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Frobenius’ method for curved cracks
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Abstract. The distribution of stresses produced by an undulated crack in a plane elastic solid, and
in particular, at its tips where stresses approach infinity, requires the solution of two coupled sin-
gular integral equations. Except for simple crack geometries such as rectilinear and circular arcs in
infinite plates, for which explicit analytic solutions have been obtained, the integral equations require
numerical solutions. We propose a treatment of the integral equations by Frobenius’ method, which
is particularly suitable for evaluating the stress intensity factors of slightly curved cracks.
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1. Introduction

The stresses induced by a curved crack in an infinite elastic sheet subjected to a uni-
form stress state at infinity can be obtained from the dislocation density, which sat-
isfies two coupled singular integral equations. Explicit analytical solutions of these
equations have been obtained only for rectilinear and circular cracks. But often the
shape of the crack is wavy and hence numerical solution of the integral equations
is required to determine the dislocation density, the stress field and the stress inten-
sity factors. For finite length curved cracks Chen et al. (1991) proposed a method of
solution of the integral equations that involves representing the regular part of the
dislocation density as a linear combination of Chebyshev polynomials, whose coeffi-
cients are determined by collocation. The same procedure was proposed by Dreilich
and Gross (1985) for the specific case of a slightly curved crack. Brandinelli (1997)
solved the same problems by approximating the dislocation density with Chebyshev
polynomials. The numerical values of the stress intensity factors calculated for para-
bolic and sinusoidal shaped cracks were, to within three significant figures, the same
as those obtained by Savruk (1981) using a different method.

An elegant treatment of the problem of slightly curved and kinked cracks involv-
ing simultaneous analytical perturbation of the (given) boundary of the crack and
of the unknown complex stress functions (Muskhelishvili, 1953) was presented by
Cotterell and Rice (1980), who showed that satisfactory values of the stress intensity
factors can be obtained even by arresting the perturbation procedure to first order.

The integral equations of the curved crack can also be solved by the method
of power series (Frobenius’ method) consisting of a double expansion, in increasing
powers of a suitable curvilinear abscissa, of the equation of the crack and of the
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dislocation density, followed by a term-by-term equalization of quantities of the same
powers in the abscissa. Frobenius’ method becomes particularly effective for relatively
‘flat’ cracks, in which the coefficients of the polynomial expansion are so small that
their products can be neglected without appreciable error. In this case the method
yields a system of infinite linear algebraic equations containing the coefficients of the
regular part of the dislocation density as unknowns. Once these coefficients have been
determined, the evaluation of all physical quantities including the stress intensity fac-
tors is immediate.

In this paper we apply Frobenius’ method to flat cracks. This may appear a severe
restriction on the practical usefulness of the method, since cracks with large undula-
tions and sharp corners violate the assumption of small coefficients in the polynomial
representation of the crack. But Frobenius’ method is sufficiently flexible for being
extended outside its theoretical range of applicability. In particular, we have calcu-
lated the stress intensity factor at the tips of a parabolic and of a so called ‘snake
crack’ (a third order polynomial) comparing the results with those obtained by Chen
et al. (1991), Brandinelli (1997), and Cotterell and Rice (1980).

2. The integral equation of the curved crack

We consider an infinite plate subject to a uniform stress state at infinity containing
a curved crack of finite extent (Figure 1). With reference to a x, y-Cartesian system
of coordinates we denote the remote stresses by σ∞

x , σ∞
y , τ∞

xy , respectively. We assume
the profile of the crack to be defined by the polynomial equation

y(x)=A1x +A2x
2 +A3x

3 +· · · (0�x �1) . (2.1)

The displacement discontinuities across the surfaces of the crack, that alter the fun-
damental state of stress, can be analytically described using the Green’s functions of
dislocations with components bx, by , which in turn are distributed along the curve (2.1).
According to Dundurs and Sendeckyj (1965) a discrete dislocation at a point (ξ, η) of
the curve generates at (x, y) a stress state defined by the Airy stress function

U = 2µ

π (κ +1)

[
by (x − ξ) ln r −bx (y −η) ln r

]
, (2.2)

Figure 1. Geometry of curved crack.
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where r

(
r =

√
(x − ξ)2 + (y −η)2

)
denotes the distance between (x, y) and (ξ, η), µ

is the shear modulus, κ = 3 − 4ν for plane strain, κ = 3−ν
1+ν

for plane stress, and ν is
Poisson’s ratio. For convenience we define Bi = 2µ

π(κ+1)
bi (i =x, y), x1 =x −ξ , y1 =y −η,

and by differentiation obtain the stress components

σ 1
x = ∂2U

∂y2
=By

(
x1

r2
−2

x1y
2
1

r4

)
−Bx

(

3
y1

r2
−2

y3
1

r4

)

, (2.3a)

σ 1
y = ∂2U

∂x2
=By

(

3
x1

r2
−2

x3
1

r4

)

−Bx

(
y1

r2
−2

x2
1y1

r4

)
, (2.3b)

τ 1
xy = −∂2U

∂x∂y
=−By

(
y1

r2
−2

x2
1y1

r4

)
+Bx

(
x1

r2
−2

x1y
2
1

r4

)
. (2.3c)

The dislocation components Bx,By are replaced by distributions along the arc
OP (Figure 1), defined in terms of the displacement discontinuities [ui ] (i = x, y) as
Bi ≡ ∂[ ui ]

∂s
, and hence the total stress state at (x, y) is given by the integrals

σx =
P∫

0

σ 1
x ds, σy =

P∫

0

σ 1
y ds, τxy =

P∫

0

τ 1
xy ds, (2.4)

where ds is the arc element. With ξ as a parameter, the element ds can be written as
ds =

√
1+y ′2dξ , and (2.4) become

σx =
1∫

0

σ 1
x

√
1+y ′2 dξ, σy =

1∫

0

σ 1
y

√
1+y ′2 dξ, τxy =

1∫

0

τ 1
xy

√
1+y ′2 dξ . (2.5)

The total stress at any point (x, y) along the curve OP is the sum of the funda-
mental state σ∞

x , σ∞
y , τ∞

xy and the dislocation state (2.4) (or (2.5)). The zero-traction
condition along the crack surfaces is enforced through the equations

(
σ∞

x +σx

)
nx + (τ∞

xy + τxy

)
ny =0, (2.6a)

(
τ∞
xy + τxy

)
nx + (σ∞

y +σy

)
ny =0, (2.6b)

where nx, ny are the components of the unit vector �n normal to the curve OP . Let
us note that, since OP admits the Cartesian representation, y =y(x), the components
of �n have the expressions

nx =− y ′
√

1+y ′2 , ny = 1
√

1+y ′2 . (2.7)

Equations (2.6), combined with (2.3), (2.4), form a system of two coupled singu-
lar integral equations in the two unknown functions Bx,By . The condition that dis-
placements be single-valued (the crack is closed at both ends) introduces two other
restrictions on the unknowns

P∫

0

Bi ds =
1∫

0

Bi

√
1+y ′2 dξ =0. (2.8)
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3. The simplified treatment of the flat crack

So far no approximation has been made in writing the integral equations for Bx,By .
Let us now assume that coefficients Ai in (2.1) are so small compared to unity that
their products are negligible. Retaining only the first three terms of the expansion
(2.1), we obtain greatly simplified expressions for the stress components (2.3)

σ 1
x
∼= By

x − ξ
−3

Bx

x − ξ

[
A1 +A2(x + ξ)+A3(x

2 +xξ + ξ 2)
]
, (3.1a)

σ 1
y
∼= By

x − ξ
+ Bx

x − ξ

[
A1 +A2(x + ξ)+A3(x

2 +xξ + ξ 2)
]
, (3.1b)

τ 1
xy

∼= Bx

x − ξ
+ By

x − ξ

[
A1 +A2(x + ξ)+A3(x

2 +xξ + ξ 2)
]
. (3.1c)

Consistent with this approximation, the components (nx, ny) become

ny
∼=1, nx

∼=−(A1 +2A2x +3A3x
2), (3.2)

and the contribution of the fundamental state in (2.6) is

Tx =σ∞
x nx + τ∞

xy ny =−(A1 +2A2x +3A3x
2)σ∞

x + τ∞
xy , (3.3a)

Ty = τ∞
xy nx +σ∞

y ny =−(A1 +2A2x +3A3x
2)τ∞

xy +σ∞
y . (3.3b)

Then, combining Equation (3.1) with (3.3), we obtain the following system of inte-
gral equations of Cauchy type

−(A1 +2A2x +3A3x
2)

1∫

0

[
By

x − ξ
−3

Bx

x − ξ

{
A1 +A2(x + ξ)+A3(x

2 +xξ + ξ 2)
}]

dξ

+
1∫

0

[
Bx

x − ξ
+ By

x − ξ

{
A1 +A2(x + ξ)+A3(x

2 +xξ + ξ 2)
}]

dξ+Tx =0, (3.4a)

−(A1 +2A2x +3A3x
2)

1∫

0

[
Bx

x − ξ
− By

x − ξ

{
A1 +A2(x + ξ)+A3(x

2 +xξ + ξ 2)
}
]

dξ

+
1∫

0

[
By

x − ξ
+ Bx

x − ξ

{
A1 +A2(x + ξ)+A3(x

2 +xξ + ξ 2)
}]

dξ+Ty =0. (3.4b)

But here again we can neglect terms containing products of the type Ai Aj (i, j =
1,2,3) and reduce (3.4) to the form

1∫

0

[
By

x − ξ

{−A2x −2A3x
2 +A2ξ +A3xξ +A3ξ

2}+ Bx

x − ξ

]
dξ+Tx =0, (3.5a)

1∫

0

[
Bx

x − ξ

{−A2x −2A3x
2 +A2ξ +A3xξ +A3ξ

2}+ By

x − ξ

]
dξ+Ty =0. (3.5b)



Frobenius’ method for curved cracks 63

At the same time the unknowns Bi must satisfy the compatibility equations (2.8),
which, after linearization, become

1∫

0

Bi dξ =0. (3.6)

4. Application of Frobenius’ method

In order to solve (3.5), (3.6) we start from a plausible representation of Bx,By that is
consistent with the square root singularity in dislocation densities at both crack tips

Bx(ξ)= 1√
ξ(1− ξ)

(B1 +B2ξ +B3ξ
2 +B4ξ

3 +· · · ), (4.1a)

By(ξ)= 1√
ξ(1− ξ)

(C1 +C2ξ +C3ξ
2 +C4ξ

3 +· · · ), (4.1b)

where B1, . . . ,C1, . . . are constants to be determined. Substitution of (4.1) in (3.5),
(3.6) and the application of the residuum theory (Grigolyuk and Tolkachev (1987))
leads to the following identities

1∫

0

Bx(ξ)dξ

x − ξ
=

1∫

0

B1 +B2ξ +B3ξ
2 +B4ξ

3

√
ξ(1− ξ)(x − ξ)

dξ

=−π

[
B2 +

(
x + 1

2

)
B3 +

(
x2 + x

2
+ 3

8

)
B4

]
,

1∫

0

Bx(ξ)ξdξ

x − ξ
=

1∫

0

B1ξ +B2ξ
2 +B3ξ

3 +B4ξ
4

√
ξ(1− ξ)(x − ξ)

dξ

=−π

[
B1 +

(
x + 1

2

)
B2+

(
x2 + x

2
+3

8

)
B3+

(
x3+x2

2
+3x

8
+ 5

16

)
B4

]
,

1∫

0

Bx(ξ)ξ 2dξ

x − ξ
=

1∫

0

B1ξ
2 +B2ξ

3 +B3ξ
4 +B4ξ

5

√
ξ(1− ξ)(x − ξ)

dξ

=−π

[(
x + 1

2

)
B1 +

(
x2 + x

2
+ 3

8

)
B2 +

(
x3 + x2

2
+ 3x

8
+ 5

16

)

×B3 +
(

x4 + x3

2
+ 3x2

8
+ 5x

16
+ 35

128

)
B4

]
,

1∫

0

Bx(ξ)dξ =
∫

B1 +B2ξ +B3ξ
2 +B4ξ

3

√
ξ(1− ξ)

dξ =π

(
B1 + B2

2
+ 3B3

8
+ 5B4

16

)
.
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Since identical formulae hold for By except for substitution of Bi with Ci , we can
write Equations (3.5) as

(−A2x −2A3x
2)
[
C2 +

(
x + 1

2

)
C3 +

(
x2 + x

2
+ 3

8

)
C4

]
+ (A2 +A3x)

×
[
C1 +

(
x + 1

2

)
C2 +

(
x2 + x

2
+ 3

8

)
C3 +

(
x3 + x2

2
+ 3x

8
+ 5

16

)
C4

]

+A3

[(
x + 1

2

)
C1 +

(
x2 + x

2
+ 3

8

)
C2 +

(
x3 + x2

2
+ 3x

8
+ 5

16

)

×C3+
(

x4 + x3

2
+ 3x2

8
+ 5x

16
+ 35

128

)
C4

]

+
[
B2 +

(
x + 1

2

)
B3

]
= Tx

π
=−σ∞

x

π

(
A1 +2A2x +3A3x

2)+ τ∞
xy

π
, (4.2a)

(−A2x −2A3x
2)
[
B2 +

(
x + 1

2

)
B3 +

(
x2 + x

2
+ 3

8

)
B4

]
+ (A2 +A3x)

×
[
B1 +

(
x + 1

2

)
B2 +

(
x2 + x

2
+ 3

8

)
B3 +

(
x3 + x2

2
+ 3x

8
+ 5

16

)
B4

]

+A3

[(
x + 1

2

)
B1 +

(
x2 + x

2
+ 3

8

)
B2 +

(
x3 + x2

2
+ 3x

8
+ 5

16

)

×B3 +
(

x4 + x3

2
+ 3x2

8
+ 5x

16
+ 35

128

)
B4

]

+
[
C2 +

(
x + 1

2

)
C3

]
= Ty

π
=−τ∞

xy

π

(
A1 +2A2x +3A3x

2)+ σ∞
y

π
. (4.2b)

Equation (3.6) yield

B1 + B2

2
+ 3B3

8
+ 5B4

16
=0, C1 + C2

2
+ 3C3

8
+ 5C4

16
=0. (4.3)

Frobenius’ method consists of equating terms of the same order in x in (4.2). This,
together with (4.3), generates a system of linear equations in Bi , Ci , which can be
prolonged indefinitely by taking more and more coefficients in (4.1). If we content
ourselves to arrest Frobenius’ procedure to terms of first order in x, it is sufficient
to retain the coefficients B1,B2,B3,C1,C2,C3 in the expansions (4.1). For this level
of approximation, (4.3) reduces to

B1 + B2

2
+ 3B3

8
=0, C1 + C2

2
+ 3C3

8
=0, (4.4)

and (4.2) yields the equations
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B2 + B3

2
+
(

A2 + A3

2

)
C1 +

(
A2

2
+ 3A3

8

)
C2 +

(
3A2

8
+ 5A3

16

)
C3

= 1
π

(
τ∞
xy −A1σ

∞
x

)
, (4.5a)

C2 + C3

2
+
(

A2 + A3

2

)
B1 +

(
A2

2
+ 3A3

8

)
B2 +

(
3A2

8
+ 5A3

16

)
B3

= 1
π

(
σ∞

y −A1τ
∞
xy

)
, (4.5b)

B3 +A3C2 + 3A3C3

4
+2A3C1 =− 2

π
A2σ

∞
x , (4.5c)

C3 +A3B2 + 3A3B3

4
+2A3B1 =− 2

π
A2τ

∞
xy . (4.5d)

Solving the system obtained by combining (4.5) with (4.3) (with B4 =C4 =0) and
neglecting terms of second order in A1,A2,A3 we obtain

πB1 =−τ∞
xy

2
+σ∞

x

(
A1

2
+ A2

4

)
+σ∞

y

A3

16
, (4.6a)

πB2 = τ∞
xy +σ∞

x (A2 −A1)−σ∞
y

A3

8
, (4.6b)

πB3 =−2A2σ
∞
x , (4.6c)

πC1 =−σ∞
y

2
+ τ∞

xy

(
A1

2
+ A2

4
+ A3

16

)
, (4.6d)

πC2 =σ∞
y + τ∞

xy (A2 −A1)− τ∞
xy

A3

8
, (4.6e)

πC3 =−2A2τ
∞
xy . (4.6f )

The arrest of Frobenius’ method to the first three terms in (4.1) may appear a
gross approximation, but the following illustrative examples show that this is not the
case.

5. Evaluation of the stress intensity factors of illustrative curved cracks

Having found the coefficients B1,B2, . . . ,C3 we can calculate the stress components
produced by the presence of the curved crack, the crack opening displacements, and
in particular, the stress intensity factors. The stress intensity factors can be readily
evaluated from the near-tip behavior of the dislocation densities referred to the local
normal and tangent to the crack surfaces, Br,Bθ , which are related to the previously
defined Cartesian components by

Br =Bx +By sin θ ∼=Bx + θBy, (5.1a)

Bθ =−Bx sin θ +By
∼=−Bxθ +By, (5.1b)

where the last terms on the right-hand side of (5.1) reflect the linearization consistent
with the assumptions previously stated about the shape of the crack. The mode-I and
mode-II stress intensity factors are given, respectively, by
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KII =
√

2πsπBr, (5.2a)

KI =
√

2πsπBθ . (5.2b)

Combining (5.2) with (5.1), and noting that θ ∼=y ′ =A1 +2A2x, the stress intensity
factors at the left crack tip (x =0) reduce to

KI =−π (C1 −A1B1) , (5.3a)

KII =−π (B1 +A1C1) . (5.3b)

Substitution of (4.6a), (4.6b), (4.6c) and (4.6d) into (5.3), and normalizing with
respect to the half-crack length, 1/2, we obtain

KI ≡ KI√
π/2

=σ∞
y − τ∞

xy

(
2A1 + A2

2
+ A3

8

)
, (5.4a)

KII ≡ KII√
π/2

= τ∞
xy −σ∞

x

(
A1 + A2

2

)
−σ∞

y

(
−A1 + A3

8

)
. (5.4b)

We now assess Frobenius’ method by comparing the stress intensity factors given
by (5.4) with those of curved cracks treated by Chen et al. (1991), Brandinelli (1997)
and Cotterell and Rice (1980). We first consider a parabolic crack defined by the
equation y(x)=2αx(1−x) in a plate subjected to the fundamental state, σ∞

x , σ∞
y , τ∞

xy .
In terms of the geometric parameter α, the coefficients in (2.1) have the values A1 =
2α, A2 =−2α, A3 =0. The stress intensity factors, given by

KI =σ∞
y −3ατ∞

xy , (5.5a)

KII = τ∞
xy +2ασ∞

yy −ασ∞
x , (5.5b)

are the same as those derived by Cotterell and Rice (1980), using a rigorous pertur-
bation technique, for a circular arc shaped crack.

In order to illustrate the precision of Frobenius’ method we compare the results of
formulae (5.5a) and (5.5b) with those obtained by Chen et al. (1991) for the problem
of a parabolic crack of length 2 and height α subject to uniform stresses at infin-
ity (Figure 2a). The authors drew the graphs of the normalized stress intensity fac-
tors as functions of α considering separate action of the far-field stresses σ∞

x , σ∞
y , τ∞

xy .
The corresponding curves are indicated by KII (σ

∞
x ), KII (σ

∞
y ), KI(τ

∞
xy ) in Figure 2b.

Formulae (5.5a) and (5.5b) are represented by the straight dashed lines in Figure
2b, which are tangent to the numerical results at the origin, and provide satisfactory
stress intensity factor approximations for small values of α.

Let us instead consider the cubic parabola y(x)=αx(x −1)2 having a slope 2α at
the left tip and flat at the other tip. The coefficients in (2.1) are now A1 =A3 = 2α,
A2 =−4α, and (5.4) give

KI =σ∞
y −2.25ατ∞

xy , (5.6a)

KII = τ∞
xy +1.75ασ∞

y . (5.6b)

If, instead, the cubic parabola is flat at the origin and inclined at its right tip, its
equation is y(x)=2αx2(1−x), and A1 =0, A2 =−A3 =2α. Thus (5.4) give

KI =σ∞
y −0.75ατ∞

xy , (5.7a)

KII = τ∞
xy −ασ∞

x +0.25ασ∞
y . (5.7b)
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(a)

Figure 2. Parabolic crack subjected to uniform far-field stresses; (a) geometry of crack; (b) normalized
stress intensity factors.

For sufficiently small values of α(α �0.2) the numerical values of the stress inten-
sity factors furnished by formulas (5.5)–(5.7) differ less than 20% from those obtained
by Chen et al. (1991). This case can also be geometrically illustrated by a graph sim-
ilar to that sketched in Figure 2b.

6. Extension to elastically cohesive cracks

Frobenius’ method can be extended without difficulty to the case in which a cohe-
sive force hinders the free relative opening and sliding of the crack surfaces. Let us
assume that the cohesive force is proportional to the crack opening and crack sliding
displacements, and denote the elastic coefficient of the cohesion by k. This implies
that the surfaces of the crack are no longer traction free, but subjected to restoring
forces with components

Rx =k [ux ] , Ry =k
[
uy

]
, (6.1)
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where [ux ] ,
[
uy

]
are the previously defined displacement jumps, which by definition

are related to the dislocation densities by the formulae

[ux ]=
x∫

0

Bx(ξ)dξ,
[
uy

]=
x∫

0

By(ξ)dξ . (6.2)

The total stress intensity factor is equal to the linear superposition of the stress
intensity factor due to the applied stresses and the (negative) stress intensity factor
contributed by the cohesive forces.

Recalling (4.1) and performing the integration in (6.2), we obtain

[ux ]=
x∫

0

B1 + ξB2 + ξ 2B3 +· · ·√
ξ(1− ξ)

dξ =2B1arcsin
√

x +B2

(
arcsin

√
x −

√
x(1−x)

)

+B3

(
3
4

arcsin
√

x − 3
4

√
x(1−x)− 1

2
x
√

x(1−x)

)
+· · · , (6.3)

and an identical expression for
[
uy

]
except for substitution of Bi by Ci .

Applying the expansions

arcsin
√

x =√
x + 1

6

(√
x
)3 + 3

40

(√
x
)5 +· · · ,

√
x(1−x)=√

x − 1
2

(√
x
)3 − 1

8

(√
x
)5 +· · · ,

allows us to write (6.3) to the third order term in
√

x as

[ux ]=2B1
√

x +
(

2B1

3
− B2

3
− 3B3

4

)(√
x
)3 +· · · , (6.4)

with the same expression holding for
[
uy

]
save replacement of Bi by Ci .

For this cohesive crack equations (2.6) must be modified into
(
σ∞

x +σx

)
nx + (τ∞

xy + τxy

)
ny −k [ux ]=0, (6.5a)

(
τ∞
xy + τxy

)
nx + (σ∞

y +σy

)
ny −k

[
uy

]=0. (6.5b)

Substitution of (6.4) into (6.5), retaining terms of order zero and one in
√

x, and
solving the system of equations, we recover Equations (4.4) and (4.5a), (4.5b), while,
instead of (4.5c), (4.5d) we obtain B1 = C1 = 0. According to (5.3), the total stress
intensity factor is therefore equal to zero, independent of the value of k. We note that
the total stress intensity factor could not be zero for a cohesive law associated with
zero force at zero crack opening displacement. However, the approximation produced
by Frobenius’ method is qualitatively consistent with the asymptotic limit derived by
Rose (1987) for the total stress intensity factor of cracks of length 2a bridged by
‘stiff ’ springs (or long cracks)

Ki ≡ Ki√
πa

≈ σ∞
ij√
k
, ka 	1. (6.6)
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The mathematical result that the presence of a relatively soft adhesive between the
faces of a sufficiently long crack is sufficient to annihilate the stress singularities may
appear surprising. Apparently, Venetian carpenters’ practice (since the Middle-Age)
of inserting bitumen between the surfaces of cracks in the keels not only water-sealed
the ‘Repubblica’s’ galleys, but also mitigated the propagation of fractures.
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