U _ vZT, _ v- . 
JVJPJ. J^xx f^-xxi *^-yy - / v v y ~ - f t v v » 

and 

K'12 — K23 — XT34 — ft'14 — if1 4 — A" Ivxy Tk-xy Axy ~ I^xy ~ ^xy ~~ ^xy 

O i — G ? — C-3 — O 4 — O 

where a and b are the length (x direction) and width (y direction) 

Consider the continuum element under a state of uniform 
strain e^ (Fig. A1). If Ax represents the extension of the element 
in the x direction, then Ax/a = e^; or Ax = txxa. The stresses 
in the element are given by o^ = £ „ £ „ and the force in the 
x direction in the element is 

Fx=Oxxb=Euexxb (A4) 

Imposing an equivalent extension in the x direction on the 
spring element, the forces in the x direction at the nodes 2 and 
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3 are given by K^AX = K^xfl. The total force in the x direction 
in the element is 

, , - &±Sa . w (A5) 

Hence from equations (A2) and (A3) K^. = (Enb)/a. 
Similarly, by considering a uniform strain eyy in the y di

rection, it may be shown that Kyy = (E22a)/b. 
From equation (Al), the stress in the y direction, ayy, in the 

continuum element due to strain e^ is ayy = E2}e^ = Enexx 

and the force in the y direction is 

Fy = ayya = Euejafl (A6) 

If Kxy is the cross-extensional stiffness coefficient of the spring 
element, then the force in the y direction due to displacement 
Ax is 

Fy = KxyAx = Kxyexxa (A7) 

From equations (A4) and (A5) we have Kxy - Ey2. 
Finally, consider the continuum element in a state of pure 

shear (shear strain, exy), as shown in Fig. A2. The shear stress 
in the element is T^ = i 
on face 1-2 of the element is 

Ei3exy. The force in the x direction 

Fx = Txya = Enexya (A8) 

Imposing the corresponding nodal rotations in the spring 
element (Fig. A3), the force in the x direction of the side 1-2 
of the element is 

2C6 

b 

2Cex (A9) 

Hence C = E33ab/2. 
Having obtained the spring stiffnesses in terms of the elastic 

constants, the stiffness matrix of an LHR element may now 
be formulated. The stiffness coefficients can be evaluated 
through energy considerations as follows. The total strain en
ergy U stored in an element for any set of arbitrarily varied 
nodal displacements «,• and vt may be written as (refer to Fig. 
5 in the text) 

U= -Kxx(u2-ul)
2+ -K^uj-u^2 

1 1 
+ ̂ Kyy(v4-vl)

2 + -Kyy(v3-v2)
2 

, Kxy(v4-v1 + v3-v2)(u2~ul + u3-u4) 

1 c(V2~Vi + """"'V-t-1 c(Ui~Ul + "2~"'V 
2 V a b ) 2 \ b a J 

(u3 - u2 v3-v4\
2 1 (ux-u4 v4-v3\

: 

\ b + a ) + 2 C V b + a ) 
2 V b 

Using Castigliano's theorem, the nodal forces can be ob
tained as follows: 

F* = -du 
diij 

dU 

dVj 

(All) 

Such derivatives for each joint give the element stiffness 
matrix in the form 

[F] = [K\{d) (A12) 

where [K] represents the element stiffness matrix, {d} the 
displacement vector, and [F] the element force vector. 

Assembly of the LHR stiffness matrix is done by standard 
direct stiffness methods employed in finite element practice. 

A P P E N D I X B 

Derivation of the Strain Energy Release Rate for Incip
ient Rupture 

Consider a small virtual increase Ac in crack length in an 
element under a given external load. The total potential energy 
•K is given by 

«•= \{u)T[K\{u}-{u}T[b\ (Bl) 

where [u] is the nodal displacement vector, [K] is the element 
stiffness matrix, and [b] is the nodal force vector. 

The energy release rate G is obtained from the variation of 
7r with respect to the load, i.e., 

5TT= X- {u}T[5k]{u} + {5u}T[K]{u}-[8u}T{b}-{u}T{8b} 

(B2) 

Using equilibrium and the fact that the vector {8b} is null for 
a given load, the above simplifies to 

Hence 

5TT= ^ {u}T[8k]{u} 

c=-£ = -> r>'-> 

(B3) 

(B4) 

If [8K\ is the change in the stiffness matrix of the element due 
to the incipient fracture, i.e., [8K] = [A]before - [Rafter, then 
G may be written in the form 

(A10) 
&E, 

[u}T[8K\{u] 
2Ac 

(B5) 
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