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ULTIMATE LOAD CAPACITIES OF PLANE AND

AXISYMMETRIC HEADED ANCHORS

By Amy Vogel1 and Roberto Ballarini2

ABSTRACT: A finite-element-based linear elastic fracture mechanics analysis of the pullout of headed anchors
is presented. The anchor is modeled as a vertically loaded crack of diameter c, embedded at a depth d, with a
rigid upper surface, and traction-free lower surface. The fracture toughness and Poisson’s ratio of the surrounding
matrix are KIc and n, respectively. For selected values of d/c, the mode-I stress intensity factor is calculated for
each increment of the crack growth, which emanates from the edge of the anchor, and follows the direction of
zero mode-II stress intensity factor. The stress intensity factors are used to calculate the ultimate load Pu, which
is written as Pu = g(d/c, n)d3/2KIc. For n = 0.2 and relatively large values of d/c, g = 2.8 for axisymmetric anchors
and g = 1.2 for plane strain anchors.
INTRODUCTION

Consider a headed anchor of diameter c, embedded within
a concrete matrix at a depth d. The formula given in the Amer-
ican Concrete Institute code (‘‘Code’’ 1989) for its tensile
(pullout) capacity can be written, in terms of the concrete ten-
sile strength ft, as follows:

2P } f d (1)u t

It is well known (Ozbolt and Eligehausen 1993) that (1),
which is based on the assumption that pullout is resisted by a
nominal stress acting along an assumed failure surface, is un-
conservative for relatively large d. This is not surprising, be-
cause it is not based on a rational analysis that treats the dis-
crete cracking that dominates the failure process. Over the past
15 years improved design formulas have been developed
through linear and nonlinear fracture mechanics; these have
been recently summarized by Karihaloo (1996). As discussed
by Ozbolt and Eligehausen (1993), for large embedment
depths there is very little difference between the predictions
of the linear and nonlinear fracture models. Therefore, we limit
the subsequent discussion to linear elastic fracture mechanics
(LEFM).

Consider the idealized headed anchor geometry shown in
Fig. 1. The model consists of an anchor, embedded at a depth
d = 1, modeled as an infinitesimally thin crack of diameter c,
whose upper surface is restrained in all directions and whose
lower surface is traction-free. It does not include the thickness
of the anchor, nor its stem; these could be easily incorporated
but are not expected to significantly affect the ultimate load
capacity. The length of the extension from the edge of the
anchor is l. A unit load is applied through a prescribed uniform
stress along the bottom surface.

In LEFM, it is typically assumed that a crack will propagate
when the mode-I stress intensity factor KI reaches a value
equal to the fracture toughness KIc along a path that is asso-
ciated with zero mode-II stress intensity factor KII. Linearity
and dimensional consistency demand that the load associated
with an equilibrium crack length l is of the form

3/2P = f (c/d, l/d, n)d K (2)Ic
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FIG. 2. Finite-Element Discretization of Anchor Bolt Model,
d/c = 1

FIG. 1. Schematic of Headed Anchor Bolt Model

where n = Poisson’s ratio. The ultimate load corresponds to
the crack length that maximizes f ; that is

3/2 3/2P = f (c/d, l/d, n)d K [ g(d/c, n)d K (3)u max Ic Ic

Numerical values of g have been presented for plane strain by
Ballarini et al. (1985) and for the axisymmetric configuration
by Karihaloo (1996) and Eligehausen and Sawade (1989). Eli-



FIG. 3. Crack Paths for Plane Strain and Axisymmetric Con-
figurations, d/c = 1

gehausen and Sawade (1989), assuming a straight crack prop-
agating at an angle of 37.57 with respect to the plane of the
anchor; used the finite-element method to predict that for rela-
tively large embedments g = 2.1. More recently Karihaloo
(1996), approximating the anchor and failure surface as an
embedded penny shaped crack of decreasing depth and in-
creasing radius, calculated that for relatively large embedments
g = 0.6. The latter result is not surprising, because the constant
penny shaped crack is associated with higher stress intensity
factors than those at the front of a curving crack. Because of
the discrepancy in the published values of g for the axisym-
metric configuration, the writers performed an incremental
crack growth analysis to calculate improved estimates of func-
tions f and g. By also calculating the results for plane strain
conditions, they verified the results presented by Ballarini et
al. (1985), which were derived through an approximate crack
path analysis.
In the subsequent analysis, the local compressive damage
that may arise in the vicinity of the anchor is not taken into
account. If it were, then the numerical values of g, as well as
the cracking patterns, would be dependent on the absolute
value of the embedment depth.

FINITE-ELEMENT MODEL

The finite-element program FRANC-2D (1997) was used to
model the cracking that develops during the pullout; it pos-
sesses automatic remeshing capabilities, accurately calculates
the stress intensity factors KI and KII, and propagates the crack
along the zero KII direction. For all calculations, n = 0.2. Fig.
2 shows a typical finite-element discretization of the original
crack and the extension from its edge. Because of symmetry,
only the region shown in Fig. 2 needs to be modeled; this
region represents half of the geometry for the plane strain con-
figuration and a cross section for the axisymmetric configu-
ration. Recall that the nodes along the top surface of the an-
chor are restrained in all directions and that zero traction is
prescribed on the nodes along the bottom surface. Moreover,
symmetry is employed by assigning zero horizontal displace-
ment to all nodes lying along the vertical left bounding sur-
face.

It is important to note that for these (crack surface) bound-
ary conditions, the singularity at the tip of the anchor is not
square root; it is oscillatory (Ballarini et al. 1985). Therefore,
LEFM cannot be used to predict the crack initiation load. The
following procedure is used to initiate the crack. For several
values of c, a short crack is introduced at an angle of 307 with
respect to the plane of the anchor. This crack is then propa-
gated along a path of zero KII. The arbitrary choice of initiation
angle will not significantly affect the predicted g, because un-
der subsequent propagation the crack will redirect itself along
the theoretically consistent path.
FIG. 4. Normalized Equilibrium Load as Functions of Crack Length and Embedment Depth (Axisymmetric Configuration)
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FIG. 5. Normalized Equilibrium Load as Functions of Crack Length and Embedment Depth (Plane Strain Configuration)
FIG. 6. Normalized Ultimate Load as Function of Embedment
Depth (Axisymmetric Configuration)

RESULTS AND DISCUSSION

The predicted crack paths for d/c = 1 are shown in Fig. 3.
Qualitatively, similar paths were calculated for the other em-
bedment depths (d/c = 2, 5, and 10). As will be discussed
subsequently, crack propagation in these geometries is stable
up to a critical length lc. It was shown by Ballarini et al. (1985)
that for shorter embedment depths (d/c = 0.75), crack propa-
gation in the plane strain geometry is unstable at initiation. To
capture the ultimate load capacity, each analysis was termi-
nated at a crack length slightly longer than lc. It is observed
that, for each configuration, lc is longer for axisymmetry than
for plane strain. Moreover, the angle of propagation up to the
critical length is at most 207 for the axisymmetric configura-
tions and slightly less for the plane strain geometries.

Figs. 4 and 5 show function f ; its maximum value for each
configuration provides the nondimensionalized ultimate load
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FIG. 7. Normalized Ultimate Load as Function of Embedment
Depth (Plane Strain Configuration)

g, as shown in Figs. 6 (axisymmetry) and 7 (plane strain).
Although they are not presented, the mode-II stress intensity
factors were practically equal to zero for the paths shown in
Fig. 3. It is observed that for large values of d/c, g approaches
2.8 for axisymmetry and 1.2 for plane strain. Fig. 7 also shows
that, for plane strain, g is a weak function of d/c. In fact, for
all practical purposes, function g can be taken as a constant
1.2. The plane strain results for d/c = 0.75 and 1.0 agree to
two significant figures with those presented by Ballarini et al.
(1985).
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