Linear Elastic Fracture Mechanics Pullout Analyses
of Headed Anchors in Stressed Concrete

R. Piccinin®; R. Ballarini, FASCE? and S. Cattaneo®

Abstract: The results of research initiated in the early 1980s led to the replacement of plasticity-based design guidelines for the
load-carrying capacity of headed anchors embedded in concrete with those developed using fracture mechanics. While provisions are
available in the design codes that account for the presence of tensile fields causing concrete cracking, no provisions are available for
anchors embedded in prestressed concrete. This paper presents the results of linear elastic fracture mechanics (LEFM) analyses and of a
preliminary experimental investigation of the progressive failure of headed anchors embedded in a concrete matrix under compressive or
tensile prestress. The model predicts an increase (decrease) in load-carrying capacity and ductility with increasing compressive (tensile)
prestress. It is shown that despite neglecting the dependence on size of concrete fracture toughness, LEFM predicts with remarkable

accuracy the functional dependence of the ultimate capacity on prestress.
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Introduction

Steel headed anchors embedded in a concrete matrix are widely
used in structural engineering applications. Their load-carrying
capacity can be predicted with confidence for cases in which the
stem yields; it is simply equal to the yield stress of the steel
multiplied by the cross-sectional area of the stem. Predicting the
maximum load achieved during the progressive failure of the
concrete, however, is much more difficult. Numerous analytical,
computational, and experimental studies (Klinger and Mendonca
1982; Krenchel and Shah 1985; Farrow and Klinger 1995;
Ballarini et al. 1985; Eligehausen and Sawade 1989; Ozbolt and
Eligehausen 1992; Karihaloo 1996; Farrow et al. 1996; Elfgren
1998; Ozbolt et al. 1999; Eligehausen et al. 2006; Cattaneo 2007)
have been performed to guide the development of reliable design
formulas, for cases involving concrete failure, of isolated and
interacting anchors subjected to various loading configurations.
Before the early 1980s, predictions relied on plasticity-type mod-
els, for which the capacity (limit load) of the anchor is equal to
the force produced by a prescribed traction distribution acting
along the surface of a conical section of concrete with an assumed
shape.

ACI Committee 349 (1989), for example, previously allowed
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the capacity of a headed anchor of diameter ¢, embedded at a
depth d, to be determined using a uniform tensile stress, f,, acting
on the projected area of a conical failure surface inclined at 45°
with respect to the free surface. The limit load derived using this
model and the empirical relation between the tensile and com-

K
pressive strengths, f,=4\f", is given by

Pyaci= d)fﬂ"'dz(l + 2) = (¢4\'E)Wd2(1 + 2) zfrdz (1)

where ¢=strength reduction factor. Experimental data (Klinger
and Mendonca 1982; Ballarini et al. 1985; Eligehausen and
Sawade 1989; Ozbolt and Eligehausen 1992; Ozbolt et al. 1999)
has convincingly demonstrated that the d>-dependence demanded
by dimensional consistency and expressed by Eq. (1) is incorrect
and unconservative for typical embedment depths. Realizing that
the failure of headed anchors reflects a progressive crack propa-
gation process, Ballarini et al. (1985), Eligehausen and Sawade
(1989), and Ozbolt and Eligehausen (1992) approached the prob-
lem of predicting the ultimate load capacity of headed anchors,
and in particular the dependence of pullout force on embedment
depth, using fracture mechanics. Linear elastic fracture mechanics
(LEFM) is a one-parameter system for which the equilibrium
nominal stress, oy, corresponding to a crack of length /, is pro-
portional to K,I~"?, where K. is the fracture toughness (which can
be expressed in terms of the critical energy release rate, G, and
Young’s modulus, E, through the Irwin relation, GC=K3/ E). Di-
mensional consistency demands that the pullout force be of the
form

[
P rrpm = ch3/2 =~k Nf,.- a’? ()

The experimentally determined proportionality factor k. that re-
lates the fracture toughness to the compressive strength was in-
troduced by Fuchs et al. (1995) in the concrete capacity design
(CCD) method and set equal to a constant value, independent of
the embedment depth of the anchor.
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The d@**-dependence and the CCD method take into account
the concrete’s size dependent fracture toughness and have been
validated through numerous experiments. As a result design for-
mulas based on fracture mechanics have been incorporated into
design codes and provisions [i.e., Comité Euro-International du
Beton (CEB) 1997; ACI Committee 349 2006; ACI Committee
318 2008].

After an extensive experimental program (Eligehausen and
Balogh 1995), the capacities obtained from Eq. (2) were reduced
to account for cases where cracking due to external loads (i.e.,
tension zones, negative moment loading conditions) or imposed
deformations (i.e., creep, shrinkage, temperature) are expected in
the region where the anchor is placed. For example, relative to the
uncracked condition a 25% reduction in ultimate load-carrying
capacity for cracked concrete in ACI Committee 318 (2008) is
quantified. In most of the tests performed to assess the effect of
concrete cracking (Eligehausen et al. 2004), cracks were pre-
formed in a reinforced concrete matrix and their width was kept
nearly constant by constraining the specimen. Subsequently, the
anchors were monotonically loaded to failure. Concrete cone fail-
ures were observed; compared to the uncracked case, the load-
displacement curves showed to be flatter, the ultimate load was
markedly reduced, and the displacement at failure increased.
Even though representative of many practical applications, it ap-
pears that the presence of reinforcement and the restraint applied
to the concrete matrix might not provide a complete understand-
ing of the effect of transversal tension on the ultimate load-
carrying capacity of the inserts.

The problem of predicting the load-capacity of cast-in-place
inserts placed in precast, prestressed concrete members to facili-
tate connections between different elements has received much
less attention. In fact, ACI 318 does not provide modifications to
Eq. (2) that account for prestress. The connection of cast-in-place
concrete diaphragms or floor beams to precast concrete girders in
bridges is but one example of applications involving prestress.
Baran et al. (2006) performed experiments on different types of
cast-in-place inserts to determine the influence of reinforcement
and prestress. As expected, they observed that the presence of a
prestressing force in the direction orthogonal to the axes of the
inserts embedded in reinforced concrete resulted in an increase in
load capacity and ductility.

Research Significance

Because of the lack of a design formula for the prediction of the
load-carrying capacity of headed anchors embedded in a pre-
stressed concrete matrix and the actual experimental nature of the
code provisions for the capacity of inserts in cracked concrete,
this paper presents the results of LEFM analyses of the progres-
sive pullout of headed anchors embedded in a stressed matrix.
The effects of stresses on the load-carrying capacity and ductility
are calculated in terms of the to-be-defined brittleness number.
Also presented are the results of a preliminary experimental pro-
gram aimed at assessing the LEFM model’s prediction of the
effects of prestress on ultimate capacity.

LEFM Model and Nondimensional Parameters

Plasticity-based and LEFM models provide useful upper bounds
on the strength of a structure containing a crack. The smooth
transition from ductile to brittle failure can be characterized using
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Fig. 1. Nominal strength versus structural size

nonlinear fracture mechanics models, including those of the co-
hesive zone type. These involve the parameter 3 introduced by
Cherepanov (1979) defined by

L fL
b=~ ®
P c

where r,=length of the “process zone” (microcracking and aggre-
gate interlock) that develops in the vicinity of a very long crack
and L is a characteristic dimension of the structure. We note that
B is referred to by the concrete fracture mechanics community as
the brittleness number [Bazant and Planas (1998); note that
Carpinteri (1982) defined the brittleness number as s=B7']. It is
important to note that the brittleness number is simply the size of
the plastic zone relative to one or more characteristic dimensions
of the structure, and that the interaction between a relatively large
plastic zone and free boundaries can be complex. Therefore the
value of brittleness assigned to a specimen configuration through
the use of a particular structural dimension in Eq. (3) may not be
representative of the brittleness of a different configuration com-
prised of the same material. For example, as pointed out by Ba-
zant valid toughness testing requirements for notched beam-like
specimens, where the characteristic dimension L is taken as the
beam depth, suggest the approximate constraint 3=2.5. How-
ever, for concrete anchors applications, where the characteristic
length L can be taken as the embedment depth (which is typically
much smaller than the dimensions of a beam structure) it is not
uncommon to find values of B =<1 (Elfgren and Ohlsson 1992).

Fig. 1 illustrates that the brittleness number determines
whether failure is of the strength limited ductile type (defined in
terms of some normalized maximum nominal stress, o), or of
the toughness limited brittle type. Noting that L is proportional to
d, and that any choice of nominal area scales as d?, plasticity
predicts a size-independent strength, while LEFM predicts a
1/ \“‘E dependence of strength. The design formulas that are now
available in design codes for headed anchors embedded in non-
stressed concrete are the fruits of LEFM and nonlinear fracture
mechanics models that have captured the transition illustrated in
Fig. 1. As stated previously, while experiment-based formulas
have been developed for cracked concrete conditions, no formulas
are currently available that account for prestress within the con-
crete; hence the motivation behind the LEFM model presented
next.

Fig. 2(a) shows the cross section of the axisymmetric configu-
ration considered in this study. The headed anchor, embedded at a
depth d within a matrix stressed to a level, o, is represented [as
was done in Ballarini et al. (1985, 1987), and Vogel and Ballarini
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Fig. 2. (a) Cross section of the axisymmetric headed anchor model under prestress; the axis of rotation/symmetry is represented by the left edge
of the section; (b) crack paths as function of the applied stress (3=6.25 and d/c=10); and (c) finite-element discretization of the axisymmetric
headed anchor (d/c=1) with detail of the deformed configuration at the end of the crack propagation simulation

(1999)] by a discontinuity of diameter ¢ with a rigid top surface
and a traction-free lower surface. The stem is not considered. The
pullout load (P) is represented by the resultant reactive force on
the top surface of the discontinuity produced by a uniform stress
(p) applied along the bottom surface of the cylindrical model. The
curvilinear distance of the traction-free crack front from the edge
of the anchor is defined by /, and the normalized level of stress is
defined as A=c/f, (note that for the compressive case \>0,
while for the tension case X\ <0).

As it is typically assumed in LEFM analyses of brittle and
quasi-brittle materials, the crack is propagated when the Mode I
stress intensity factor K, for a given crack length / reaches a value
equal to the fracture toughness K- of the material. FRANC-2D
(1997), a program that possesses automatic remeshing capabili-
ties, was used to calculate the stress intensity factors and crack
extension direction of the propagating front. A representative de-
formed finite-element mesh of this configuration is shown in Fig.
2(c). The stress intensity factors were determined using the dis-
placement correlation method (Barsoum 1976), and the crack path
was selected using the maximum hoop stress criterion (Broek
1986).

We note that the model’s predictions for ultimate capacity and
ductility should be considered from the perspective of (1) an ide-
alized geometry that neglects the effects produced by the precise
geometry of embedded anchors and the radial cracking that often
accompanies the crack propagation simulated in this work and (2)
a homogeneous material that neglects the intrinsic heterogeneity
of concrete.

The compressive stress produces two effects that increase the
load-carrying capacity and the ductility of the anchor. As shown
in a close-up view of the tip of the traction-free crack [Fig. 2(a)],
the first contribution is made by the component of the prestress
acting perpendicular to the line defining the crack surfaces (the
components of stress associated with the applied loading are not
shown in this figure). This stress resists crack opening, and in turn
crack extension. The second contribution, also shown in the fig-
ure, is from the component of the prestress in the direction par-
allel to the line defining the crack surfaces, which increases the
algebraic value of the Mode II stress intensity factor, changes the
direction of maximum hoop stress, and as shown in Fig. 2(b),
steers the crack front parallel to the free surface and the direction
of the prestress. Tensile prestress produces the opposite effects,
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facilitating crack opening, and steering the crack front toward the
free surface.

Following Vogel and Ballarini (1999), linearity and dimen-
sional consistency demand that under a given stress level, o, the
load associated with an equilibrium crack length, /, is of the form

I d s 1 d R
Pigpm=fil = —v | - Kje-d >+ fol —.—v]-0-d (4)
dc d c

where v=Poisson’s ratio (assumed equal to 0.2). The normalized
maximum load can be written in terms of 3 and A as

PMLEFM [ d KIC l d (o}
—— - =max| fi| —,—,v |- st o]
fi-d dc fi-d” dc i

=max[f1<£,c—i,v) . ;+f2(£,6—1,v) ~)\] (5)
dc B dc

The plasticity-based normalized capacity predicted by the obso-
lete ACI Committee 349 (1989) guidelines can be written as

PM
Fe=om (1) ©

Experimental Program

In this section the procedures and the experimental setup used to
assess the predictions of the LEFM simulations are described. The
aim of the experimental program was to determine the ultimate
load-carrying capacity (pullout load) and the load versus displace-
ment behavior of headed anchors embedded in both unstressed
and prestressed concrete matrix.

The experimental program employed a normal-strength con-
crete [cylindrical strength of 4.73 ksi (32.59 MPa) and cubic
strength of 5.26 ksi (36.30 MPa)]. The compressive strength was
evaluated on both cylindrical [diameter of 3.94 in. (100 mm) and
height of 7.87 in. (200 mm)] and cubic specimens [5.9 in. (150
mm) sideways]. Standard size cylinders [ASTM C31 (ASTM
2002) and C496/C496M (ASTM 1996)] were tested to obtain the
Young’s modulus and the uniaxial tensile strength of the material
(Brazilian splitting test). After averaging, the values obtained
were 3,408 ksi (23,500 MPa) and 417 psi (2.88 MPa), respec-
tively. The mix components of the concrete used for this investi-
gation were a Portland cement CEM I 52.5 R, according to ENV
197/1 European Standard, and a natural river aggregate (maxi-
mum size of 25 mm). No superplasticizers were used. The con-
crete had an aggregate/cement ratio of 6.24 and a water/cement
ratio of 0.7.

All specimens were prepared using steel molds and consoli-
dated with a high frequency vibrating table, removed from the
mold after 24 h, and air cured at a temperature of about 22°C.
The tests were performed at an age of concrete between 28 and 35
days. The concrete specimens consisted of concrete blocks of two
sizes, 39.37X39.37X7.87 in (1 X1X0.2 m) and 49.21 X 61.02
X 9.45 in (1.25X 1.55X0.24 m).

Four anchors were placed in each specimen at a sufficient
distance among them to avoid interactions and from the edges of
the specimens to avoid edge effects or undesired modes of failure
(i.e., concrete blow-out). The concrete anchors had a stem diam-
eter of 0.5 in. (12.7 mm) and a head diameter of 0.98 in. (25 mm).
They had an ultimate strength of 65 ksi (450 MPa) and a yield
characteristic strength of 51 ksi (350 MPa). Table 1 lists the prop-
erties of the materials employed in the experimental program.
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Table 1. Material Properties [Units in ksi (MPa)]

Material Property Value
Concrete 28 days cylinder strength, f/**cyl 4.73 (32.59)
28 days cubic strength, f/**cube 5.26 (36.30)
21 days cylinder strength, f1?'/cyl 3.90 (26.90)
21 days cubic strength, féz'dcube 4.70 (32.40)
Tensile strength, f; 0.42 (2.88)
Elastic modulus, E 3,408 (23,500)
Steel Yield strength, 0.2% offset, f, 51 (350)
Ultimate strength, f, 65 (450)

All the anchors were cast-in-place during a single cast. Wood
formworks were used as a support for the anchors during the
casting procedure so that they could easily be positioned at dif-
ferent embedment depths. In the tests, two different embedment
depths were employed: 0.98 and 1.97 in. (25 and 50 mm). These
values were preliminarily chosen to obtain embedment depth
versus head diameter ratios (namely, d/c) equal to 1 and 2, re-
spectively.

A representation of the testing machine employed in the ex-
periments is shown in Fig. 3. The load was applied by means of a
hydraulic jack with a reaction frame. The reaction frame consisted
of a steel beam, with the section shown in Fig. 3. The load was
applied through a steel rod connected to the reaction frame at the
top and to a special device that connected the anchor at the end.
The tests were load controlled and the relative displacements be-
tween the anchors and the upper surface of the concrete blocks
were monitored by two LVDTs [+£0.2 in. (*5 mm)] symmetri-
cally positioned at a distance of 10.4 in. (264.2 mm) for short
embedment depths and 15.2 in. (385 mm) for larger embedment
depths from the axis of the anchor.

The effect of prestress was simulated by applying biaxial com-
pression along the sides of the specimens. As shown in Figs. 4
and 5, the compression was applied by means of horizontally
oriented hydraulic jacks inserted in a specially built-in reaction
frame. The steel beams used to build the reaction frame were tied
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Fig. 3. Testing machine used for the extraction of the concrete
headed anchors and location of the LVDTs
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Fig. 4. Detail of the built-in frame for the application of biaxial
compression

together in the two plane directions by using six special Dividag
tying bars. On the two sides of the specimens where the hydraulic
jacks were acting, two additional steel beams were used to uni-
formly distribute the horizontal pressure. The other sides of the
specimens were loaded by contrast through the reaction frame. To
allow for a more uniform load distribution, a 0.4 in. (10 mm)
layer of rubber band was positioned between the specimens and
the frame.

The pullout tests were performed for each embedment depth in
unconfined concrete, while biaxial compression was applied only
to anchors with d/c=2 (Table 2). The tests in confined concrete
were performed considering three different amount of compres-
sion: 5, 7.5, and 10% of the cylindrical compressive strength of
the concrete measured at 21 days [3.9 ksi (26.9 MPa)]. That is,
0.19 ksi (1.34 MPa), 0.29 ksi (2.02 MPa), and 0.39 ksi (2.69
MPa), respectively. The applied compression was constantly
monitored before and after each pullout test with standard ma-
nometers.

Results

Ultimate Load-Carrying Capacity: Finite-Element Model

Representative results for f; [Eq. (4)] as functions of crack length
are shown in Fig. 6. The maxima of each curve were used to
establish Fig. 7, where the capacities predicted by Egs. (2) and (5)
were normalized by the ultimate capacity at the embedment depth
d/c=10. With an experimentally calibrated constant factor, k.,
embedded in its formula, and with the assumption that exact pull-
out forces are being provided, the ACI 318 code-based prediction

Fig. 5. Detail of the built-in frame with the testing machine

Table 2. Experimental Program Details and Parameters

Embedment Head Applied

depth, d, diameter, c, prestress, o,
Test [in. (mm)] [in. (mm)] d/c [ksi (MPa)]
1 2.12 (53.85) 0.98 (25) 2.15 0 (0)
2 1.97 (50.04) 0.98 (25) 2.00 0 (0)
3 2.06 (52.32) 0.98 (25) 2.09 0 (0)
4 1.88 (47.75) 0.98 (25) 1.91 0 (0)
5 0.93 (23.62) 0.98 (25) 0.95 0 (0)
6 0.97 (24.64) 0.98 (25) 0.99 0 (0)
7 0.96 (24.38) 0.98 (25) 0.97 0 (0)
8 0.91 (23.11) 0.98 (25) 0.92 0 (0)
9 1.95 (49.53) 0.98 (25) 1.98 0.20 (1.34)
10 2.00 (50.80) 0.98 (25) 2.04 0.20 (1.34)
11 2.19 (55.63) 0.98 (25) 222 0.39 (2.69)
12 1.92 (48.77) 0.98 (25) 1.95 0.39 (2.69)
13 1.97 (50.04) 0.98 (25) 2.01 0.29 (2.02)
14 1.91 (48.51) 0.98 (25) 1.94 0.29 (2.02)
15 1.93 (49.02) 0.98 (25) 1.96 0.20 (1.34)
16 2.06 (52.32) 0.98 (25) 2.09 0.29 (2.02)

is ideally represented by a horizontal line while results from the
LEFM incremental analyses show that the ultimate load-carrying
capacity slightly decreases with increasing d/c.

Fig. 7 provides valuable information. First, and as clearly
demonstrated by previous experimental investigations (Ozbolt
and Eligehausen 1992), it shows that for relatively large embed-
ment depths there is very little difference between the LEFM
predictions and the ACI 318 code-based formula. For relatively
small embedment depths, however, the code-based formula is as-
sociated with pullout forces that are lower than the upper bound
LEFM predictions. Fig. 7 thus shows that predicting the ultimate
capacity for d/c <2 requires nonlinear fracture mechanics models
that account for the process zone that accompanies a propagating
crack front.

The effects of prestress on load-carrying capacity for selected
values of \ and 3 are shown in Fig. 8(a) (d/c=1) and Fig. 8(b)
(d/c=2). As indicated by LEFM-derived Eq. (5), the load-
carrying capacity varies linearly with prestress. Fig. 9 illustrates
Eq. (5) prediction of an inverse square root decrease in strength
with increasing brittleness. For 0.1<=<10 and O0s\=<1, the
following equation represents a sufficiently accurate fit of the
results for ultimate capacity:

fy(d/c,Vd,v=0.2)
- N w
\a
a
| 3
& g
i L4
=

I/d

Fig. 6. Function f; as functions of crack length and embedment
depth
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Fig. 7. Ultimate load P, normalized by the ultimate load for a
headed anchor embedded at a normalized depth d/c=10, unstressed
matrix

P, 3.5
——5=—7=+0.53\ (7)
fd= B

Eq. (7) provides a basis for the development of a design formula
for ultimate capacity that accounts for prestress. For 3=2.5 a
modest but significant increase of the order of 15-20% is
achieved for the largest value of prestress of practical relevance,
A~0.4-0.6. For tensile prestress, the model predicts that for 3
=2.5 and A=-0.6 there is a reduction in ultimate load capacity of
the order of 25-30%.

Ultimate Load-Carrying Capacity: Experimental
Program

The experimentally measured normalized ultimate capacity data
for unstressed and prestressed concrete are shown in Fig. 8. The
ultimate capacity was nondimensionalized using the measured
uniaxial tensile strength, f, [417 psi (2.88 MPa)], of the material,
and values of d=0.98 in. (24.89 mm) for d/c=1 and d=1.96 in.
(49.78 mm) for d/c=2. It is remarkable, as shown in Fig. 8(b),
that the linear dependence on prestress predicted by LEFM
(which neglects the presence of the process zone and size depen-
dent fracture toughness) is consistent with the experimental re-
sults.

Ultimate Load-Carrying Capacity: Discussion

As aforementioned, the brittleness number was first introduced in
the concrete community studies of edge-edge crack beams, where
the characteristic length L in Eq. (3) is taken as the beam depth.

14 14
¢ Experimental data * Experimental data
12 1 12
10 1 10
p=0.19
< 8 A ///;—_ B025 g L
& o &
27 6 / p05 a2 6 /‘_’._.-H”
ACI 349, ¢=0.85 =t — — e p=05
4 1 4 *+ -
/ o2 ACI 349, 0853 p=l
e —— p25
2 —  —— Las 2 =63
25 ——
0 . . = 0 . ; . =
-0.8 -0.4 0 04 0.8 1.2 -0.8 -0.4 0 0.4 0.8 12
(a) A (b) A

Fig. 8. Ultimate dimensionless pullout load as functions of stress: (a)
d/c=1; (b) d/c=2
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Fig. 9. Ultimate dimensionless pullout load as functions of brittle-
ness: (a) d/c=1; (b) d/c=10

Typical values of 3 for edge-edge crack beams therefore range
between 2.5 and 10 (Bazant and Planas 1998; Carpinteri 1982). In
this study we arbitrarily assign the embedment depth, d, as the
characteristic dimension L in Eq. (3). Because of their arbitrary
definition, the brittleness numbers discussed subsequently should
not be directly related to those of previously reported beam-like
specimens.

A comparison between the model’s predictions and the experi-
mental results can be achieved by determining a reference value
of 3. This can be achieved in two ways. The first involves the
choice 3= 0.38 that bounds from above all the experimental data
shown in Fig. 8(b). This value of brittleness is associated with a
value of concrete fracture toughness of about 0.95 ksi \s'a, that is
well Witll'n the range of typical values (between 0.18 and
1.26 ksivin.). Having decided to arbitrarily define L as the em-
bedment depth, d, the single experimental data point in Fig. 8(a)
(d/c=1) is compared with the LEFM prediction associated with
B=0.19. It is observed that the experimental data are, as expected,
bounded from above with the LEFM prediction.

The second choice involves choosing a brittleness value (3
=0.5 for d/c=2 that provides the best least-square fit to the data
presented in Fig. 8(b). Then the single data point in Fig. 8(a) is
compared with the LEFM prediction for 3=0.25.

With either of the aforementioned choices, it is concluded that
the LEFM model represents a close upper bound solution only for
relative embedment depths greater than d/c=2; for smaller em-
bedment depths the solution becomes unconservative. This cor-
roborates previous experimental investigations and is consistent
with Fig. 7, according to which LEFM is not a plausible tool to
determine the ultimate load capacity of relatively shallow-headed
anchors (d/c<2).

Ductility

The effects of prestress and tensile stresses on ductility are quan-
tified using the work of fracture (WOF), defined as the area under
the force-displacement curve. The load-point displacement, A, in
the simulations is defined as the relative displacement between
the top and the bottom surfaces of the discontinuity defining the
anchor [Fig. 2(a)]. This displacement cannot be measured in the
experiments. Instead the displacement is measured by the two
LVDTs positioned symmetrically with respect to the axis of the
anchor (Fig. 3). In the subsequent discussion the comparison be-
tween the simulated and experimentally measured WOF is there-
fore qualitative. The normalized WOF for both can be written as
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Fig. 10. Load displacement plots from experiments: (a) d/c=1; (b)
dlc=2

WOF, = —£ WOF—fAmax<i>d<%> (8)
el )y \rd )\ df,

t

and represents the area under the normalized force-displacement
curves. When a confining prestress is applied the increase in dis-
sipated energy in the postpeak is large, while the increase in ul-
timate load is modest. This increase is a result of the significant
increase in the length of crack propagation, as shown in the rep-
resentative plots in Fig. 2(b). The opposite is true for tensile pre-
stressing. As expected, relatively deep embedments and tensile
prestress lead to snap-back instabilities in the load-displacement
curve.

Even though based on different definitions of the load-point
displacement, A, Figs. 10 and 11 provide valuable insights. The
significant postpeak ductile behavior of the system and the in-
crease in capacity and ductility with the applied compressive
stress in the experiments is shown in Fig. 10, where load and
displacement were normalized according to the material proper-
ties reported in Table 1 and the corresponding embedment depth,
d. For a value of 3=0.5, Fig. 11 shows that the LEFM simula-
tions only provide a lower bound solution to the ductility of the
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Fig. 11. Load-displacement plots for values of A=0, A=0.4, A=0.7,
A=-0.2, A\=-0.4, B=0.5, and [(a) and (b)] d/c=1; [(c) and (d)]
d/c=10

system and the size of the pullout cone. We note that our crack
propagation simulations showed that as the crack approaches the
free surface the convergence to zero force is very slow for large
values of applied stress. Therefore the curves shown are truncated
when the crack front reaches a distance from the free surface that
is equal to 10% of the embedment depth.

Conclusions

The incremental discrete crack propagation LEFM results repre-
sent a close upper bound solution to the experimentally measured
ultimate capacities of anchors embedded in prestressed concrete
only at a depth twice the anchor diameter (d/c¢=2). Determination
of the capacity of anchors embedded at smaller depths requires
nonlinear fracture mechanics modeling. The formulas presented
in this paper can be used as a basis for establishing design guide-
lines for anchors embedded in prestressed concrete.

When tension is applied, the weakening nature of tensile
stresses produces a decrease in ultimate load capacity and ductil-
ity of headed anchors. For selected values of tension, a 25-30%
decrease in load-carrying capacity and a much larger decrease in
WOF and in the size of the pullout cone are observed relative
to an unstressed matrix. These results only partially agree with
the actual code provisions for anchors installed in cracked con-
crete, where a capacity reduction of about 25-30% is predicted
for values of tension close to the tensile strength of the concrete
(N=-1). In addition to the fact that the results from the LEFM
analyses are representing only a qualitative solution, this shows
that the actual code provisions and test setups, where a precracked
reinforced concrete matrix is externally restrained to control the
crack width during the anchors extraction, might be suitable to
predict the effects of concrete cracking and not the effects of pure
applied tensile fields without any restraint.
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