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A Crack Very Close to a 
Bimaterial Interface 
This paper presents the plane elastostatics analysis of a semi-infnite crack perpendic- 
ular to a perfectly bonded bimaterial interface. Both cases of  the crack approaching 
the interface and penetrating the interface are addressed. The distance from the tip 
of the crack to the interface is 6. A singular integral equation approach is used to 
calculate the stress intensity factor, Ki, and the crack-opening displacement at the 
interface, ~, as functions of 6, the Dundurs parameters a and/3, and the stress 
intensity factor kl associated with the same crack terminating at the interface (the 
case 6 = 0). The results are presented as KI = kI61/2-~f(a, /3) and r? = Cki61-x0(o~, 
/3) where k is the strength of the stress singularity associated with 6 = O, f and ~7 
are functions calculated numerically and C is a material constant. These results can 
be used to determine the stress intensity factor and crack opening displacement of  
cracks of finite length 2a with one tip at a distance 6 from the interface for 6/a 
!. The selected results presented for a crack loaded by a uniform far-field tension in 
each half-plane show that the stress intensity factors approach their limits at a 
relatively slow rate. 

1 Introduction 

Consider the plane elastostafics problem shown in Fig. 1 (a) .  
A Mode I crack of length 2a is perpendicular to the perfectly 
bonded interface between two isotropic half-planes with shear 
moduli ~i and Poisson's ratios ui, i = 1, 2. The distance from 
the left tip of the crack to the interface is 6. Because of its 
relevance to fracture of composite materials, the problem of 
calculating the stress intensity factors for this configuration has 
been addressed by several authors (Erdogan et al., 1973; Atkin- 
son, 1975). It is well known that this elasticity problem can be 
formulated using the Green's function for the stress produced 
along the crack line by an edge dislocation. This procedure 
leads to the following singular integral equation and uniqueness 
condition: 

2#1 f f+2~b(~)[  1..~ + a + 3_____~2 1 
7r(Kl + 1) y ~ 1 - / 3  2 y +  

+ 2 ( ~ -  i )  ~(Y - ~ ) ]  , ,  ~y ~ _ - ~ 7 j a ¢  = - a = ( y )  

f ~+2ab(~)d~ = 0  6 - < y , ~ - < 6  + 2a (1) 

where or= is the stress along the crack line induced by the 
remote loading in the uncracked body, a and/3 are the Dundurs 
parameters (Dundurs, 1969) 

(9/ = 
~z(K1 + 1) - ~i(K2 + 1) 

#z(Ki + 1) + #i(x2 + 1) 

3 = ~2(K1 -- 1) - ~](K2 - 1) 
#2(K1 + 1) + #l(K2 + 1) 
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•i = 3 - 4vl for plane strain and Ki = (3 - vi) / (1 + vi) for 
plane stress. The unknown dislocation density b(~)  is defined 
in terms of the crack opening displacement [u~(()] as 

0 
b(~)  ~ - ~ [uxl. (2) 

The first equation in ( 1 ) represents the zero traction condition 
along the crack surfaces, while the second enforces single-val- 
ued displacements (both crack tips are closed). In the following, 
the loading is taken as uniform remote tension in each half- 
plane, (r (l) and a (2), such that 

l + a  o .(2) = - -  a (1) (3) 
1 - o r  

and therefore a= = a (1) in Eq. ( 1 ). 
The ratio 6/2a enters in the kernel of the singular integral 

Eq. (1) in such a way that stress intensity factor values calcu- 
lated using a direct numerical solution inevitably lose accuracy 
for 6/2a ~ 1. Indeed, the smallest ratio for which Erdogan et 
al. (1973) present results is df/2a = 0.05. Their results showed 
that as 6 ~ 0 the stress intensity factor of the crack tip closest 
to the interface approaches zero when #: > #t and infinity when 
#i > #2. These limits result from the discontinuous change in 
the order Of the stress singularity as 6 becomes equal to zero. 
As will be explained in the next section, for 6 = 0 and #: > 
#1 the stress ahead of the crack tip is of the order ktr -x with h 
< ½. This weaker singularity in effect reduces to zero, as 6 
0, the amplitude Ki of the square root singularity associated 
with 6 m 0. For #l > #2, h > ½, and similar arguments explain 
why Kt increases to infinity as 6 ~ 0. Assuming linear elastic 
fracture mechanics these limits imply that the crack reaches the 
interface at infinite load for #2 > IZl and zero load for 
/Zl > #2. 

As a first step toward the development of physically sound 
propagation criteria for interface cracks, this paper is concerned 
with determining, as functions of the elastic mismatch, the rate 
at which the square root singularity approaches the limits dis- 
cussed above. To this end the problem is formulated asymptoti- 
cally in terms of a semi-infinite crack in which the only length 
parameter is 6. 

The approach used is essentially the same as that used by 
Hutchinson et al. (1987) to study a crack very close to and 
parallel to a bimaterial interface. It relies on some relevant well- 
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Fig. 1 Finite length crack (a) approaching and (b) penetrating a bimate- 
rial interface 

known results for the asymptotic behavior of the stresses and 
crack-opening displacements in the vicinity of the tip of a crack 
impinging on a bimaterial interface. These are reviewed briefly 
in the next section. The solution of the semi-infinite crack prob- 
lem is discussed in the third section and an example of how 
the asymptotic analysis can be applied to the problem of Fig. 
1 (a)  is provided in the 4th section. The last section extends the 
method to the case of a finite crack that penetrates a distance 
6 through the interface, Fig. 1 (b) .  

2 Finite Crack Terminat ing  at the Interface 

The results of the Williams technique analysis for a crack 
terminating at the interface (6 = 0 in Fig. 1 (a ) )  show that the 

traction ahead of the crack tip is characterized by 

kl 
lim {a~) (y )}  = 2 ~  ( -Y)-X (4) 

y - * 0 -  

where superscript (i)  denotes " in  material ( i ) , "  ki is the stress 
intensity factor, and h(0 ~ k < 1) is the root of the equation 
derived by Zak and Williams (1963) 

cos (Mr) 2(/3 - a )  (1 - h) 2 + a + B 2 = - -  - -  ( 5 )  

(1 + /3 )  1 -/32' 
The loci of constant k in the cz-/3 plane are shown in Fig. 2 (a ) .  
As pointed out by Dundurs (1970), this figure clearly illustrates 
that for c~ -~ 1 the quantity k is more sensitive to the mismatch 
in the Poisson's ratios, while for c~ ~ - 1  it is more sensitive 
to the mismatch in the shear moduli. 

Another important result from the Williams analysis relates 
the crack-opening displacement ( COD ), [ u ~= ) (y) ], to the stress 
ahead of the crack, i.e., 

I ° t lim { a ~ ( - y ) }  = lim - O ~ y [ U ~ n ( Y ) l  
y - . 0  + y-*0  + 

= lim { ~Ob(y) } 
y--,O + 

where the bimaterial parameter ~0 is defined as 

2/z___.Z_~ 1 [ ~ 1  + c~ 
~0 - ( • 1 +  1 ) s i n  ( k r r ) ~ 1  - - - f ~ )  [ 1 -  

2/3(k - 1)]. 

(6) 

(7) 
Equation (6) allows the determination of the stress intensity factor 
of a crack of length 2a in terms of the dislocation density as 

kt = lim { ~Ovt~a×b(y) } (8) 
y-~O + 

in which 

b ( y )  = a- (X+V2)b(y)y~(2a  - y)1/2 

is the regular part of the dislocation density b ( y ) .  
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It is worth noting that (8) could also be derived by studying 
the behavior near the crack tip of the generalized Cauchy-type 
integral that represents the stress ~<2) uxx . 

3 Semi- inf in i te  C r a c k  Analys i s  

Consider a semi-infinite crack perpendicular to the interface 
and terminating at a distance 6 from it. The COD at a point r 
= y - 6 very close to the crack tip (r /6  ~ 1) is given by [Ux] 

Kzr ~/2, where Kt is the stress intensity factor. For r/6 > 1 
the COD approaches the one associated with the crack tip im- 
pinging on the interface (6 = 0), i.e., [u~] ~ k~r 1-~. The physical 
meaning is that since 6 is very small the COD in the far-field 
is indistinguishable from the COD of the same crack impinging 
on the interface. 

Linearity and dimensional considerations (6 is the only char- 
acteristic length) demand that 

K, 
k,61/2_x - f(oe,/3) (9) 

where f i s  a function of the Dundurs parameters only. This type 
of argument was employed by Hutchinson et al. (1987) and He 
and Hutchinson (1989). 

It should be noted that tNs last result was derived by Atkinson 
(1975) by applying the Mellin transform to the integral equation 

- 0 . 2 5  

0 .5 -  

oo50 

0.25 - 9.w 

° / / \  

-1 -0.75 -0.5 

- >........-- 

Loci of f 

I 
-0.25 0 0.25 0.5 0.75 1 

ct 

Fig. 3(a) 

0 . 5 " -  

0,25 - i 

O" 

-0.25 - 

-0.5 
-1 

u.lo 

I ~ i  
~ .~.~Z) ~..........- ''''" ~'~''''- Loci'off, 

I 
-0.75 -0.5 -0.25 0 0.25 0.5 0.75 1 

Ct 

Fig. 3(b) 

0.5 

0.25 ! 

13 o ,  

-0.25 

-0.5 , 

I 0.1 ' 
3 O. 

- ~ I \  b, \ I \  I'~I 

-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 
Ct 

Fig. 3(c) 

Fig. 3 Loci of (a) constant f, (b) constant f*, and (c) constant ~ in the 
a-/~ plane 

0 . 5  - I 14.~ 

0 I j a m  __.__ -----  
025 / ~  i ~ 1  ~ ~  ~ 

0.1 " ~ .  ,.......,.,,..,_._,__._ 

-0.25 • / 
/ ~ Loci of h 

I -0.5 ~ ~ ~ , , , [ 
-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1 

Fig. 4 Loci of constant h in the a, ,8-plane 

and using the Wiener-Hopf technique. He showed that the stresses 
ahead of the crack are given by (using the notation in his paper) 

N 
•xx ~" EI/ZF-I/2{ ~ Ake 4-2 + O(~3s '1-4)}  ( 1 0 )  

k=l 

where the Ak are constants independent of e, al and /3 are 
material constants (not to be confused with the Dundurs param- 
eters), and s~ are the N real roots (Re(s) > 1) of the equation 

cos (Trs) + c~1 - /3(s - 1) 2 = 0. (11) 

It can be easily shown that the dominant term of the stress given 
by (10) corresponds to that produced by the stress intensity 
factor defined by relation (9), the constants A, being identified 
with the values of klf(ce,/3),  and st = 2 - k. Atkinson devel- 
oped his solution for a constant pressure loading, but did not 
present numerical results for coefficients Ak. The main contribu- 
tion of the present paper is that it presents complete results for 
these universal functions. 

As will be described in the next section, (9) provides a powerful 
tool for the asymptotic analysis of finite length cracks approaching 
a bimaterial interface. The values of the function f ( a ,  /3) were 
calculated by integrating numerically (1) for 2a = o0. The details 
of the solution procedure are given in the Appendix. 

The loci of constant f in the ce-/3 plane are shown in Fig. 
3 (a).  It is interesting to note that the sensitivity of f to  changes 
in shear moduli and Poisson ratios is qualitatively the same as 
that of the singularity coefficient k. 

4 Finite  C r a c k  V e r y  Close  to the Inter face  

The numerical scheme used for solving the singular integral 
equation for the finite crack depicted in Fig. 1 (a) becomes 
unstable when the ratio 6/2a assumes very small values. For 
these cases, an indirect method based on asymptotical analysis 
is recommended for computing the stress intensity factor. This 
approach relies on the combination of (9) and the stress inten- 
sity factor kl associated with the finite crack terminating at the 
interface (6 = 0). 

As an example, consider the case of a crack acted upon by 
a uniform remote tension field in the two connected half-planes 
according to (3). As shown in the Appendix the stress intensity 
factor kl can be represented as 

k, 
G~/~a× - h (a , / 3 ) .  (12) 

The loci of constant h in the c~-/3 plane are shown in Fig. 4. It 
is observed that the stress intensity factor for this problem is 
yet another parameter that is more sensitive to the mismatch in 
the Poisson's ratios for a -* 1, while for a ~ - 1  it is more 
sensitive to the mismatch in the shear moduli. Combining (9) 
and (12) leads to the following expression for the stress inten- 
sity factor of a crack of length 2a at a distance 6 from the 
interface: 
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Fig. 5 Numerical instability and transition to the asymptotical solution 
of g for small ~la ratios for (a) ~ = 4,8 = ~ and (b) a = 4,8 = - ~  

o.~[~al/2 - g(o~, /3) = f(ot ,  /3)h(a,  /3); 

6/a --' O. (13) 

Selected results for the asymptotic value of the stress intensity 
factor as calculated using (13) are presented in Figs. 5 (a) and 
5 (b) for a = 4fl = +~; these values of the Dundurs parameters 
include u~ = u2 and /~2//z~ = 10 or #~/#2 = 10. The solid 
lines in these plots are the values of the stress intensity factor 
calculated through a direct numerical solution of ( 1 ) along the 
finite interval. The procedure used for these calculations is out- 
lined in the Appendix. As expected the direct solution for a 
given number of integration points breaks down as the distance 
from the crack tip to the interface assumes relatively small 
values. The asymptotic solution approaches the envelope de- 
fined by the value of 6/a at which the direct numerical solution, 
for a given value of integration points, becomes unstable. 

The most interesting results of this analysis is that the stress 
intensity factor approaches the aforementioned limits at rela- 
tively slow rates. For significant elastic mismatch, a = 4/3 = 
~, the stress intensity factor for 6/a = 0.001 is approximately 
30 percent of the nominal value associated with no interface. 
These results suggest that although the stress intensity factor for 
/z2 > #~ approaches zero, this limit is associated with distances 6 
much smaller than the plastic zone that inevitably surrounds 
the crack tip. The leading edge of the plastic zone will thus 
reach the interface at a finite load. Perhaps more importantly, 
cracks in typical engineering materials will have extremely 
small 6 values that will invalidate a continuum mechanics for- 
mulation. 

5 Finite Crack Extending Through the Interface 
The asymptotical technique described in the previous sections 

can be easily extended to other interface crack problems. The 
natural extension of the previous formulation is to a finite crack 
of length 2l = 2 (a + b) that has extended beyond the interface 
a distance 6 = 2b ~ 1 (Fig. 1 (b)).  This problem can be reduced 
to a set of coupled singular integral equations using the same 
Green's function approach that is used to derive (1) (Erdogan 

and Biricikoglu, 1973). These equations are written symboli- 
cally in terms of the dislocation densities b(°(~) (i = 1, 2): 

Ai b(l)(~)Ktid~ + A2 b(2)(~)K2id~ = -or (i~ 
- 2 b  

(i = 1, 2) 

£° £ b(l)(~)d~ + b(2)(()d~ = 0 (14) 
2b 

where K~j (i, j = 1, 2) are Cauchy-type kernels. The first two 
Eqs. (14) represent the traction boundary conditions, while the 
third enforces single-valued displacements. The condition on 
the dislocation density required to insure compatibility at the 
interface is given by 

lim b(2 ) (y ) lb ( l ) ( - y )  = F(a , /3 ,  I.Z) (15) 
y--if) + 

where 

(1 + o~)/3 + (a  - / 3 )  
× (1 - / 3 ) ( - 1  + 4/z - 2~ 2) 

F ( a , / 3 , # )  = - ( 1 - / 3 2  ) cos(#Tr) (16) 
(1 + a ) ( - 1  + 2 /3 -2 /3# )  

and/z is the power of the stress singularity, which satisfies the 
characteristic equation 

(1 -- /32)(1 + COS z pTr) 

+ 212c~/3 -- 1 -- (2c~/3 -- /32) COS #Tr] + 4#(2 - #) 

[(a  - / 3 )z (1  - /~)2 _ a/3 + / 3 ( a  - ,6) cos #Tr] = 0. 

The loci of constant/z are plotted in Fig. 2(b).  
Again a direct solution of Eqs. (14) is inadequate for very 

small b/a  ratios and an alternative approach is furnished by the 
asymptotical analysis. The reference problem is still the finite 
crack of length 21 terminating at the interface. The semi-infinite 
analysis on the other hand has to be redefined, since the crack 
tip is now located beyond the interface at a distance 6 from it. 
As before, the far-field COD has to approach the one associated 
with no penetration, [u,] cc k :  1-~, and in the vicinity of the 
crack tip the COD is given by [u,] cc K1r 1/2. However, an 
additional requirement is that the COD at the interface be of 
the order r ~-u. Equation (9) still applies withf(ce,/3) replaced 
by the new function f * ( a , / 3 )  whose values are computed by 
solving numerically the proper set of integral equations (see 
Appendix); the loci of this function in the a-/3 plane are plotted 
in Fig. 3(b).  

Combining (9) and (12) leads to the asymptotical expression 
of the stress intensity factor of a finite crack of length 21 the 
has penetrated in material 2 by the distance 6 = 2b ~ l 

K, 
amq.7l .~  = g*(a, /3) 

[ 2c \t/2-~ 

=  1--77c) 

where 

c = b/a.  

The predictions of Eq. (17) are valid in the limit 6/l  ~ O. 
Figures 6 and 7 show the convergence of the nondimensional 
stress intensity factor values found by direct numerical integra- 
tion to the asymptotic solution given by (17) for the two mate- 
rial combinations already used in the previous sections, a = _+ 

= 4/3. Note that the for the case ce = +~ = 4/3, which 
corresponds to k = 0.347, the rate of convergence is much 
slower than for a = - ~  = 4/3 (k = 0.755). 

Note that the asymptotic analysis can be used to compute not 
only stress intensity factors but also other quantities such as the 
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crack-opening displacement at the interface. In fact, for a semi- 
infinite crack the COD at the interface, r/, is given by 

l + X l  
-- - -  k / 6 1 - X ~ ( o t , / 3 )  ( 1 8 )  

2/Zl 

where ~ is a function of the Dundurs parameters whose loci are 
shown in Fig. 3(b) .  The asymptotic expression of the crack- 
opening displacement at the interface for the finite crack in Fig. 
1 (b) is then given by 

rlf = - ~ q b l 6  ~ h(a,/3)~(a,/3) 6/1~ 0 (19) 

where 

a(I)(Ki + 1) 

21zi 

6 Conclusions  
The numerical schemes that are used to solve integral equa- 

tions describing the elastostatics problems of finite length cracks 
close to a bimaterial interface are not accurate when the relative 
distance 6 from the •crack tip to the interface becomes very 
small. An asymptotic analysis has been developed that provides 
accurate stress intensity factors for such problems and gives 
insight into their rate of change as 6 -* 0. For the case of a 
crack approaching or penetrating a bimaterial interface, it has 
been shown that the stress intensity factor at the leading crack 
tip approaches its limiting value at a slow rate. These results 
suggest that propagation criteria for such problems are associ- 
ated with nonlinear processes. The technique presented in this 
paper can be used to solve a class of problems in which a small 
parameter leads to an unstable direct numerical solution of the 
governing equations. 
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Let 

A P P E N D I X  

2/zt 
Ai - (i = 1, 2) 

It(1 + ~ )  

a + /3  2 2 ( a - / 3 )  1 + a  
M =  1 _ / 3  z ,  N 1 + / 3  ; S =  1 - / 3 2 '  

p = a - / 3  2 2(a-/3___________). T =  1 - a  
1 - / 3  z ;  Q =  1 - / 3  ' 1 - f l  2; 

1 M {(y - ~ )N .  
K i i ( ~ ,  y) - + - -  + 

y - ~  y + ~  

K,2(~, y ) =  S I - - - L - -  2/3 ~-----~-----] ' 
Y ~ (3' ~)2 , 

(y + ~)3 , 

K21(~'Y) = T[---~---+ 2 / 3 - - - ~ 1  ~ (Y 

K=(~, y) - ~ P ~(Y - ~)Q (A1) 
y _ ~ y + ~ (y + ~ ) 3  

The following procedures were used to solve the integral equa- 
tions numerically. 

Crack of  Length 2a at Distance 5 From the Interface 
(3  -> O) 
The integral equations for this case are 

f 
6 + 2 a  

a ,  b(~)Kll(~,  y)d{ = -~r iI) 
o 6  

f ~+2. b ( O d ( = O  6 - < y , ~ - < 6 + 2 a  

The case 6 = 0 corresponds to a crack impinging on the inter- 
face. For the numerical computation these equations are ren- 
dered in nondimensional form and normalized in the interval 
[ - 1 ,  1] by means of the transformations 
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t = { - ( a + 6 ) . ,  { = y - ( a + 6 ) ;  
a a 

a(1)(~1 + 1) 
6 -  2#1 

The nondimensional stress intensity factor at the crack tip clos- 
est to the interface is given by 

where 

and 

kt ~1 + 1 0b(-1); 6 = 0 (A3) 
h ( a ,  /3) = a(l)x[TrTra~ 21 z, 

K, = b ( - 1 ) ;  6 > 0 (A4) 
g ( a , / 3 )  = cr ( l )~a l /2  

2~1 1 1 + a 
tp . . . .  [1 - 2/3(k - 1)] 

~1 + 1 sin (X~r) 1 -/3~ 

b ( t )  = b( t ) (1  + t)x(1 - t) ''2 

is the regular part of the dislocation density (X = ½ when 6 > 
0). For the numerical solution of (A1),  two methods were 
compared./~ (t) in the first method is represented as a truncated 
series of Jacobi polynomials (Erdogan et al., 1973), while in the 
second method it is expressed in terms of piecewise quadratic 
polynomials (Miller and Keer, 1985). The results shown a 
faster convergence for the latter method for which 64 integration 
points were necessary to capture three significant figures, versus 
400 integration points necessary for the first method. 

Semi-infinite Crack Whose Tip is at Distance 6 From 
the Interface 

The singular integral equation is the same as the first (A2) 
except that the upper limit 2a is replaced with oo. The unknown 
dislocation density is represented in real coordinates as 

b(~)  = 2 ~ ( (  - 6)'/2~ x b ( ( )  + w(~)~b -~ (A5) 

with the additional condition l im/~(()  = 0 replacing the crack 

closure condition that appears in the second Eq. (A2).  As dis- 
cussed by Rubinstein (1992), this representation stabilizes the 
singular integral equation, w(~) is a function of the type 

With the change of variables ~ = 26/(1 - t ) ,  y = 26/(1 - ~) 
(A4) is normalized in the interval [ , 1 ,  1]. 

By extracting the dominant term of the singularity of the 
resulting equation, the nondimensional ratio of the local and 
far-field stress intensity factors is determined as 

f ( a , / 3 )  = K~ 6×_~n = /~(-1) .  ( a 7 )  
k, 

Crack of Length 2a Extending Through the Interface 
by 6 ( ~  -> 0)  

The set of coupled singular integral equations is given in (14) 
with A~ and K 0 defined in (A1).  The compatibility condition at 
the interface is given in (15). The normalized nondimensional 

form of (14) and (15) is attained by means of the transforma- 
tions 

tl = ~ - a , '  ¢1 = y - a , '  ~bl = -  or(l)(1 + Kl),. 

a a 2/z1 

t2 = - ~ + b .  ~2 Y + b (/)2 O" (2)(1 + K2) - - ,  = - - - ;  = - 
b b 2/.z 2 

that lead to the following representation of the dislocation densi- 
ties: 

b(l)(tl)  = /~'(1)(ti)(1 - ti)-l/2(1 + ti)~; 

b(2)(t2) = b(Z)(t2)(1 - h)-1/2(1 + tz) u (A8) 

where 

c = b / a .  

The nondimensional stress intensity factor at the crack tip 
closer to the interface is then given by 

K, 
g*(a , / 3 )  - o.(i)xf- ~ 

_ 2u--~bll ~/1 2c+ c 11 _+ aa b(z)(1)i (A9) 

Semi-infinite Crack Whose Tip is at Distance 8 Beyond 
the Interface 

The equations for this case are similar to the first two Eqs. 
(14) with the upper limit 2a replaced with oo, and Eq. (15). 
The third Eq. (14) is replaced by the following condition that 
stabilizes the integral equations and insures uniqueness of the 
solution: 

lira ff t)(~) = 0. 

The dislocation density functions have the form 

kl 1 [•1 + 1/~(,)(() + Wl(()[//_l ] 
b(')(~) = ,~7 (~ + 6)~-"(" L 2ui 

k~ K2 + 1 /~(2)(~) 61/2+"-x (A10) 
b(=)({) = 2 ~  2#2 ( -{)~ ' (6  + ~)1/2 

where w~({) is a function of the type 
. = + 1 - i  

wl(<~)  = sm LT / ( A l l )  

The normalized form of the set of equations is attained through 
the change of variables 

tl = ~ -  6 y -  6 2~ + 6 2y + 6 
~+----6; ¢ ' = - - ; y + 6  t 2 = - - ; 6  ¢ 2 = - - f i  

By extracting the dominant term of the crack-tip singularity, 
the nondimensional ratio of the local and far-field stress inten- 
sity factor is then given by 

f * ( a , / 3 )  = K/6x_1/2 = ffz)(1).  (A12) 
k, 

The crack-opening displacement at the interface is given by 

r? = - B2 (~ )d~  = ~ B2(t2)dt2 
6 1 

_ 1 + Kl k~61_X~(oz,/3) (A13) 
2#~ 
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